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Fair contrastive pre-training for geographic image segmentation
Anonymous submission

ABSTRACT
Contrastive representation learning, a method for learning fea-
tures that distinguish dissimilar data samples, is widely employed
in visual recognition for geographic image data (remote-sensing
such as satellite imagery or proximal sensing such as street-view
imagery). However because of heterogeneity in landscapes (e.g.
how a road looks in different places), models can show disparate
performance across spatial units. In this work, we consider fair-
ness risks in identification of land-cover features (via semantic
segmentation, a common computer vision task in which image
regions are labelled according to what is being shown) which uses
pre-trained image representations generated via contrastive self-
supervised learning. We assess model prediction disparities across
selected sensitive groups: urban and rural scenes for satellite im-
age datasets and city GDP level for a street view image dataset.
We propose fair dense representation with contrastive learning
(FairDCL)1 as a method for de-biasing the multi-level latent space
of a convolution neural network. The method improves feature
identification by removing spurious latent representations which
are disparately distributed across groups, and is achieved in an un-
supervised way by contrastive pre-training. The pre-trained image
representation improves downstream task fairness and outperforms
state-of-the-art methods for the absence of a fairness-accuracy
trade-off. Image embedding evaluation and ablation studies further
demonstrate FairDCL’s robustness. As fairness in geographic im-
agery is a nascent topic, our work motivates researchers to consider
fairness metrics in such applications, especially reinforced by our
results showing no accuracy degradation.

CCS CONCEPTS
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1 INTRODUCTION
Dense pixel-level image recognition via deep learning for tasks such
as segmentation have a variety of applications in landscape feature
analysis from geographic images. For example, regional water qual-
ity analysis [16] or dust emission estimation [60]. Success of the
methods rely on powerful visual representations that include both
local and global information. However, since pixel-level annotations
are costly, fully supervised learning is challenging when the amount
and variety of labeled data is scarce. Therefore, self-supervised
learning is a promising alternative via pre-training a image feature
encoder and transfering learnt representation to downstream prob-
lems. Indeed, the performance of such self-supervised approaches
has been shown to match supervised learning on a large range of
image tasks [12, 59]. Moreover, as a mainstream, contrastive self-
supervised techniques have shown state-of-the-art performance in
learning image representation for land cover semantic segmenta-
tion across locations [2, 48]. In particular, since labeled images are
hard to obtain for geographic images, and contrastive approaches
do not require labeled images, they have demonstrated benefits in
many real-world tasks including analyzing multitemporal images
to monitor dynamic land surface [47], irrigation detection from
uncurated and unlabeled satellite images [1], and volcanic unrest
detection with scarce label and imbalanced classes [4].

Recent attention in machine learning systems has highlighted
performance inequities including those by geographic area [10, 31,
33, 50]. Therefore, given the increased potential of self-supervised
contrastive learning, here we turn attention to fairness risks in
recognition outcomes from geographic images. Algorithmic fair-
ness is an increasingly important concern in computer vision, con-
sidering its usage for societal decisions across many areas such
as health, urban planning, climate change and disaster risk assess-
ment [32, 33, 53]. Further, while recent work calls for more focus
on fairness studies for imagery with human as objects [57], there
is very limited fairness work on model performance disparities for
geographic images despite their wide applications.

To bridge this gap, we examine model semantic segmentation
prediction and identify disparities across geographic subgroups on
satellite image and city street view datasets from three different
locations. As previous work shows, segmentation performance can
be disparate across geography types. For example, in areas where
land-cover objects have higher density or heterogeneity [74], perfor-
mance will be lower even for similar data representations. Moreover,
identifying and thus addressing disparities for geographic object
segmentation is different from fairness tasks in other image types
such as facial images. First, facial recognition (mostly classification)
relies on image-level global representations, which are not ideal
for segmentation in which local features are important. Second,
specifying sensitive attributes for geographic images is challenging
because sensitive land-cover features are generally task-related,
unlike many previous fairness studies in which bias is easier to
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identify and separate out (e.g. skin color, gender) because the sensi-
tive attributes are less relevant with respect to the specific task (e.g.
skin color is not relevant to facial recognition) [24, 44, 64].

In sum, existing fairness methods do not always apply to ge-
ographic data and relevant tasks. Instead, we develop unbiased
representation learning by relying on generalizable and robust
landscape features, while reducing spurious features that are un-
equally correlated with sensitive groups (referred to as “bias” or
“sensitive information”). By constructing regularization terms on
the statistical association between pixel-level image features and
sensitive variables, the approach directly mitigates performance
disparities in the downstream landscape semantic segmentation
tasks. The specific contributions of the work are:

(1) We propose a causal model depicting the relationship be-
tween image features and sensitive attributes to unravel
the type of implicit bias caused by spurious correlations in
geographic images. This framework enables us to identify
and address unique fairness challenges in geographic image
recognition.

(2) For the described bias scenario, we design a fair representa-
tion learning method which focuses on local image features
of multiple resolution levels, termed FairDCL. This novel
method leveragesmutual information guided de-biasingwith
regularization at multiple levels for pixel-level visual recog-
nition such as segmentation, which is specifically relevant
for geographic data and tasks.

(3) On three diverse geographic imagery datasets, FairDCL shows
the advantages for learning fair visual representation in con-
trastive pre-training; it surpasses state-of-the-art fairness
methods with smaller group difference, higher worst-case
group performance, and without sacrificing overall accuracy
on downstream semantic segmentation tasks.

2 LITERATURE REVIEW
Contrastive learning for dense representation. Contrastive learning is
used as a self-supervised pre-training approach for various down-
stream vision tasks including classification, detection and segmen-
tation [2, 6, 7, 18, 34, 45, 61]. Though most work in this area focuses
on optimizing a global representation for image-level tasks [6, 7, 67],
recent work has turned to learning representation suitable for pixel-
level predictions; Wang et al. [65] design a dense projection through
local feature vectors for contrastive objectives, thus preserving
spatial information. Xiong et al. [69] use overlapped local blocks
to increase depth and capacity for decoders that improves local
learning. Others [5, 37, 68] apply local contrastive loss to enlarge
representation dissimilarities across regions and similarities across
augmented views. Such methods show the importance of local
features on dense visual problems like object detection and segmen-
tation, which motivates method design in this study.

Fairness in image recognition. Fairness-promoting approaches
are being designed in multiple visual recognition domains. In face
recognition applications, methods are proposed towards mitigating
bias across groups such as by age, gender or race/ethnicity. Meth-
ods include constraining models from learning sensitive informa-
tion by adversarially training sensitive attribute classifiers [35, 42],

using penalty losses [49, 70], sensitive information disentangle-
ment [9, 39], and augmenting biased data using generative net-
works [44]. These methods achieve fairer recognition, but only
focus on global classification tasks. Related to healthcare data and
practice, Puyol-Antón et al. [41] improve cardiac MR segmentation
by jointly training a racial meta-attribute classifier. Yuan et al. [71]
reduce skin tone bias in skin disease classification and segmentation
by altering colors in images but preserve lesion structure edges.
Efforts on geographic imagery include achieving even class-level
segmentation results on street scenes using tilted cross entropy
loss [55] and fair underwater object detection by simulating better
quality images for scarce species [11]. A few recent studies look at
fairness in contrastive learning; Tsai et al. [58] propose sampling
positive and negative pairs from the same group to restrict models
from leveraging sensitive information, but could potentially lose
task-specific information of the data contrasts with different groups.
Park et al. [40] propose fairness-aware losses to penalize sensitive
information used in positive and negative pair differentiation, but
in a supervised setting with target labels fully available.

Mutual information for de-biasing. For de-biasing purposes, mu-
tual information as a statistical association measure between vari-
ables [26] has recently been used to instruct training objectives
to minimize model dependence on irrelevant variables. In deep
networks, mutual information lower bound estimators are adapted,
such as MINE [3] and DeepInfoMax [19]. Ragonesi et al. [43] use
MINE loss to model optimization which shows utility in remov-
ing irrelevant information in digit and face classifications. Zhu et
al. [77] compute cross-sample mutual information for reducing
different bias variations. Previous work shows leveraging mutual
information can ease the requirement of pre-defined bias properties
between groups, which informs the de-biasing approach in this
study on geographic imagery.

2.1 Gaps in the Literature
Existing fairness work in image recognition is limited in multiple
ways, leaving gaps for adaptation to geographic imagery. First,
some methods require prior knowledge of sensitive attribute prop-
erties, such as skin colors for ethnicity groups, hair colors, presence
of glasses [44, 66, 71]. The analog of such a property is not avail-
able in satellite images, nor are such properties homogeneous (e.g.
each country has unique urban-rural landscape pattern changes).
Second, since the existing methods are mostly designed for classifi-
cation problems, they use image-level representation approaches.
However, fairness at an image level would not necessarily extend
to pixel-level dense predictions. Third, there is very little work on
fairness for geographic images, for which biased features are harder
to discover, interpret and remove, compared to facial images.

Beyond the contributions to fairness in geographic images, an-
other gap our work addresses is in fair contrastive learning. Fair-
ness has been less studied in contrastive approaches. Such work
is needed, as shown by Sirotkin et al. [52], self-supervised models
can incorporate implicit bias from data and potentially transfer
to downstream tasks. Despite the limitations of existing fair con-
trastive approaches, such as losing task-specific information which
might harm model accuracy, and requiring target task labels, all
work shows increased downstream fairness scores. Considering
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limited research in this area, we are motivated to further increase
representation fairness via contrastive learning.

Figure 1: Examples of Segmentation bias due to spurious
visual representation; the model segments certain road pat-
terns well (blue circles), but segments the variations poorly
(red circles).

3 PROBLEM STATEMENT

Figure 2: Diagram of defined causal relationships between
representation 𝑋 learnt with contrastive pre-training, target
task prediction outputs 𝑌 , and sensitive attribute 𝑆 . 𝑋 con-
tains two parts, 𝑋𝑠𝑝𝑢𝑟𝑖𝑜𝑢𝑠 generated from features spuriously
correlated to sensitive attributes and 𝑋𝑟𝑜𝑏𝑢𝑠𝑡 generated from
independent and unchangeable features.𝑈 is an unmeasured
confounder which causes both 𝑆 and 𝑋𝑠𝑝𝑢𝑟𝑖𝑜𝑢𝑠 thus result in
correlations between 𝑆 and 𝑋𝑠𝑝𝑢𝑟𝑖𝑜𝑢𝑠 .

3.1 Unfairness in satellite image recognition
Land-cover objects in satellite images, such as residential building,
roads, vegetation, etc, often have heterogeneous shapes and distri-
butions in urban and rural areas even within the same geographic
region. These distributions are affected by varying levels of devel-
opment (infrastructure, greening, etc). Considering an attribute
𝑆 = {𝑠0, 𝑠1} denoting urban/rural area, we define visual representa-
tion learnt by model as 𝑋 = {𝑋𝑠𝑝𝑢𝑟𝑖𝑜𝑢𝑠 , 𝑋𝑟𝑜𝑏𝑢𝑠𝑡 }, where 𝑋𝑠𝑝𝑢𝑟𝑖𝑜𝑢𝑠
includes information that varies across sensitive groups in 𝑆 , for
example, the contour, color, or texture of “road” or “building” class.
𝑋𝑟𝑜𝑏𝑢𝑠𝑡 , on the other hand, includes generalizable information, for
example, “road” segments are narrow and long, while “building”
segments are clustered. When model output 𝑌 is drawn from both
𝑋𝑟𝑜𝑏𝑢𝑠𝑡 and 𝑋𝑠𝑝𝑢𝑟𝑖𝑜𝑢𝑠 , it can lead to biased performance. For exam-
ple, roads in grey/blue color (Figure 1 A), with vehicles on them
(Figure 1 B), and with lane markings (Figure 1 C), are segmented bet-
ter (blue circle) than the others (red circle, Figure 1 D). Examples of

more classes’ spurious and robust components are in the Appendix
A. As a result, urban and rural embedding containing dispropor-
tionate spurious information levels will cause group-level model
performance disparities in semantic segmentation. This problem is
sketched out, in terms of causal relationships, in Figure 2. Different
from previous fair methods which directly remove sensitive infor-
mation, which is not available in the problem we study, we define
the fairness goal to be to remove spurious information from repre-
sentation correlated to sensitive features. That is, to obtain 𝑋𝑟𝑜𝑏𝑢𝑠𝑡
which promotes 𝑌 ⊥ 𝑆 |𝑋𝑟𝑜𝑏𝑢𝑠𝑡 . The instinctive fairness benefit of
learning 𝑋𝑟𝑜𝑏𝑢𝑠𝑡 over 𝑋𝑠𝑝𝑢𝑟𝑖𝑜𝑢𝑠 is that it can relieve the need to
expose a model to enough data to extract relevant target represen-
tation from non-generalizable feature variations, especially when
the underrepresented group’s data is scarce.

Figure 3: CityScapes semantic segmentation model unfair-
ness: Class-level Intersection-over-Union (IoU) on the testing
set differs significantly across the 3 city groups with different
GDP attributes.

4 METHODOLOGY
4.1 Datasets and sensitive groups
While several standard image datasets used in fairness studies exist,
datasets with linked sensitive attribute information for real-world
geographic imagery are very limited. We identified three datasets
which had or could be linked with attribute annotations for bias
analyses. Next we describe sensitive group definitions for each
dataset, based on location-based disparity context and attributes
which could encode disproportionate spurious information, below.

LoveDA [63], urban or rural designation as sensitive attribute, is
composed of 0.3m spatial resolution RGB satellite images collected
from three cities in China. Images are annotated at pixel-level into
7 land-cover object classes, also with a label based on whether they
are from an urban or rural district. Notably, images from the two
groups have different class distributions. For example, urban areas
contain more buildings and roads, while rural areas contain larger
amounts of agriculture [63]. Moreover, it has been shown that
model segmentation performances differ across urban and rural
satellite images [74]. We split the original images into 512×512
pixel tiles, take 18% of the data for testing, and for the rest, 90% are
for contrastive pre-training (5845 urban tiles and 5572 rural tiles)
and 10% for fine-tuning the pre-trained representation to generate
predictions.

2023-05-10 22:03. Page 3 of 1–14.
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EOLearn Slovenia [51], urban or rural designation as sensitive
attribute, is composed of 10m spatial resolution Sentinel-2 images
collected fromwhole region of Slovenia for the year 2017, with pixel-
wise land cover annotations for 10 classes. We only use the RGB
bands for the consistency with other datasets, remove images that
have more than 10% of clouds, and split images into 256×256 pixel
tiles to enlarge the training set. Labels are assigned by assessing if
the center of each tile is located in urban boundaries or not (using
urban municipality information2 and administrative boundaries
from OpenStreetMap3). This process generates 1760 urban tiles and
1996 rural tiles in total. Similar to the LoveDA process, 18% of the
data are used for testing, and 90% of the rest of the data are used
for pre-training and 10% for fine-tuning.

Cityscapes [8], GDP levels as sensitive attribute, is an urban street
view dataset with pixel-level annotations available for 30 classes.
The train and validation split from the original dataset are merged,
then 18% of the data (900 images) are randomly selected for testing,
and for the rest, 90% (3690 images) are used for pre-training and 10%
(410 images) for fine-tuning. The group unfairness categories are
identified by performing supervised training and evaluate on the
testing images, where segmentation accuracy differences between
cities are observed. In particular, we find that metropolitan cities
tend to have worse accuracy than small cities. Therefore, we split
the 21 cities into 3 groups by GDP level4, denoted as Rank 1-10,
Rank 10-40 and Rand 40+, since GDP is a comprehensive factor
related population density, infrastructure, and others that can affect
street views. Group-level results are shown in Figure 3.

There are several major disparities visible. For instance, Rank 1-
10 cities have lower accuracy on object, human, and vehicle, which
could be because these classes exist in higher proportion in the
images (statistics in Figure 10, Appendix) and their positions com-
monly overlap, increasing segmentation difficulty. Slightly lower
accuracy on the sky class for Rank 1-10 and Rank 10-40 cities may
occur due to a higher prevalence of trees (nature class), traffic
light and signs (object class) obstructing the sky and disturbing
detection. In terms of overall accuracy, Rank 1-10 group has worst
performance (IoU: 0.577) than the other two groups (0.613 for Rank
10-40 and 0.617 for Rank 40+).

4.2 Metrics
The quality of representations learnt from self-supervised pre-
training is usually evaluated based on downstream task perfor-
mance [23]. The principle behind this approach is using limited
supervision and fine-tuning in assessment [15, 54, 72]. In line with
this precedent, for comprehensively assessing representation qual-
ity, we report target task results every 1k iterations of fine-tuning
for the pre-trained representation. On the downstream semantic
segmentation task, we use Intersection-over-Union (IoU) as the
accuracy metric, calculated using pixel-wise true positives (𝑇𝑃 ),
false positives (𝐹𝑃 ), and false negatives (𝐹𝑁 ),

IoU :=
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 .

2https://www.gov.si/en/topics/towns-and-protected-areas-in-slovenia/
3https://www.openstreetmap.org/#map=12/40.7154/-74.1289
4GDP level is measured by gross domestic product:
https://en.wikipedia.org/wiki/List_of_German_cities_by_GDP

Group accuracy for group 𝑔𝑖 is computed via the mean of class-wise
IoUs (referred to as 𝜇𝑔𝑖 ).

We use two fairness metrics, both motivated by previous work
in algorithmic fairness. First, the group difference with regard to ac-
curacy [14, 42, 55, 78] (Diff). Diff for a 2-element sensitive attribute
group {𝑔1, 𝑔2} is defined as:

Diff {𝑔1, 𝑔2} :=
|𝜇𝑔1 − 𝜇𝑔2 |

min{𝜇𝑔1 .𝜇𝑔2 }
.

And for 𝐾 ≥ 3 element group {𝑔1, ..., 𝑔𝐾 }, we measure group dis-
tances from parity [13]:

Diff {𝑔1, ..., 𝑔𝐾 } := 𝐾

𝐾 − 1

𝐾∑︁
𝑖=1

����� 𝜇𝑔𝑖

𝜇𝑔1 + ... + 𝜇𝑔𝐾
− 1
𝐾

����� .
The second metric is worst group results (Wst), motivated by the

problem of worsening overall performance for zero disparity [73].
Additionally, we define a fairness-accuracy trade-off criteria at
optimal fine-tuning. We indicate that there is no trade-off (No TO)
when fairness increases with no decrease in accuracy as compared
to the vanilla baseline.

Figure 4: Bias accumulation during contrastive pre-training.
(A) Sum of mutual information estimation, and (B) the con-
trastive loss of ResNet50 model with MoCo-V2 pre-training.
The baseline method with no intervention (Baseline), regu-
larizing only on the global feature vector (Global only), first
two layers of feature maps (First-two only), last two layers
of feature maps (Last-two only) all show bias residuals com-
pared to the multi-level method proposed as part of FairDCL.

4.3 Multi-level representation de-biasing
The idea of constraining mutual information between representa-
tion and sensitive attribute to achieve fair learning has multiple
applications [25, 43, 77], which all operate on a global represen-
tation z = 𝐹 (d), output from image encoder 𝐹 . However, fairness
constraints only on the global output layer do not guarantee that
sensitive information is omitted from representation hierarchies of
intermediate layers or blocks in a network (herein we use the term
“multi-level representation” for simplicity). As has been shown, the
distribution of bias in terms of its category, number and strength
is not constant across layers in contrastive self-supervised mod-
els [52]. Besides, layer-wise regularization is necessary to constrain
the underlying representation space of CNN models [21, 22, 29].
Local features in representation hierarchies are important [37, 65],
especially when transferring to dense downstream tasks such as
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semantic segmentation, where representations are aggregated at
different scales in order to let the decoder project predictions onto
pixel space. Given the evidences in sum, we design a feature map
based local mutual information estimation module and incorporate
layer-wise fairness regularization into the contrastive optimization
objective.

To measure mutual information𝑀𝐼 (𝑋, 𝑆) between local feature
𝑋 and the sensitive attribute 𝑆 = {𝑠0, 𝑠1, ...}, we adapt the concat-
and-convolve architecture in [19]. Notating the 𝑖𝑡ℎ layer as 𝑙𝑖 , we
first build a one-hot encoding map c𝑙𝑖 for sensitive attributes 𝑆
whose size is same as the feature map x𝑙𝑖 output by 𝑙𝑖 , and channel
is the size of 𝑆 . For each x𝑙𝑖 , a c𝑙𝑖 is built from the joint distri-
bution of representation space 𝑋 and attribute space 𝑆 , and the
marginal distribution of 𝑆 separately, then the c𝑙𝑖 built in the two
ways are concatenated with x𝑙𝑖 to form an “aligned” feature map
pair, denoted as 𝑃𝑋𝑆 (x𝑙𝑖 ∥ c𝑙𝑖 ), and a “shuffled” feature map pair,
denoted as 𝑃𝑋𝑃𝑆 (x𝑙𝑖 ∥ c𝑙𝑖 ). The mutual information between the
aligned and shuffled feature map pairs will be estimated by a three-
layer 1 × 1 convolutional discriminator 𝐷𝑖 , using the JSD-derived
formation [19]:

𝑀𝐼 𝐽 𝑆𝐷 (𝑋 𝑙𝑖 ; 𝑆) := 𝐸𝑃𝑋𝑆 [−sp(−𝐷𝑖 (x
𝑙𝑖 ∥ c𝑙𝑖 ))]

−𝐸𝑃𝑋 𝑃𝑆 [sp(𝐷𝑖 (x
𝑙𝑖 ∥ c𝑙𝑖 ))],

where sp(𝑎) = 𝑙𝑜𝑔(1 + 𝑒𝑎), and 𝐷𝑖 uses separate optimization to
converge to the lower bound of𝑀𝐼 𝐽 𝑆𝐷 .

We empirically validate the necessity to apply multi-level con-
straints to reduce bias accumulation across layers. We run self-
supervised contrastive learning on LoveDA data using MoCo-v2 [7]
with ResNet50 [17] as the base model. Simultaneous to model con-
trastive training, four independent discriminators are optimized to
measure the mutual information𝑀𝐼 𝐽 𝑆𝐷 (𝑋 𝑙1; 𝑆), ..., 𝑀𝐼 𝐽 𝑆𝐷 (𝑋 𝑙4; 𝑆)
between representation output from the four residual layers of
ResNet50 and sensitive attributes: urban/rural.𝑀𝐼 𝐽 𝑆𝐷 are summed
to measure the total amount of model bias for the data batch. Con-
trastive training is conducted for 7k iterations (around 20 epochs)
and the mean bias of iterations for each epoch is plotted in Figure 4
(A). The baseline training without𝑀𝐼 𝐽 𝑆𝐷 intervention shows con-
tinually increasing and significantly higher bias than other methods
as the number of epochs increase. Adding a penalty loss which en-
courages minimizing𝑀𝐼 𝐽 𝑆𝐷 only on the global representation or on
subsets of layers both effectively control bias accumulation. How-
ever, their measurements are still high compared to intervening on
all four layers (Multi-level), showing that global level regularization
might remove partial bias but leave significant residual from earlier
layers. The influence of this problem on model downstream per-
formance will be tested with the method UnbiasedR (Sec. 5.2.1 and
Table 1). Additionally, the running contrastive loss during training
is plotted in Figure 4 (B). From this plot it can be seen that all meth-
ods converge well; mutual information constraints in latent space
do not affect the contrastive learning objective. The Global only
method converges slower in later epochs than the other four meth-
ods, which may be because that the penalty factor is directly added
on the target optimization function which affects the convergence.
Both the de-biasing and convergence benefits motivate us to learn
fair multi-level representations for different image encoder stages.

Figure 5: Overview of FairDCL. It captures sensitive informa-
tion and applies fairness regularization on image represen-
tation at multiple scales. We build one-hot feature maps to
encode sensitive attribute and estimate mutual information
by neural discriminators. Penalty loss L𝐷𝑖 are computed ac-
cordingly and added into the final contrastive pre-training
objective.

Algorithm 1: FairDCL. 𝐹 = {𝑙1, 𝑙2, ..𝑙𝑖 .., 𝑙𝑁 } is the con-
trastive learning encoder. 𝐸 is iterations per epoch; 𝐵 is
discriminators updating rounds; 𝜂 is learning rate. 𝛼 is fair-
ness regularization strength.

for each iteration a from 1 to 𝐸 do:
Image encoder forward propagation:
x𝑙𝑁 , x𝑙𝑁 −1, ..., x𝑙1 ← 𝐹 (𝑥 ) ⊲ x𝑙𝑖 is the query representation
output of the layer 𝑙𝑖
Discriminators updating:
for each round b from 1 to 𝐵 do:

for each discriminator 𝐷𝑖 do:
L𝐷𝑖 ← 𝐷𝑖 (x𝑙𝑖 ∥ 𝑃𝑋𝑆 (c𝑙𝑖 ), x𝑙𝑖 ∥ 𝑃𝑆 (c𝑙𝑖 ) )
⊲ Forward aligned and shuffled feature pairs
𝑊𝐷𝑖 ←𝑊𝐷𝑖 − 𝜂 ▽ L𝐷𝑖 ⊲ Optimize 𝐷𝑖

Image encoder updating:
x𝑙𝑁 , x𝑙𝑁 −1, ..., x𝑙1, 𝑞, 𝑘 ← 𝐹 (𝑥 ) ⊲ 𝑞, 𝑘 is the query and key
global representation
L𝑐𝑜𝑛 ← 𝑞, 𝑘 ⊲ Compute contrastive loss
L𝐷 ←

∑𝑁
𝑖=1 L𝐷𝑖 ⊲ Compute MI loss

𝑊𝐹 ←𝑊𝐹 − 𝜂 (L𝑐𝑜𝑛 − 𝛼L𝐷 ) ⊲ Update encoders

4.4 FairDCL pipeline
Figure 5 provides an overview of the proposed fair dense representa-
tions with contrastive learning (FairDCL) method and the training
process, with steps detailed in Algorithm 1. For each iteration of
contrastive pre-training, latent space representation x𝑙𝑖 is yielded
at layer 𝑙𝑖 of the image encoder 𝐹 . Layer discriminators 𝐷𝑖 are opti-
mized by simultaneously estimating and maximizing𝑀𝐼 𝐽 𝑆𝐷 with
the loss:

L𝐷𝑖 (x
𝑙𝑖 , 𝑆 ;𝐷𝑖 ) = −𝑀𝐼 𝐽 𝑆𝐷 (x𝑙𝑖 ; 𝑆). (1)

Following [43], each 𝑀𝐼 discriminator is optimized for multiple
inner rounds before encoder weights get updated. More rounds
are desirable for discriminators to estimate mutual information

2023-05-10 22:03. Page 5 of 1–14.
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with increased accuracy [43], and based on resource availability,
we set a uniform round number 𝐵 = 20. The architecture of 𝐷𝑖 for
each layer differs based on channel size of the concatenated feature
map pair. After discriminator optimization completes, one iteration
of image encoder training is conducted wherein discriminators
infer the multi-stage mutual information by loss in (1), and the
losses are combined with the contrastive learning loss with a hyper-
parameter 𝛼 adjusting the fairness constraint strength. The final
training objective is:

L𝐹 (𝑋, 𝑆 ;𝐷, 𝐹 ) = L𝑐𝑜𝑛 − 𝛼 (
∑︁
𝑙𝑖

L𝐷𝑖 (𝑋
𝑙𝑖 , 𝑆 ;𝐷𝑖 )), (2)

With the training objective, the image encoder is encouraged to
generate representation 𝑋 with high L𝐷 , thus low 𝑀𝐼 𝐽 𝑆𝐷 (low
sensitive information). We apply FairDCL on the state-of-the-art
contrastive learning framework MoCo-v2 [7]. The contrastive loss
used for learning visual representation is InfoNCE [38], defined as:

L𝑐𝑜𝑛 (𝐹 ) = −𝑙𝑜𝑔
exp(𝑞𝑘/𝜏)

exp(𝑞𝑘/𝜏) +∑𝑗 (𝑞𝑘 𝑗/𝜏)
. (3)

Here 𝐹 consists of a query encoder and a key (or momentum) en-
coder, which outputs representations 𝑞 and 𝑘 from two augmented
views of the same image, therefore 𝑘 is viewed as “positive key".
𝑘 𝑗 is a queue of representations encoded from different images in
the dataset, viewed as “negative keys" [7]. Further technical details
of the framework can be found in [7]. L𝑐𝑜𝑛 encourages the image
encoder to distinguish positive and negative keys so it can extract
useful visual representations.

Generalizability to contrastive frameworks. We note that the pro-
posed locality-sensitive de-biasing scheme applying intervention
on embedding space can be integrated with any state-of-the-art
convolution feature extractors, thus has the potential to be further
promoted with different contastive learning frameworks. Empir-
ically, we experiment with the recently proposed DenseCL [65],
which designs pixel-level positive and negative keys to better learn
local feature correspondences. Since the method fills the gap be-
tween pre-training and downstream dense prediction, it is suitable
as an alternative contrastive learning framework for our proposed
method.

5 EXPERIMENTS
5.1 Implementation details
The first stage of contrastive pre-training. The base model for the
image encoders is ResNet50 [17]. The mutual information discrimi-
nators𝐷𝑖 are built with 1×1 convolution layers (architecture details
in Appendix D). The contrastive pre-training runs for 10k iterations
for each dataset with a batch size of 32. Data augmentations used
to generate positive and negative image view pairs are random
greyscale conversion and random color jittering (no cropping, flips
or rotations in order to retain local feature information). Hyper-
parameter 𝛼 , which scales the amount of mutual information loss
L𝐷 in the total loss, is set to 0.5. Adam optimizer is used with a
learning rate of 10−3 and weight decay of 10−4 for both encoders
and discriminators. Comparison methods include state-of-the-art
fair representation learning approaches: gradient reversal training
(GR) by forcing encoders to generate representations that confuse

a sensitive attribute classifier [42], domain independent training
(DI) which samples data from same sensitive group in each training
iteration to avoid leveraging sensitive domain boundaries [58, 66],
and unbiased representation learning (UnbiasedR) [43] which uses
mutual information to de-bias but only in a global image space. All
comparison methods use the same learning architectures, and are
trained with the same settings.

The second stage of semantic segmentation fine-tuning. We use
UNet [46] to perform landscape segmentation. The encoder weights
of UNet are directly transferred from the pre-training stage. The
model is fine-tuned for 5k iterations with a batch size of 16 (around
76 epochs on LoveDA dataset, 284 epochs on Slovenia dataset, and
195 epochs on Cityscapes dataset). Since there lacks fine-tuning
benchmark on geographic datasets used in this work, we set the
epoch numbers close to the fine-tuning settings in previous con-
trastive self-supervised learning studies [65, 75]. We evaluate met-
rics based on iterations rather than epochs to allow for direct com-
putational comparison across datasets, following [27, 45]. Segmen-
tation accuracy and fairness results are reported every 1k iterations.
We use cross-entropy (CE) loss as the training objective, and sto-
chastic gradient descent (SGD) as the optimizer with a learning
rate of 10−3 and a momentum of 0.9. The encoder part of UNet is
frozen during fine-tuning and no weight decay strategy is applied to
avoid feature distortion [28]. Image data augmentations used in the
fine-tuning include random horizontal/vertical flips and random
rotations.

Figure 6: Linear separation evaluation: We train a linear neu-
ral layer on top of each representation level, which are fea-
ture maps output from different model layers. They include
four residual module (“layer1” - “layer4”) that encode inter-
mediate representations and a global output layer (“fc”) that
encodes the global representation. The linear layer is to clas-
sify sensitive attributes: urban/rural on (A) LoveDA dataset,
and women/men on (B) MS-COCO dataset. Lower accuracy is
good: it indicates harder to predict sensitive attributes using
the pre-trained representations.

5.2 Results
5.2.1 Downstream performances. Table 1 summarizes model fine-
tuning results on semantic segmentation with the representations
pre-trained with Baseline: vanilla MoCo-v2, and fairness-promoting
methods: GR, DI, UnbiasedR, and FairDCL, on the three geographic

2023-05-10 22:03. Page 6 of 1–14.
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Iteration=1k Iteration=2k Iteration=3k Iteration=4k Iteration=5k

Method Diff(↓) Wst (↑) Acc(↑) Diff(↓) Wst(↑) Acc(↑) Diff(↓) Wst(↑) Acc(↑) Diff(↓) Wst(↑) Acc(↑) Diff(↓) Wst(↑) Acc(↑) No TO

Baseline 0.206 0.329 0.363 0.136 0.465 0.497 0.103 0.502 0.528 0.087 0.515 0.537 0.106 0.514 0.542
GR 0.176 0.358 0.390 0.113 0.450 0.474 0.070 0.502 0.519 0.088 0.496 0.517 0.089 0.517 0.540 ✘

LoveDA DI 0.187 0.323 0.353 0.105 0.461 0.485 0.111 0.477 0.503 0.093 0.507 0.530 0.094 0.512 0.536 ✘

UnbiasedR 0.234 0.351 0.391 0.125 0.449 0.476 0.096 0.506 0.531 0.114 0.495 0.523 0.103 0.520 0.548 ✔

FairDCL 0.161 0.362 0.392 0.098 0.479 0.502 0.069 0.513 0.532 0.080 0.517 0.537 0.084 0.525 0.547 ✔

Baseline 0.248 0.177 0.199 0.168 0.205 0.222 0.122 0.215 0.228 0.144 0.238 0.254 0.125 0.256 0.271
GR 0.231 0.180 0.200 0.134 0.202 0.216 0.119 0.231 0.244 0.146 0.231 0.249 0.134 0.253 0.268 ✘

Slovenia DI 0.251 0.173 0.195 0.114 0.214 0.226 0.133 0.223 0.238 0.141 0.233 0.249 0.123 0.255 0.270 ✘

UnbiasedR 0.230 0.183 0.205 0.215 0.197 0.218 0.141 0.212 0.227 0.136 0.235 0.256 0.122 0.249 0.264 ✘

FairDCL 0.226 0.184 0.205 0.109 0.217 0.228 0.117 0.231 0.245 0.122 0.241 0.256 0.0801 0.262 0.273 ✔

Baseline 0.0215 0.509 0.526 0.0253 0.530 0.551 0.0275 0.520 0.534 0.0248 0.541 0.560 0.0246 0.539 0.559
GR 0.0313 0.486 0.510 0.0298 0.487 0.509 0.0270 0.498 0.518 0.0255 0.510 0.530 0.0252 0.511 0.531 ✘

CityScapes DI 0.0230 0.476 0.494 0.0229 0.506 0.524 0.0240 0.519 0.538 0.0251 0.523 0.543 0.0243 0.527 0.547 ✘

UnbiasedR 0.0208 0.493 0.508 0.0250 0.520 0.540 0.0237 0.518 0.535 0.0250 0.516 0.537 0.0245 0.518 0.537 ✘

FairDCL 0.0206 0.525 0.541 0.0238 0.536 0.546 0.0236 0.537 0.557 0.0248 0.545 0.566 0.0241 0.545 0.564 ✔

Table 1: Downstream semantic segmentation results on LoveDA, Slovenia, CityScapes dataset for 5k fine-tuning iterations.
The encoder weights are learnt with 5 comparison pre-training methods. Our FairDCL shows clear improvements on fairness
metrics (Diff and Wst) and accuracy metric (Acc) over baseline and prior methods throughout the training, also we do not see a
fairness-accuracy trade-off (No TO) on all datasets. Results are the mean over 5 independent runs, and the standard deviations
are provided in the Appendix.

image datasets: LoveDA, Slovenia, and CityScapes. Segmentation
accuracy and fairness metrics are reported every 1k iterations and
we include results from 1k to 5k iterations to compare represen-
tation quality in term of its influence on the whole fine-tuning
procedure (extended iterations are shown in the ablation study).
“No TO" indicates if a method waives the fairness-accuracy trade-off
problem, that in its best fine-tuning round, whether the improved
“Diff" metric does not cause a worse “Acc" metric. Such trade-off ro-
bustness with respect to the other fairness metric “Wst" is depicted
in Figure 13 in the Appendix E.

We first note that across fine-tuning iterations, FairDCL nearly
always outperforms other approaches in terms of fairness. FairDCL
obtains the smallest cross-group difference (Diff) and highest worst
group result (Wst). The results indicate that the representation
trained with multi-scale fairness constraints can lead to higher
group parity meanwhile maximizing performance of the worst case
groups (urban or rural places in LoveDA and Slovenia, or cities with
different GDP levels in CityScapes). Results also show the stability
of the learnt representation, that the downstream training shifts,
such as fine-tuning the decoder for shorter or longer rounds, do
not break model performance advantages.

Importantly, FairDCL is the only method that does not show a
fairness-accuracy trade-off on all three datasets. FairDCL in general
obtains comparable or better overall accuracy to Baseline, demon-
strating robust model quality in addition to fairness. In contrast, GR
and DI show lower overall accuracy, especially on the CityScapes
dataset. This observation resonates with the intrinsic trade-off prob-
lem pointed out by previous fairness studies [20, 73, 73, 78]; DI
allows building image contrastive pairs only from a fraction of
data which can discount model learning [66], while the adversarial
approach used in GR can be counter-productive if the adversary is
not trained enough to achieve the infimum [36], which could all po-
tentially degrade model quality for group equalization. Our adapted

mutual information discriminators use information-theoretic ob-
jectives, which are shown to be optimized without competing with
the encoder so can match or exceed state-of-the-art adversarial de-
biasing methods [36, 43]. FairDCL further illustrates that applying
the mutual information constraints on latent representations of
multiple resolutions can better extend fairness to pixel-level ap-
plications. In contrast, UnbiasedR, the comparison method which
applies constraints at the single image level, shows no trade-off
on LoveDA dataset, and has worse results on both fairness metrics
than FairDCL (Table 1).

Using the alternative self-supervised contrastive learning frame-
work DenseCL, similar advantages can be observed. FairDCL pre-
trained feature encoder for the downstream segmentation predic-
tion obtains fairness improvement with no trade-off of task preci-
sion (Table 11 in the Appendix E).

5.2.2 Embedding spaces. To further trace how the image represen-
tations learnt with proposed method improves fairness, we analyze
a linear separation property [45] on embedding spaces. Specifi-
cally, we assess how well a linear model can differentiate sensitive
attributes using learnt representations. High separation degree in-
dicates that the encoder model’s embedding space and sensitive
attribute are differentiable [6, 38, 45], which could be used as a
short-cut in prediction and cause bias, thus is not desirable here. We
freeze the trained ResNet50 encoder and use a fully connected layer
on top of representation output from different layers for sensitive
attribute label classification. Figure 6 (A) presents the classification
score on urban/rural attribute on LoveDA: FairDCL obtains the
lowest attribute differentiation results for all embedding stages and
global stage of representation, indicating that the encoder trained
with FairDCL has favorably learnt the least sensitive information
at pixel-level features during the contrastive pre-training.
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Though we focus on geographic images, we check the method’s
generalizability to a different image domain by conducting con-
trastive pre-training onMS-COCO [30], a dataset commonly used in
fairness studies [56, 62, 64]. Sensitive attribute gender, categoriezed
as “women" or “men", is obtained from [76]. There are 2901 images
with women and 6567 images with women labels. Linear analy-
sis results show that FairDCL again produces the desired lowest
classification accuracies (Figure 6 (B)), but unlike in Figure 6 (A),
it does not surpass the other comparison methods much. This is
likely because while geographic attributes are represented at a pixel-
level, human face/object, as a foreground, may not be represented
through local features throughout the image, thus gender attributes
are less pronounced as pixel-level biases in dense representation
learning, which is what our proposed approach focuses on.

Iteration=6k Iteration=7k Iteration=8k

Method Diff(↓) Wst (↑) Acc(↑) Diff Wst Acc Diff Wst Acc No TO

Baseline 0.106 0.533 0.566 0.109 0.529 0.558 0.097 0.536 0.562
GR 0.092 0.538 0.563 0.093 0.535 0.559 0.094 0.538 0.560 ✘

DI 0.087 0.537 0.561 0.090 0.533 0.557 0.084 0.530 0.552 ✘

UnbiasedR 0.109 0.538 0.567 0.114 0.542 0.570 0.123 0.534 0.567 ✘

FairDCL 0.089 0.543 0.567 0.82 0.542 0.564 0.73 0.549 0.569 ✔

Table 2: Ablation study for downstream training shifts for
5k-8k iterations on LoveDA dataset.When training iterations
extend, FairDCLmethod maintains the advantage in fairness
improvements (Diff and Wst) over Baseline without a trade-
off of mean accuracy (Acc).

𝛼 = 0.1 𝛼 = 0.5 𝛼 = 1 𝛼 = 10

Diff(↓) Wst (↑) Acc(↑) Diff Wst Acc Diff Wst Acc Diff Wst Acc

0.096 0.519 0.544 0.084 0.525 0.547 0.075 0.521 0.540 0.069 0.521 0.539

Table 3: Ablation study for discriminator weights. The best
fine-tuning result is shown for the encoder pre-trained with
different weight, 𝛼 = 0.1, 0.5, 1, 10, of the proposed fairness
objective.

Urban:68% Rural:32% Urban:35% Rural:65%

Method Diff(↓) Wst (↑) Acc(↑) No TO Diff(↓) Wst (↑) Acc(↑) No TO

Baseline 0.214 0.337 0.373 0.253 0.341 0.384
GR 0.209 0.329 0.364 ✘ 0.218 0.350 0.387 ✔

DI 0.203 0.332 0.364 ✘ 0.206 0.330 0.364 ✘

UnbiasedR 0.166 0.363 0.393 ✔ 0.229 0.338 0.377 ✘

FairDCL 0.123 0.394 0.418 ✔ 0.198 0.352 0.388 ✔

Table 4: Ablation study for unbalanced data distribution. The
proportion of sensitive groups in the pre-training data is
adjusted such that one group has much less representation.
FairDCL performs consistently with data balance changes.

5.2.3 Ablation studies. We run longer training on the labeled down-
stream data to validate fine-tuning stability of the pre-trained image
encoders. Shown in Table 2, in general, all methods converge and
reach performance plateau after 8k iterations, so we only show
results until that point, and the converged performance should be
bounded by the capacity of the decoder component. The results give
further evidence that the benefits of the de-biased representations
pre-trained with FairDCL do not vanish in longer training regimes.

We then perform an ablation study for hyper-parameter 𝛼 which
scales discriminator lossL𝐷 , thus the fairness regularization strength.
As shown in Table 3, the method is overall robust to the parameter;
a large weight like 10 will not completely corrupt the downstream
accuracy. Using smaller 𝛼 have higher Wst, while larger 𝛼 have
higher Diff, and we select 𝛼 = 0.5 for a balance.

The sensitive attribute, urban and rural, have comparable train-
ing samples in earlier experiments (LoveDA is 5.8k and 5.5k, EOLearn
Slovenia is 1.7k and 1.9k for urban/rural, but Cityscapes is highly
unbalanced: 1.8k, 0.78k, 1.1k for the three GDP groups). Therefore,
we intentionally remove a part of pre-training samples for certain
groups to generate more unbalanced subsets. With performances
shown in Table 4, the proposed method shows robustness under
the two less even attribute distributions.

6 DISCUSSION AND CONCLUSION
Among the broader fairness literature in visual recognition, work
focusing on geographic imagery that depicts physical environments
has been limited. This limitation is largely due to the difficulty in
identifying population level biased landscape features. Also, fair-
ness problems in geographic image recognition may get categorized
as domain adaptation or transfer learning problems, other popular
computer vision fields. Though fairness enhancement and domain
adaptation share similar technical methods bias mitigation and in-
variant feature learning, the specific objective of fair geographic
image recognition is to remove spatially disproportionate features
that favor one subgroup over the others. Though fairness enhance-
ment and domain adaptation can share similar technical approaches
such as invariant feature learning, the specific objective of fair geo-
graphic image recognition is distinct and goes beyond addressing
covariate shift. The goal is to remove spatially disproportionate
spurious features that favor one subgroup over the others.

Here we identify and address unique fairness challenges in se-
mantic segmentation of satellite images and street view images. We
theoretically define the scenario with a causal graph, showing that
contrastive self-supervised pre-training can utilize spurious land-
cover object features, thus accumulate sensitive attribute-correlated
bias. The biased image representation will result in disparate down-
stream segmentation accuracy between subgroups within a specific
geographic area. Then, we address the problem via a mutual infor-
mation training objective to learn good local features with minimal
spurious representation. Experimental results show fairer segmen-
tation results pre-trained with the proposed method on multiple
geographic datasets and different sensitive groups. In addition to
performance gain, the method consistently avoids a trade-off be-
tween model fairness and accuracy. Finally, we would like to note
that the fairness problem and fair image representation learning
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method studied in this work are not exclusive to contrastive self-
supervised learning, but are also applicable to other supervised
learning settings, such as supervised semantic segmentation, super-
vised object detection, and others, via incorporation of the fairness
regularization term to the target task training objective.

As future directions, first, more geographic domains and data can
be explored. The fairness analysis can be scaled to a greater number
of attributes. Second, sensitive attribute encoding for model latent
space besides one-hot feature map can be explored. We encourage
experimenting with different encoding mechanisms and mutual
information estimators to improve performance across different
real-world settings.
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A EXAMPLES OF UNFAIRNESS IN
LAND-COVER OBJECT SEMANTIC
SEGMENTATION

Besides segmentation disparities for different “road” variations
shown in Figure 1, here we provide examples for “building”, “water”,
and “forest” classes, and their corresponding spurious and robust
features in Figure 7, Figure 8, and Figure 9. In each caption, based on
simple visual assessment, we provide examples of possible aspects
of the images that could contribute to spurious or robust features.

B CITYSCAPES: CITY - SENSITIVE GROUP
MAPPING

The group assignment of cities in CityScape dataset is shown in
Table 5.
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Figure 7: Segmentation bias for “building" class. Compared to
the scattered rural buildings in (A) and (B), urban buildings
that have uniform shapes and neat arrangements are better
segmented (C)and (D), and especially have their edges de-
tected more precisely. Spurious features of building objects
could include the shapes, e.g. rectangular or irregular shapes,
and/or the colors. Robust aspects of buildings can include
the shape of their clustering and/or height in relation to sur-
roundings.

Figure 8: Segmentation bias for “water" class. The model has
difficulty distinguish water from agriculture land, especially
when the water area is small as in (A) and (B). In comparison,
water that is surrounded by more different landscapes are
much better segmented as in (C) and (D). Spurious features
of water object could include the shape and color: rural areas
have more small water ponds, and the water colors can vary
potentially based on depth of the water source. Robust fea-
tures could include the texture of the water surface which is
generally more smooth compared to other land-covers.

C CLASS DISTRIBUTION SHIFTS ACROSS
GROUPS

Class distributions also vary across sensitive groups; we plot class
distributions in terms of proportion of pixels per class by group for
each of the three datasets, in Figure 10, Figure 11, and Figure 12.

Figure 9: Segmentation bias for “forest" class. Forests/trees
that are in open areas are largely neglected by the model
in (A) and (B), while in contrast, trees in between building
blocks are well detected as in (C) and (D). The development
of urban greening promotes growing trees along streets or
buildings, which could be a spurious feature for model to
use, that the feature does not generalize to trees grown in
open fields, a common case rural area. A more robust feature
of trees should be texture of tree crowns that is generalizable
and distinguishable.

Table 5: The list of cities for each sensitive group in
CityScapes dataset

Sensitive group Cities

GDP level Rank 1-10 Hamburg, Cologne, Dusseldorf,
Hanover, Stuttgart, Frankfurt

Bremen
GDP level Rank 10-40 Aachen, Ulm, Munster,

Tubingen, Bochum, Krefeld,
Zurich

GDP level Rank 40+ Darmstadt, Jena,
Monchengladbach, Strasbourg,

Weimar, Erfurt, Lindau

Figure 10: CityScapes dataset class distribution shifts: Class
distribution for images from the three groups: Rank 1-10,
Rank 10-40, and Rank 40+ of the CityScapes dataset.
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Figure 11: Slovenia dataset class distribution shifts: Class
distribution for images from the two groups: urban, rural of
the Slovenia dataset.

Figure 12: LoveDA dataset class distribution shifts: Class
distribution for images from the two groups: urban, rural of
the LoveDA dataset.

D MUTUAL INFORMATION DISCRIMINATORS
The base model used as the encoder in our experiments is ResNet50.
Multi-stage mutual information discriminators are built for rep-
resentation outputs of four layers (residual blocks). In Table 6 to
Table 9 we provide the architecture dimensions for each discrimi-
nator and the input and output feature map channel sizes𝐶 , noting
that feature map height 𝐻 and width𝑊 vary across datasets, de-
pending on the size of images the model is trained on.

Layer Input Output
1×1 Conv2D (258, 258) 258 258
1×1 Conv2D (258, 20) 258 20
1×1 Conv2D (20, 1) 20 1

Table 6: Discriminator for layer1 of ResNet50 encoder.

Layer Input Output
1×1 Conv2D (514, 514) 514 514
1×1 Conv2D (514, 50) 514 50
1×1 Conv2D (50, 1) 50 1

Table 7: Discriminator for layer2 of ResNet50 encoder.

Layer Input Output
1×1 Conv2D (1026, 1026) 1026 1026
1×1 Conv2D (1026, 100) 1026 100
1×1 Conv2D (100, 1) 100 1

Table 8: Discriminator for layer3 of ResNet50 encoder.

Layer Input Output
1×1 Conv2D (2050, 2050) 2050 2050
1×1 Conv2D (2050, 200) 2050 200
1×1 Conv2D (200, 1) 200 1

Table 9: Discriminator for layer4 of ResNet50 encoder.

The outputs of each discriminator are a 𝐻 ×𝑊 matrix for the
“shuffled” feature map pair and the “aligned” feature map pair re-
spectively. Details of building feature map pairs are described in
Section 4.3 and visualized in Figure 5. As the next step, the dis-
criminator outputs are used to compute the mutual information
estimation 𝑀𝐼 𝐽 𝑆𝐷 5 and the discriminator loss L𝐷𝑖 listed in Sec-
tion 4.3.

E SUPPLEMENTARY EXPERIMENT RESULTS
In Table 10, we provide standard deviation results of the 5 indepen-
dent runs for the results shown in Table 1.

In Table 11, we generalize FairDCL and the comparison fair rep-
resentation learning methods to a different contrastive pre-training
framework DenseCL [65]. The same metrics are reported as with
MoCo-v2 framework.

In Figure 13, different to how we have been defining the fairness-
accuracy trade-off with the fairness metric: the group difference,
which is more commonly used in literature to quantify disparity, we
further depict the trade-off with regard to another fairness metric:
the worst-case performer.

We use pareto curve following [78], which assumes that com-
puter vision models tend to have a capacity threshold, that a higher
maximum group accuracy can lead to a lower minimum group
accuracy, and vise versa, with the premise that the fairness inter-
vention does not affect model’s efficiency. Under this assumption,
the FairDCLmethod shows higher minimum group accuracy (better
fairness) with model efficiency least affected (Figure 13).

5Codes for the loss function are from https://github.com/rdevon/DIM
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Iteration=1k Iteration=2k Iteration=3k Iteration=4k Iteration=5k

Method Diff Wst Acc Diff Wst Acc Diff Wst Acc Diff Wst Acc Diff Wst Acc

Baseline 0.11 0.040 0.056 0.047 0.036 0.044 0.026 0.025 0.033 0.014 0.025 0.035 0.033 0.020 0.031
GR 0.11 0.051 0.053 0.069 0.040 0.045 0.027 0.021 0.027 0.025 0.040 0.044 0.031 0.011 0.025
DI 0.057 0.076 0.094 0.029 0.021 0.034 0.064 0.037 0.039 0.023 0.033 0.048 0.025 0.017 0.038

LoveDA UnbiasedR 0.078 0.095 0.066 0.022 0.022 0.039 0.052 0.049 0.030 0.019 0.039 0.035 0.024 0.037 0.028
FairDCL 0.054 0.034 0.059 0.031 0.023 0.034 0.012 0.023 0.029 0.006 0.013 0.031 0.029 0.027 0.035

Baseline 0.065 0.015 0.026 0.062 0.012 0.022 0.093 0.020 0.023 0.065 0.010 0.019 0.051 0.007 0.015
GR 0.041 0.012 0.024 0.069 0.022 0.029 0.073 0.021 0.026 0.062 0.023 0.034 0.077 0.006 0.024

Slovenia DI 0.011 0.019 0.024 0.059 0.006 0.019 0.015 0.012 0.018 0.079 0.011 0.022 0.074 0.013 0.023
UnbiasedR 0.021 0.033 0.045 0.062 0.106 0.029 0.017 0.051 0.040 0.035 0.018 0.022 0.064 0.033 0.019
FairDCL 0.020 0.008 0.021 0.057 0.009 0.021 0.007 0.010 0.022 0.029 0.012 0.020 0.054 0.004 0.020

Baseline 0.009 0.032 0.032 0.002 0.014 0.020 0.005 0.040 0.047 0.005 0.014 0.024 0.002 0.005 0.016
GR 0.002 0.009 0.016 0.005 0.027 0.030 0.008 0.045 0.046 0.003 0.011 0.018 0.004 0.007 0.019

CityScapes DI 0.002 0.013 0.020 0.003 0.046 0.049 0.005 0.028 0.030 0.010 0.045 0.042 0.004 0.007 0.015
UnbiasedR 0.009 0.019 0.030 0.003 0.035 0.051 0.004 0.037 0.032 0.008 0.025 0.026 0.002 0.019 0.018
FairDCL 0.006 0.020 0.027 0.002 0.027 0.029 0.006 0.010 0.020 0.002 0.016 0.021 0.004 0.011 0.019

Table 10: Standard deviation of results in Table 1. The smallest deviation results are marked in bold between the comparison
methods for each iteration. It shows that FairDCL method produces comparable performance consistency from run to run with
the baseline methods.

Iteration=1k Iteration=2k Iteration=3k Iteration=4k Iteration=5k

Method Diff(↓) Wst (↑) Acc(↑) Diff(↓) Wst(↑) Acc(↑) Diff(↓) Wst(↑) Acc(↑) Diff(↓) Wst(↑) Acc(↑) Diff(↓) Wst(↑) Acc(↑) No TO

Baseline 0.204 0.308 0.339 0.089 0.358 0.374 0.118 0.388 0.411 0.116 0.399 0.422 0.103 0.383 0.403
GR 0.170 0.326 0.354 0.104 0.365 0.384 0.114 0.369 0.390 0.110 0.406 0.428 0.092 0.388 0.406 ✔

DI 0.187 0.308 0.321 0.048 0.347 0.351 0.089 0.369 0.386 0.097 0.388 0.406 0.088 0.366 0.383 ✘

UnbiasedR 0.169 0.299 0.324 0.116 0.380 0.402 0.087 0.386 0.403 0.095 0.396 0.415 0.90 0.386 0.403 ✘

FairDCL 0.168 0.336 0.365 0.076 0.385 0.399 0.108 0.394 0.415 0.091 0.406 0.43 0.083 0.391 0.408 ✔

Iteration=6k Iteration=7k Iteration=8k Iteration=9k Iteration=10k

Baseline 0.102 0.401 0.421 0.085 0.421 0.329 0.077 0.435 0.452 0.087 0.434 0.453 0.106 0.424 0.446
GR 0.094 0.402 0.421 0.081 0.420 0.437 0.083 0.441 0.459 0.099 0.431 0.452 0.106 0.425 0.448 ✘

DI 0.087 0.389 0.405 0.082 0.414 0.424 0.087 0.420 0.436 0.085 0.422 0.435 0.108 0.420 0.441 ✘

UnbiasedR 0.086 0.401 0.419 0.092 0.416 0.435 0.098 0.408 0.428 0.092 0.431 0.451 0.104 0.424 0.445 ✘

FairDCL 0.084 0.405 0.422 0.080 0.423 0.440 0.074 0.445 0.461 0.083 0.435 0.453 0.104 0.428 0.452 ✔

Table 11: Testing the generalizability to the different contrastive pre-training framework DenseCL. We run 10k fine-tuning
iterations on the downstream semantic segmentation on LoveDA dataset. Similarly, the frozen encoder weights are learnt with
different fairness method: Baseline (no intervention), GR, DI, UnbiasedR, and our FairDCL. For every 1k steps, the best results
in term of fairness: group difference (Diff) and worst-case group result (Wst), and accuracy: mean IoU (Acc) are marked in bold.
The fairness-accuracy trade-off indicator (No TO) shows whether a method, in its best performing round, obtains both better
Diff and Acc than the Baseline (✔) or fails on either metric (✘). FairDCL continuously shows supreme fairness performance on
this alternative contrastive learning pipeline, and avoids the undesired trade-off throughout the fine-tuning.
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Figure 13: Worst case group - Accuracy trade-off depiction: For each colored dot, a closer distance to the grey dotted curve
(maximum model capacity) indicates a higher model efficiency in term of overall accuracy. A larger x-axis value indicates the
model is fairer and has a higher minimum group accuracy. The plots are for results on LoveDA (left), Slovenia (middle), and
CityScapes (right) dataset. FairDCL shows better fairness performances on the worst case group’s aspect meanwhile a higher
and stable model efficiency.
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