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Gerrymandering, the deliberate manipulation of electoral district boundaries for political advantage, is a

persistent issue in U.S. redistricting cycles. In this work, we introduce and analyze Votemandering, a strategic
blend of gerrymandering and targeted political campaigning devised to gain more seats by circumventing

fairness measures. Votemandering leverages accurate demographic and socio-political data, bolstered by

advancements in technology and data analytics, to influence voter decisions in pursuit of subtle gerrymandering

strategies. We formulate votemandering as a Mixed Integer Program (MIP) that performs fairness-constrained

gerrymandering over multiple election rounds. To combat votemandering, we present a computationally

efficient heuristic for creating and testing district maps that more robustly preserve voter preferences. We

analyze the influence of various redistricting constraints and parameters on votemandering efficacy. We

explore the interconnectedness of gerrymandering, substantial campaign budgets, and strategic campaigning,

illustrating their collective potential to generate biased electoral maps. A case study of Wisconsin State Senate

redistricting substantiates our findings on real data, demonstrating how major parties can secure additional

seats through votemandering. Our findings underscore the practical implications of these manipulations,

stressing the need for informed policy and regulation to safeguard democratic processes.
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1 INTRODUCTION
Partisan gerrymandering is the manipulation of voting district lines for political gain. There is nu-

merous evidence of gerrymandering in the US electoral history, giving unfair political advantage to

various parties in power (Bickerstaff et al. 2020). In an effort to detect and quantify gerrymandering,

political scientists have devised various fairness measures, some of which incorporate historical

voting data. If a proposed district plan has a fairness measure outside of a typical range, or, more

robustly, is an outlier with respect to a fairness measure over a sample of feasible plans, this anomaly

offers evidence of partisan gerrymandering. However, federal courts have refrained from endorsing

proposed fairness measures as gerrymandering litmus tests, indicating a need for further research

on the robustness and trade-offs of such tests (Rucho v. Common Cause 2019).

In addition to gerrymandering, political parties seek to enhance their political representation

through huge campaign budgets (Evers-Hillstrom 2021, Horncastle 2020). Although campaigning

alone cannot change the party inclinations of voters, it supports the Get Out The Vote (GOTV)

cause, increasing voter turnout (Imai and Strauss 2011, Karp et al. 2008). Recent GOTV campaigns

carefully target specific audiences for maximum impact, leveraging advanced machine learning

algorithms that use voter data (collected through geographical surveys and the available telemetric

data) to deliver information about the political inclination of the audience (Zarouali et al. 2020).

Once the targets are clear, personalized campaigns are delivered through direct messages or via

social media advertisements. Such campaign efforts have been used in both the 2016 and 2020

U.S. presidential elections, where clear evidence of the effectiveness of the advertisements as well

as research scrutinizing the implications of presenting the social choice surfaced (Brodnax and

Sapiezynski 2022, Liberini et al. 2020). The implications of such precise campaign efforts become

critical, as historical election data (influenced by the campaigns) are often used to judge the fairness

of proposed maps. A question of interest is then studying how smart campaign strategies can

simultaneously affect immediate elections and future redistricting, and help in securing even higher

political representation.

This paper aims to investigate the robustness of fairness measures to strategic campaigning and

traditional gerrymandering, which we term votemandering. Votemandering is based on the idea

that a party can strategically campaign in an election to alter the voting data and then draw a new

district plan that appears fair for a fixed fairness measure, but gives them an unfair advantage in the

next election. The focus is on identifying patterns of selective and disproportionate amendments to

the representation of social choice through voting, to circumvent fairness measures for redistricting.

This manipulation can be critical, particularly when slight deviations in election data can lead to

significantly different fairness measure evaluations. On this background, the paper seeks to address

the following research questions:

• How vulnerable are popular fairness measures to votemandering?

• How might voter turnout levels and political geography exacerbate or thwart votemander-

ing?

• Can careful combinations of fairness measures and legal constraints promote district plans

that are more robust to votemandering?

These questions delve into both social choice theory and practical public policy considerations.

A significant concern arises when technological advancements enable greater access to detailed

data on voters’ preferences and increase the capacity to influence decisions, thus allowing strategic

actors to target specific communities in ways that undermine fairness and equity.

We next present a brief description of the problem: Consider two election rounds with a redistrict-

ing cycle falling in between. The majority party in the state legislature, referred to as the "majority

party," campaigns in the first election, winning the maximum number of seats while simultaneously
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ensuring they can draw a desired district plan for the second election, which appears fair. Fairness

is measured by a metric that uses past election data, such as the efficiency gap (EG), which is

influenced by campaigning. Assuming complete information about the opponent party’s Get Out

The Vote (GOTV) campaign, the goal of the majority party is to maximize the number of seats won

in both rounds. We refer to this as votemandering and formulate an optimization framework that

identifies the best campaign strategies with the combined objective of securing maximum wins in

both rounds and drawing a desired map that remains valid for many years. Motivated by practical

and often legal constraints on redistricting in the US, we also analyze the special case of imposing

proximity constraints for the proposed maps, i.e., making the least changes to the original plan

while proposing a new plan, calling it local votemandering. Through this research, we aim to shed

light on the unreliability in the process of redistricting (and detecting gerrymandering), and further

point at measures that ensure more robust maps in general.

Key takeaways from this work include:

(1) We demonstrate that fairness measures can be susceptible to data manipulation, leading

to an indirect form of gerrymandering called votemandering. Therefore, the quality of a

fairness measure can also be defined by its robustness against strategic amendments to the

vote-share data. We formally model this phenomenon and discuss the case of the efficiency

gap.

(2) We show the fragility of district maps concerning votemandering and establish sufficient

conditions for a party to benefit from it. We show how campaign budgets and access to

opponents’ campaign information facilitate; high voter turnout and stricter compactness

bounds curtail; and voter clustering patterns have little effect on votemandering.

(3) We lay the groundwork for creating and evaluating district plans that strongly preserve

social choice, providing computationally efficient votemandering solutions. Our work is

applicable to real-world data, as demonstrated by the case studies.

The remainder of the paper is structured as follows. Section 2 summarizes literature from

various disciplines that connect methodologically or philosophically. Section 3 formally defines

votemandering, expounding the model and methods. Section 4 proves the efficacy and computability

of votemandering specific to the efficiency gap and further explores its sensitivity to state-specific

factors such as voter distribution and nonpartisan redistricting constraints. Section 5 defines and

analyzes local votemandering, a variation with the constraint that the new district plan is close to

the original. Section 6 applies votemandering to the case of state senate redistricting in Wisconsin,

demonstrating votemandering strategies for both major parties. Finally, Section 7 concludes and

outlines directions for future work.

2 RELATED LITERATURE
This paper connects to a rich body of work from the perspectives of social choice, game theory,

optimization, and statistics.

Social Choice Theory. Social choice theory studies and evaluates the translation of individual

preferences or votes to collective societal decisions (Sen 1986). In our work, we examine the impact

of strategic campaigning on political redistricting, which may be easily translated to a form of

strategic voting aimed at manipulating social choice. The pure form of strategic voting has been

studied for decades, although the focus has been more on various voting mechanisms and their

evaluation using strategy-proofness, Pareto efficiency, independence of irrelevant alternatives, etc

(Lackner and Skowron 2018, Myatt 2007). As famously shown by Gibbard (1973) and Satterthwaite

(1975), no voting system for more than two players is strategy-proof. Bartholdi et al. (1989) came

up with a voting rule where it is NP-complete for manipulative voters to perform strategic voting,
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and also noted that many voting rules including the plurality rule can be manipulated with only

polynomial computational effort. As we see within our framework, finding optimal strategies for

votemandering is hard, but good solutions can be achieved with little computational effort.

Manipulations within Plurality Voting. Within the domain of plurality voting, such problems

have also been studied from a computational theory point of view, while making a few abstractions

on the redistricting part. Cohen-Zemach et al. (2018) study the problem of gerrymandering over

graphs and show that the problem of dividing a social network into connected components is

NP-complete, and Ito et al. (2021) build over their settings. Eiben et al. (2020), Lewenberg et al.

(2017) have studied another variant involving geographic manipulation of borders and location

of districts. In another interesting work by Stewart et al. (2019), information gerrymandering has

been studied where the structure of the influence network manipulates the voting outcomes, along

with newly placed zealots. Lev and Lewenberg (2019) study reverse gerrymandering in multi-group

decision-making systems, where agents move across units to maximize their influence. The game

of allocating optimal resources for campaigning has been modeled as the classic Colonel Blotto

game, and its complexity, as well as equilibria, are studied (Behnezhad et al. 2018, 2017, Macdonell

and Mastronardi 2015), although without examining the subsequent consequences on redistricting.

Quantifying District Plan Fairness. Lately, with a lot of research being done on finding ways to

fairly draw the district boundaries and on knowing if a particular map is gerrymandered (Benadè

et al. 2021, Chikina et al. 2017, Landau et al. 2009, Swamy et al. 2023), there has been a growing

interest in defining measures to judge the fairness of a map. With multiple redistricting processes

reaching the Supreme Court (Royden and Li 2017), and the latter relying on ongoing research for

the mathematical analysis (Pennsylvania Case 2022), we ask if there are any strategies for fooling

the measures while drawing the politically motivated map boundaries. We study a different form of

strategic voting, where the strategies are implemented by the political parties, although carried out

through a section of voters. In our work, we introduce a new criterion for the evaluation of voting

mechanisms as well as the fairness of the district maps, stressing on the fact that the representation

of social choice through voting is inherently connected to redistricting.

Fooling Fairness Measures. The idea of fooling the measures that are actually designed for achiev-

ing fairness is not new. Starting with Adsul et al. (2010), there has been a lot of work in the field of

fair division in algorithmic game theory (Babaioff et al. 2021, Brânzei et al. 2017). By manipulating

the preference data of buyers, the fairness criteria of allocation results in higher utility for the

strategic players. In the field of redistricting, our work is philosophically the closest to Brubach et al.

(2020), where the authors study the effects of fairness measurements on voting strategies. Using

the outlier detection method, the work heuristically studies the game of strategic voting where

loyal voters alter their votes as directed by their political party. Building on this work and also

addressing some open questions raised, we demonstrate our results using indirect manipulation of

voter turnout through selective campaigning, and we use a popular fairness measure called the

efficiency gap.

The Efficiency Gap and its Shortcomings. Stephanopoulos and McGhee (2015) introduce the effi-
ciency gap (EG) fairness measure to quantify partisan gerrymandering. EG is a fairly straightforward

measure that computes the difference between the wasted votes of two major parties and labels a

map as unfair if a party disproportionately wastes more votes than the other. It has been widely used

because of its simplicity, intuition, and the use of actual voter preference data from the elections

(Gill v Whitford 2018, Missouri Constitution 2022).

With the widespread use of EG, there has also been growing literature on the shortcomings of

EG, typically focusing on its implications and the nature of it being a single-dimensional number
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trying to capture the complex forms of gerrymandering (Bernstein and Duchin 2017, Kean 2018).

In particular, Chambers et al. (2017) have majorly criticized the philosophical implications like

the possible increase in polarization, the problematic ranking of maps and technical implications

like discouragement in proportional representation. Moreover, the EG has also been criticized

for favoring uncompetitive elections and voter suppression (Plener Cover 2018) and volatility in

competitive elections leading to a high number of asymmetric wasted votes as well as for terming 3

to 1 victories as neutral (Bernstein and Duchin 2017). Tam Cho (2017) have observed the problematic

variations of EG implications across states with comparable vote shares; and further have talked

about the limited number of values EG can take for any fixed vote shares. Alexeev and Mixon

(2018) show that sometimes only bizarrely shaped districts satisfy both population balance and

EG constraints. Other philosophical shortcomings include the definition and weights of wasted

votes (winner’s surplus wasted votes, loser’s all votes are weighted the same), incorrect reporting

of the social choice, and bias to the winning party (Barton 2018, Nagle 2019). Numerous updates are

proposed to the current computation of the EG (Barton 2018, Tam Cho 2017), while also criticizing

the implication of wasted votes being improperly biased towards districts with higher voting turnout

(Wallin 2017). We note that the main criticism offered by our work is fundamentally independent

of the previous work done on evaluating the EG, and our main focus is on the sensitivity of EG and

its susceptibility to getting fooled in the broader context of votemandering.

3 METHODOLOGY
In this section, we formally discuss the votemandering model and our methodology. Section 3.1

sets the premise with a high-level description of the problem and Section 3.2 formally expounds

the model. Section 3.3 presents votemandering as an optimization problem, applicable to a general

fairness metric using past-election data. Finally, Section 3.4 outlines a two-stage heuristic approach

to solving the votemandering optimization problem and describes the specific case of EG.

3.1 High-level Votemandering Model
We begin by defining a function, E : D ×V → N, to determine state-wide election winners. This

function maps a district plan, 𝐷 ∈ D, and a set of voter ballots, 𝑉 ∈ V , to the number of districts

won by party 𝐴 in the election. The election function, E, represents a specific electoral system,

such as single-member districts with first-past-the-post voting. Although the voting data, 𝑉 , may

be influenced by stochastic processes like migration and political dialogue, E is deterministic.

In this framework, partisan gerrymandering involves replacing 𝐷 with �̃� to win more districts,

i.e., E(�̃�,𝑉 ) > E(𝐷,𝑉 ). Similarly, election campaigning alters 𝑉 to �̃� to secure more districts:

E(𝐷,�̃� ) > E(𝐷,𝑉 ). Note that election campaigning is generally considered fair within the confines

of the Federal Election Campaign Act.

Existing approaches to limit partisan gerrymandering involve calculating a fairness measure,

𝑓 : D ×V → R, and rejecting a district plan 𝐷 if and only if 𝑓 (𝐷,𝑉0) > 𝛿 . Here, 𝑉0 represents

historical voting data, and 𝛿 is a predetermined threshold. This fairness constraint aims to reduce

the strategic impact of gerrymandering on election outcomes. However, as noted by Brubach et al.

(2020), partisan agents may manipulate voting data in one election to make a future gerrymandered

district plan appear fair. Let 𝐷0 represent the current district plan. The manipulative partisan agent,

party 𝐴, attempts to solve the optimization problem:

maximize

�̃� ∈ D, �̃� ∈ V
E(𝐷0, �̃� ) + E(�̃�,𝑉0)

subject to 𝑓 (�̃�, �̃� ) ≤ 𝛿.
(1)
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Fig. 1. The model highlighting various stages of votemandering

Previous research on elections and redistricting has focused on the effects of either �̃� , �̃� , or 𝑓 . In

contrast, this paper investigates the efficacy of votemandering, which combines gerrymandering

and past or present campaigning, primarily in opposition to a specific partisan bias measure, such

as the efficiency gap (EG). The votemandering framework assumes translation of campaign budgets

to improved voter turnout and an access to other party’s budget allocation information, although it

is fairly robust to overcome small uncertainties within the data, as discussed in Section 4.3.

3.2 Model Details and Terminology
Consider two political parties: the (state legislative) majority party, 𝐴, and the minority party, 𝐵.

Party𝐴 is assumed to be in-charge of the redistricting process, in line with requirements of majority

of the states in the US (Center 2022). Suppose parties 𝐴 and 𝐵 compete in two rounds of elections

with a redistricting cycle in between. By examining this narrow time window, our model studies

only short-term implications of campaigning, affecting the round-1 election and the subsequent

map-drawing process.

Recall the high-level votemandering optimization problem (1). Set the electoral system, E, as
single-member districts with first-past-the-post voting. Function 𝑓 represents the fairness measure,

such as the EG. We distinguish between plan and map, with the former indicating unit-to-district

assignments and the latter encompassing both a district plan and unit-level voter data.

Figure 1 illustrates the stages of votemandering. In round-1, elections use the existing district

plan, 𝐷0, with voter ballots �̃� resulting from GOTV campaign efforts. We refer to 𝑉0 as the original
data and �̃� as the new data. We label (𝐷0,𝑉0) the initial map and (𝐷0, �̃� ) the campaigned map.
Following round-1, party 𝐴 creates a new district plan, �̃� , satisfying fairness constraints using

voter data from the round-1 elections, i.e., the new data. Round-2 elections employ the new plan,

�̃� , but with the original data, 𝑉0. We designate (�̃�, �̃� ) as the votemandered map and (�̃�,𝑉0) as the
target map. The reversion to 𝑉0 in round-2 implicitly assumes party 𝐴 can precisely match party

𝐵’s GOTV budget allocation, negating any increases in voter turnout. We do not model campaign

budget strategies in round-2 to avoid added complexity and, more importantly, to concentrate on

showcasing the ability to manipulate vote shares for generating a desired map while still appearing

to uphold fairness.

Party 𝐴’s strategic GOTV campaign in round-1 influences their seat-share in both election

rounds: directly through wins in the campaigned map, E(𝐷0, �̃� ), and indirectly through wins in

the target map, E(�̃�,𝑉0). To examine the strategies of the majority party, we fix party 𝐵’s budget

allocation across all units and consider party𝐴’s optimization problem (1) of maximizing their total

number of seats. Wins in round-2 are critical because the target map will remain in effect until

the next redistricting phase. To cover a complete redistricting cycle (such as a 10-year period in
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U.S. elections), the model can be extended by adjusting the weight of round-2 wins accordingly.

Furthermore, the model accommodates the inclusion of aggregated historical data from multiple

elections by appropriately adjusting the weight attributed to campaign influence.

It is essential to emphasize that votemandering is fundamentally different from both strategic

campaigning and gerrymandering due to its interactions between stages. As Section 6 demonstrates,

even modest budget allocations can lead to significant votemandering outcomes, setting it apart

from traditional campaigning by incorporating additional gerrymandering tactics. An example in

Appendix B.1 illustrates the votemandering process.

3.3 Optimization Framework for Votemandering
The votemandering model motivates an optimization framework for exploring potential campaign

and redistricting strategies for party 𝐴. Table 4 in Appendix A lists the notation built.

3.3.1 State Characteristics. Let 𝐾 denote the set of units in a state with 𝑛 districts. Each district

designates one unit as its center. The district assignment of each unit 𝑗 ∈ 𝐾 in each round 𝑟 ∈ {1, 2}
is represented by the indicator variables

𝑧𝑟𝑖 𝑗 =

{
1, if unit 𝑗 is assigned to the district centered at unit 𝑖 in round 𝑟

0, otherwise.

Moreover, 𝑧𝑟𝑖𝑖 = 1 if 𝑖 is a district center in round 𝑟 . The original district plan, 𝐷0, determines

the values of 𝑧1

𝑖 𝑗 , and all 𝑧2

𝑖 𝑗 are decision variables. The following constraints enforce the proper

formation of districts in round-2.∑︁
𝑘∈𝐾

𝑧2

𝑘𝑖
= 1 ∀𝑖 ∈ 𝐾 (2)∑︁

𝑘∈𝐾
𝑧2

𝑘𝑘
= 𝑛 (3)

Constraint (2) ensures every unit is assigned to some district, and constraint (3) ensures exactly 𝑛

units are chosen as district centers.

3.3.2 Budget and Campaigning. Assume complete information about unit populations and the

corresponding party affiliations, i.e., the maximum number of voters for each party in each unit.

The maximum vote counts for party 𝐴 (𝐵) are given by 𝑣𝐴
𝑖𝑛𝑖𝑡,𝑘

(𝑣𝐵
𝑖𝑛𝑖𝑡,𝑘

) in unit 𝑘 ∈ 𝐾 , with total unit

population 𝑝𝑘 = 𝑣𝐴
𝑖𝑛𝑖𝑡,𝑘

+ 𝑣𝐵
𝑖𝑛𝑖𝑡,𝑘

. Let 𝛼 ∈ [0, 1] denote the fractional baseline voter turnout, assumed

constant across all units. The number of party 𝐴 votes is the sum of 𝛼𝑣𝑖𝑛𝑖𝑡,𝑘 and the votes through

GOTV campaigning in unit 𝑘 . The vote shares 𝑣𝑖𝑛𝑖𝑡,𝑘 and 𝛼 are fixed for all rounds, and the actual

voting turnout varies depending on campaigning.

Let B𝐴, B𝐵 denote the parties’ GOTV campaign budgets in terms of the total number of their

supporters they can convince to show up to the polls. Budget allocations in unit𝑘 by party 𝑃 ∈ {𝐴, 𝐵}
may push their actual number of votes above the baseline turnout 𝛼𝑣𝑃

𝑖𝑛𝑖𝑡,𝑘
, but their total number

of votes cannot exceed 𝑣𝑃
𝑖𝑛𝑖𝑡,𝑘

. (Hence if 𝛼 = 1, then GOTV budget allocations have no effect.) This

constraint is implemented by defining 𝑣𝐴
𝑘
as the actual voter turnout for party 𝐴 in unit 𝑘 , with
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budget 𝑏𝐴
𝑘
spent satisfying

𝑣𝐴
𝑘
= 𝛼𝑣𝐴

𝑖𝑛𝑖𝑡,𝑘
+ 𝑏𝐴

𝑘
∀𝑘 ∈ 𝐾 (4)

𝑣𝐵
𝑘
= 𝛼𝑣𝐵

𝑖𝑛𝑖𝑡,𝑘
+ 𝑏𝐵

𝑘
∀𝑘 ∈ 𝐾 (5)

𝑏𝐴
𝑘
≤ (1 − 𝛼)𝑣𝐴

𝑖𝑛𝑖𝑡,𝑘
∀𝑘 ∈ 𝐾 (6)∑︁

𝑘∈𝐾
𝑏𝑘 ≤ B𝐴 (7)

By assumption, party 𝐵’s GOTV campaign allocation, and therefore the values 𝑣𝐵
𝑘
, are known to

party 𝐴.

3.3.3 Winning Districts. A party must win more than half of the votes in a district to secure a

win. We use indicator variables 𝑠1

𝑖 and 𝑠
2

𝑖 and the big-𝑀 method for incorporating the wins in

campaigned and target maps respectively

1 −𝑀 (1 − 𝑠1

𝑖 ) ≤
∑︁
𝑘∈𝐾

𝑧1

𝑖𝑘

(
𝑣𝐴
𝑘
− 𝑣𝐵

𝑘

)
≤ 𝑀𝑠1

𝑖 ∀𝑖 ∈ 𝐾 (8)

1 −𝑀 (1 − 𝑠2

𝑖 ) ≤
∑︁
𝑘∈𝐾

𝑧2

𝑖𝑘

(
𝑣𝐴
𝑖𝑛𝑖𝑡,𝑘

− 𝑣𝐵
𝑖𝑛𝑖𝑡,𝑘

)
≤ 𝑀𝑠2

𝑖 ∀𝑖 ∈ 𝐾 (9)

Note that constraints (8) and (9) are both linear: 𝑧1

𝑖𝑘
show the unit to district assignments in the

initial map and are given, although variables 𝑣𝐴
𝑘
depend on the budget spent. For (9), we know the

values of 𝑣𝐴
𝑖𝑛𝑖𝑡,𝑘

, 𝑣𝐵
𝑖𝑛𝑖𝑡,𝑘

, but variables 𝑧2

𝑖𝑘
depend on the plan that we make for round-2.

3.3.4 The Votemandering MIP. The objective function of (1) is now represented by the sum of

individual district wins in both rounds, i.e., 𝑠1

𝑖 and 𝑠
2

𝑖 for every unit 𝑖 . As described in (1), a fairness

measure constraint 𝑓 (�̃�, �̃� ) ≤ 𝛿 is implemented, here precisely represented as a function of the

first round variables (updated vote shares 𝑣𝐴
𝑘
, 𝑣𝐵
𝑘
) as well as the second-round assignment variables

(𝑧2

𝑖 𝑗 ). Using our notation, this constraint refers to the fairness constraint on the votemandered

map. Furthermore, the round-2 plan, i.e., 𝑧2

𝑖 𝑗 also needs to satisfy the contiguity, population, and/or

compactness constraints for making districts. We omit these nonpartisan constraints for brevity

and refer the reader to (Swamy et al. 2023) for implementation details.

Finally, given 𝑣𝐴
𝑖𝑛𝑖𝑡,𝑘

, 𝑣𝐵
𝑖𝑛𝑖𝑡,𝑘

, 𝑧1

𝑖 𝑗 , 𝑣
𝐵
𝑘
, B𝐴 and 𝛿 , a mixed-integer program (MIP) formulation of party

𝐴’s optimization problem is

maximize{
𝑏𝐴
𝑘

}
𝑘
,
{
𝑧2

𝑖𝑘

}
𝑖,𝑘

∑︁
𝑖∈𝐾

𝑠1

𝑖 +
∑︁
𝑖∈𝐾

𝑠2

𝑖

subject to constraints (2) − (9),
𝑧2

𝑖𝑘
, 𝑠1

𝑖 , 𝑠
2

𝑖 ∈ {0, 1} ∀𝑖, 𝑘 ∈ 𝐾,

𝑏𝐴𝑖 ≥ 0 ∀𝑖 ∈ 𝐾,

𝑓

(
𝑧2

𝑖𝑘
, 𝑣𝐴
𝑘
, 𝑣𝐵
𝑘

)
≤ 𝛿,{

𝑧2

𝑖𝑘

}
satisfy nonpartisan constraints.

(10)

This concludes the description of the optimization problem (10). It is evident that the problem

is computationally challenging due to the complex map-making constraints. For most fairness

constraints, an exact approach to solving this optimization problem is only feasible for very small-

sized grids (on the order of 3 × 4).
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3.4 A Sampling-Based Votemandering Heuristic
The complexity of the optimization problem (10) arises from the interplay between the four vote-

mandering stages. Campaigning decisions depend on the first and third stages (the initial and

votemandered maps), whereas the objective depends on the second and fourth stages (the cam-

paigned and target maps). Additionally, (10) accounts for the budget, voter turnout, and feasible

map-making constraints, making it difficult to determine the best direction to improve the objective

and find an optimal solution.

To address this complexity, the problem is split into two parts leading to an efficient heuristic

approach: find a promising target map, then increase round-1 wins while maintaining the apparent

fairness of the votemandered map. For a fixed target map defined by 𝑧2

𝑖𝑘
variables, solving (10)

reduces to finding an optimal budget allocation 𝑏𝐴
𝑘
while maintaining feasibility (if possible).

A brute-force method of checking all possible new plans �̃� ∈ D is computationally infeasible due

to the size ofD, i.e., the combinatorial explosion of possible redistricting plans. Instead, sampling is

used to reduce the new plan search space from the set D of all district plans satisfying nonpartisan

redistricting constraints to a smaller pool, P ⊂ D. To quickly sample a small but diverse pool P,
we implement the popular recombination Markov chain (DeFord et al. 2021).

The proposed algorithm considers each candidate plan inP according to a priority order, stopping

when a pool-optimal plan, 𝐷∗, is found. Note that an optimal solution within the pool may not be

unique, and experiments suggest a large number of pool-optimal plans exist. The number of wins

for party 𝐴 in 𝐷∗ with the original data, E(�̃�,𝑉0), is a valid lower bound on the global optimum

across all of D. Although recombination sampling may miss optimal new plans, this two-stage

heuristic is tractable for standard-sized instances and provides practical solutions that effectively

utilize votemandering strategies, showing improvements in the number of seats won.

Let P ⊂ D be a pool of 𝑁 candidate new plans, i.e., P ≡ {𝐷1, 𝐷2, . . . , 𝐷𝑁 }. The choice of new
plan 𝐷𝑖 combined with the original voter data 𝑉0 determines the number of wins in the target

map, E (𝐷𝑖 ,𝑉0). Hence the best new plan for 𝐴 is determined by finding, for each plan 𝐷𝑖 ∈ P, the
maximum number of round-1 wins for𝐴 (via spending budgetB𝐴 ) such that the votemandered map

with plan 𝐷𝑖 fools the fairness constraint. By decoupling the round-1 and round-2 contributions to

the objective function of (10), this heuristic efficiently returns the optimal new plan from the pool.

Algorithm 1 provides a high-level description of the heuristic.

Proposition 3.1. Algorithm 1 returns a district plan in P that, when used for the votemandered
and target maps, maximizes the total number of wins for party 𝐴 across the two election rounds.

Proof. See Appendix B.2. □

The main computational effort in Algorithm 1 occurs in Line 10. With the target map fully

determined, the objective of (10) simplifies to maximize the campaigned map (round-1) wins over

all possible budget allocations

{
𝑏𝐴
𝑘

}
𝑘
∈ 𝐾 while maintaining the fairness of the votemandered

map. We call Line 10 the fairness step, because the goal is to maximize wins conditioned on plan 𝐷𝑖
appearing fair as the votemandered map. Henceforward, we use a specific fairness measure, the

efficiency gap (EG), which we formally define in Section 3.4.2. We next expound on the simplified

version of (10) solved with the fairness step specific to EG.

3.4.1 Additional Notation. Let I = {𝐼1, ..𝐼𝑛} be the set of districts 𝐼𝑖 in the original plan (round-1)

such that each 𝐼𝑖 is a set of units from𝐾 . Sets 𝐼𝑖 satisfy 𝐼𝑖∩𝐼 𝑗 = ∅ as no unit can belong to two districts
in any round. Let (𝑉𝐴

𝑖𝑛𝑖𝑡,𝐼
,𝑉 𝐵
𝑖𝑛𝑖𝑡,𝐼

) and (𝑉𝐴
𝐼
,𝑉 𝐵
𝐼
) denote pre-campaigning and post-campaigning votes,

respectively, in district 𝐼 . Similarly, J = {𝐽1, ..𝐽𝑛} is the set of districts in the new plan (round-2),

with (𝑉𝐴
𝑖𝑛𝑖𝑡,𝐽

, 𝑉 𝐵
𝑖𝑛𝑖𝑡,𝐽

) and (𝑉𝐴
𝐽
, 𝑉 𝐵

𝐽
) denoting pre and post-campaigning votes in district 𝐽 ∈ J . Let
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ALGORITHM 1: Votemandering Heuristic: Select Optimal Plan from a Pool

1: Input: Pool P = {𝐷1, 𝐷2, . . . , 𝐷𝑁 } of candidate new plans

2: Sort P in decreasing order of E (𝐷𝑖 ,𝑉0), relabeling from 𝐷1 to 𝐷𝑁
3: 𝑠1

max
← maximum number of round-1 wins for party 𝐴 by spending campaign budget B𝐴

4: best_plan← NULL
5: best_obj← −∞
6: for all 𝐷𝑖 ∈ P do
7: if 𝑠1

max
+ E (𝐷𝑖 ,𝑉0) < best_obj then

8: break
9: end if
10: obj← solve (10) with 𝑧2

𝑖𝑘
variables fixed to encode 𝐷𝑖 , returning −∞ if infeasible

11: if obj > best_obj then
12: best_plan← 𝐷𝑖
13: best_obj← obj
14: end if
15: end for
16: Output: best_plan

𝑥𝐼𝑖 , indexed using sets 𝐼𝑖 ∈ I and 𝑦 𝐽𝑗 , indexed using sets 𝐽 𝑗 ∈ J be the indicator variables denoting

the wins in the campaigned map (round-1) and the votemandered map (round-2), respectively. Note

that we resort to the set notation (𝑥𝐼 using 𝐼 , 𝐽 ) unlike that of the original optimization problem

(i.e., 𝑠1

𝑖 ), as we now have assignments of both initial and target maps, allowing lesser notation.

3.4.2 Incorporating EG into the Fairness Step. Using the definition for EG, the difference between

wasted votes for each district 𝐼 ∈ I (denoted henceforth byW(𝐵 −𝐴)) is given by

W(𝐵 −𝐴) (𝐼 ) =
{

3𝑉 𝐵
𝐼
−𝑉𝐴

𝐼

2
, if 𝑉𝐴

𝐼
> 𝑉 𝐵

𝐼
(𝐴 wins)

𝑉 𝐵
𝐼
−3𝑉𝐴

𝐼

2
, if 𝑉𝐴

𝐼
< 𝑉 𝐵

𝐼
(𝐵 wins)

(11)

Using this definition, we further write the constraint of EG less than a particular constant, say 8%

(Stephanopoulos and McGhee 2015).

efficiency gap of the state =

�����∑︁
𝐼 ∈I
W(𝐵 −𝐴) (𝐼 )/

(∑︁
𝐼 ∈I

𝑉𝐴𝐼 +𝑉
𝐵
𝐼

)����� ≤ 0.08 (12)

Next, we describe the MIP we use to ensure the fairness of the proposed map in round-2, i.e., the

votemandered map. Letting 𝜏𝐽 , ∀𝐽 ∈ J denote the difference between wasted votes in 𝐽 ’s district,

i.e.,W(𝐵 −𝐴) (𝐼 ), we can write:

max

∑︁
𝐼 ∈I

𝑥𝐼

𝑠 .𝑡 . Constraints (6), (7)

𝑉𝐴𝐼 =
∑︁
𝑘∈𝐼

𝛼𝑣𝐴
𝑖𝑛𝑖𝑡,𝑘

+ 𝑏𝐴
𝑘

∀𝐼 ∈ I

𝑉𝐴𝐽 =
∑︁
𝑘∈ 𝐽

𝛼𝑣𝐴
𝑖𝑛𝑖𝑡,𝑘

+ 𝑏𝐴
𝑘

∀𝐽 ∈ J

1 −𝑀 (1 − 𝑥𝐼 ) ≤ (𝑉𝐴𝐼 −𝑉
𝐵
𝐼 ) ≤ 𝑀𝑥𝐼 ∀𝐼 ∈ I (13)

1 −𝑀 (1 − 𝑦𝐽 ) ≤ (𝑉𝐴𝐽 −𝑉
𝐵
𝐽 ) ≤ 𝑀𝑦𝐽 ∀𝐽 ∈ J (14)
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0 ≤ −𝜏𝐽 +
(

3𝑉 𝐵
𝐽
−𝑉𝐴

𝐽

2

)
≤ 𝑀 (1 − 𝑦𝐽 ) ∀𝐽 ∈ J (15)

0 ≤ 𝜏𝐽 −
(
𝑉 𝐵
𝐽
− 3𝑉𝐴

𝐽

2

)
≤ 𝑀𝑦𝐽 ∀𝐽 ∈ J (16)

− 0.08 ≤
∑︁
𝐽

𝜏𝐽 /
©­«
∑︁
𝐽 ∈J

𝑉𝐴𝐽 +𝑉
𝐵
𝐽

ª®¬ ≤ 0.08 (17)

𝑥𝐼 , 𝑦𝐽 ∈ {0, 1}, 𝑏𝐴
𝑘
, 𝜏𝐽 ≥ 0 ∀𝑘 ∈ 𝐾, 𝐽 ∈ J (18)

Algorithm 1 finds an optimal solution within a pool of target maps, but one may question

about the probability that a globally optimal solution exists within a pool generated by running

a recombination chain for 𝑁 steps. However, given the hardness of finding a globally optimal

solution, it is unlikely that a bound on this probability can be determined. In practice, the algorithm

is computationally efficient as shown in Section 4 (Theorem 4.3), and the returns diminish as the

size of the pool increases. It is important to note that the primary goal of this paper is to establish

the mechanism of votemandering and study its dependence on various crucial factors that affect

redistricting, as opposed to finding the optimal votemandering strategies.

As the algorithm works given any inputs of the initial map and campaign budget, it establishes

a framework that can be used to test the robustness of any district plan or pool of maps against

votemandering. This framework is used in later sections to compare the effects of various state

characteristics and external redistricting conditions on votemandering. An ideal map would have a

lower objective when tested against a standard pool of target maps. The higher the budget required

to votemander, the better the robustness.

4 RESULTS AND ANALYSIS
This section presents the efficacy and efficiency of votemandering under various conditions. Using

EG as our fairness measure, we begin by examining the impact of campaigning on votemandering

objective and fairness in Section 4.1. We show that under certain general conditions, votemandering

can always occur. In Section 4.2, we establish the polynomial-time complexity of Algorithm 1. Finally,

in Section 4.3, we experimentally analyze the dependence of various factors on votemandering,

such as the budget of Party 𝐴 and Party 𝐵, compactness, voter turnout, and the concentration index

Moran’s I.

4.1 Sufficient Conditions for Votemandering
As a build-up to this question, we analyze the strategy space of party 𝐴: it can add new votes via

campaigning in round-1; effectively gerrymander to shift votes from a winning (W) district to a

losing (L) district or vice versa. We discuss their key implications on fairness in Lemma 4.1.

Lemma 4.1. The actions of campaigning and vote shifts have an impact on the difference between
wasted votes, i.e.,W(𝐵 −𝐴), as given in Table 1.

Proof. See Appendix C.1. □

Next, we discuss the total impact on the change in wasted votesW(𝐵 − 𝐴), and thereby, the

efficiency gap, as a new district plan gets drawn over the same vote data. As the total number of

votes does not change in this case, this change can be tracked just through a reshuffle of units

into winning and losing districts. For district assignment I in round-1, the difference between the
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Table 1. Change in the difference between wasted votes (EG) as new votes are added/shifted

Action Impact onW(𝐵 −𝐴)
1 Wasting an additional vote on a losing district −3/2
2 Wasting an additional vote on a winning district −1/2
3 Winning a district 𝐼 through campaigning (3𝑉𝐴

𝐼
+𝑉 𝐵

𝐼
)/2

4 Shift 𝑥 votes from a winning to a losing district −𝑥
5 Shift 𝑥 votes from a losing to a winning district 𝑥

wasted votesW(𝐵 −𝐴)I is expressed as:

W(𝐵 −𝐴)I = 𝛼
©­«

∑︁
𝐼 ∈I(𝑊 )

3𝑉 𝐵
𝑖𝑛𝑖𝑡,𝐼
−𝑉𝐴

𝑖𝑛𝑖𝑡,𝐼

2

ª®¬ + 𝛼 ©­«
∑︁

𝑖∈I(𝐿)

𝑉 𝐵
𝑖𝑛𝑖𝑡,𝐼
− 3𝑉𝐴

𝑖𝑛𝑖𝑡,𝐼

2

ª®¬
= 𝛼

(∑︁
𝐼 ∈I

𝑉 𝐵
𝑖𝑛𝑖𝑡,𝐼
−𝑉𝐴

𝑖𝑛𝑖𝑡,𝐼

2

)
+ 𝛼 ©­«

∑︁
𝑖∈I(𝑊 )

𝑉 𝐵𝑖𝑛𝑖𝑡,𝐼 −
∑︁

𝐼 ∈I(𝐿)
𝑉𝐴𝑖𝑛𝑖𝑡,𝐼

ª®¬ (19)

where I(𝑊 ) and I(𝐿) are the sets of winning and losing districts, respectively. Then, after reshuf-

fling to district assignment J in round-2, the change inW (defined by ΔW(𝐵 −𝐴)I→J ) and the

finalW is given as:

ΔW(𝐵 −𝐴)I→J = 𝛼
©­«

∑︁
𝑗∈J(𝑊 )

𝑉 𝐵𝑖𝑛𝑖𝑡, 𝑗 −
∑︁

𝑗∈J(𝐿)
𝑉𝐴𝑖𝑛𝑖𝑡,𝑗

ª®¬ − 𝛼 ©­«
∑︁

𝑖∈I(𝑊 )
𝑉 𝐵𝑖𝑛𝑖𝑡,𝑖 −

∑︁
𝑖∈I(𝐿)

𝑉𝐴𝑖𝑛𝑖𝑡,𝑖
ª®¬

W(𝐵 −𝐴)J =W(𝐵 −𝐴)I + ΔW(𝐵 −𝐴)I→J + [Any wasted votes through campaign] (20)

To conclude, Table 1 and Eq. (20) show that a campaign budget can be allotted (thereby updating

𝑉𝐴
𝑖𝑛𝑖𝑡,𝐼

,𝑉 𝐵
𝑖𝑛𝑖𝑡,𝐼

to 𝑉𝐴
𝐼
,𝑉 𝐵
𝐼
) to achieve fairness of a target map, given that the allocation also satisfies

the budget and voter-turnout constraints. Thus, votemandering can potentially include at least two

(interdependent) ways: (1) Fixing plan J and allotting appropriate budget to satisfy the fairness

bound, whilst benefiting from campaigning in round-1, and (2) Designing a target map with J
that leads to a higher number of wins in round-2, maintaining fairness. To measure the efficacy of

votemandering, we define votemandering bonus i.e., Δ which measures the gain in the number of

wins after enabling votemandering. For a target plan �̃� and campaigning resulting with �̃� ,

Votemandering bonus Δ = E(𝐷0, �̃�) + E(�̃�,𝑉0) − 2E (𝐷0,𝑉0) (21)

Using this definition, a positive votemandering bonus would indicate that we have successfully

votemandered. We now characterize the sufficient conditions for successful votemandering using

the second way of improving the objective. Intuitively, we need a target map better than the initial

map, and a baseline voter turnout to allow GOTV efforts to take place.

Theorem 4.2. For any vote-share distribution and a corresponding fair initial map with assignment
I, the existence of strategies leading to a positive votemandering bonus is guaranteed if

(1) A feasible, contiguous map with assignment J exists with a higher number of wins than the
initial map.

(2) The voter turnout 𝛼 satisfies:

𝛼 ≤ 1 −
(

2ΔW(𝐵 −𝐴)I→J∑
𝐽 ∈J(𝑊 )

∑
𝑗∈ 𝐽 𝑣

𝐴
𝑗

)
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where ΔW(𝐵 −𝐴)I→J is the change in the difference between wasted votes from assignment
𝐼 to 𝐽 , and 𝑣𝐴𝑗 are party 𝐴’s votes in unit 𝑗 .

Proof. We prove this by achieving fairness of the map with assignment J using a strategic

allocation of budget, thereby establishing the existence of strategies. We primarily satisfy Eq. (20).

We continue with the proof details in Appendix C.2. □

In practice, it is generally much easier to votemander (as we demonstrate in Section 4.3 and

through case studies in Section 6), except under highly specific conditions such as near 100%

voter turnout and nearly all voters favoring a single party. The first way of votemandering, as

discussed above, also allows for a positive bonus to be achieved through an increase in wins in

the first round, as long as the voter turnout allows for such campaigning to occur in a fair way. Its

campaigning effects on fairness, as translated from the additional number of wins, can be dissolved

in the votemandered map through reorganization of the campaigned map. While this first way

is easier to see in practice, its dependence on the specificity of J makes it difficult to establish

sufficient conditions for votemandering as it demands map making, given an initial assignment I.
We explore specific votemandering strategies using both ways in detail in Section 5.

4.2 Efficiency of Votemandering Heuristic
We now establish the polynomial time complexity of the votemandering heuristic. Recall that it

takes a pool of maps P as an input, and outputs the target map in P maximizing the votemandering

objective with respect to the given initial map, i.e., it finds the target map with the maximum

votemandering bonus. Proposition 3.1 confirms the correctness of Algorithm 1 in its convergence

to the optimal target map. Theorem 4.3 now shows that this may be achieved efficiently.

Theorem 4.3. Let P be a pool of 𝑁 candidate target district plans such that P is a subset of feasible,
but not necessarily fair, 𝑛-districts plans. A plan in P that maximizes the votemandering bonus may
be found in poly(𝑁 , 𝑛) time.

Proof. Following Algorithm 1, see that the only complicated part is the fairness step (10) in the

MIP in Section 3.4.2. We show that each target map can be checked in polynomial time, enabling us

to move through the pool quickly until convergence. We sketch the proof here and provide details

in Appendix C.3.

(1) For each district in round-1, we decompose its space into pieces that each belongs to a district
in round-2. For each such piece, we define its capacity = min(its voter-turnout capacity,

budget needed to win the round-2 district it is part of (only if part of a losing district)).

(2) Given party 𝐵’s investment and the original vote shares of𝐴 and 𝐵, we next find the win/lose

(𝑊 /𝐿) status of the districts in the votemandered map and compose a linear program to

find the maximum wins in the campaigned map while constraining on the status of the

districts, implemented by the variables for investment in the pieces.

(3) If the (𝑊, 𝐿) constraint for district 𝑘 (in the votemandered map) is tight in the optimal

solution, do: i) mark 𝑘’s status as a win and update the fairness of the votemandered map,

ii) add a constraint for allocating the budget needed to win 𝑘 . We then solve the updated

linear program, and if the objective increases, we repeat all the steps with updated𝑊 /𝐿
status and constraints until the objective stops increasing. This converges in polynomial

time since there is a predefined number of districts with an 𝐿 status, bounded above by 𝑛.

These three steps suffice to prove Theorem 4.3. □
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(a) Increasing budget of party A (b) Increasing budget of party B

Fig. 2. Party A’s votemandering bonus, with increase in both budgets

4.3 Analysis of factors impacting votemandering
Although the conditions for votemandering may be easily satisfied in practice, the required budget

to ensure a positive bonus can vary. The efficacy of votemandering depends on several factors,

including the initial vote share distribution across the state, the initial district assignment plan,

and the available campaign budget for parties 𝐴 and 𝐵. Furthermore, it is influenced by various

externally imposed constraints on the redistricting process, such as EG, compactness, the number

of majority-minority districts, proportionality, etc. As a result, we opt for a randomized approach,

i.e., Algorithm 1, for a pool of maps to examine the dependence on these factors and, in turn,

demonstrate the efficacy of votemandering under various conditions. The pool of plans is randomly

generated using recombination and contains plans that all satisfy the externally imposed constraints.

We fix a randomly generated vote share distribution across a grid with 20 × 20 units such that each

unit 𝑖 has a population 𝑝𝑖 uniformly chosen between 350 − 400 and vote shares (𝑣𝐴𝑖𝑛𝑖𝑡,𝑖/𝑝𝑖 , 𝑣𝐵𝑖𝑛𝑖𝑡,𝑖/𝑝𝑖 )
between 20 − 80% for each party. Each feasible map from the pool provides a unit-to-district

assignment, mapping the 400 units to 10 districts, with district populations allowed to deviate 1%

from the average district population.

4.3.1 Impact of increasing budget. We present our first key result through Figure 2, which tracks

how increasing the campaign budget strengthens the ability to votemander. Recall that the budget

equals the number of votes that can be influenced above the baseline voter turnout, with an upper

bound given by total party affiliation shares. Figure 2 plots Party 𝐴’s votemandering bonus as the

parties increase their budget uniformly. In experiments for Figure 2a, Party 𝐵’s budget B𝐵 is fixed

at 400, and Party 𝐴’s budget B𝐴 is varied, whereas for Figure 2b, B𝐵 is varied, and B𝐴 is fixed

at 400. In both experiments, we plot the majority party 𝐴’s votemandering bonus coming from

its strategic investment. Recall that we do not assume any campaigning strategies from Party 𝐵.

Given any budget allocation of 𝐵, if 𝐴 has access to the allocation information, then the algorithm

finds the best strategies for 𝐴. Here, we let 𝐵 invest most straightforwardly, making its budget

investment proportional to each unit’s population, allowing fractional investments.

Figure 2a shows a steady increase in the bonus through the means and medians shifting upwards

with the increase in B𝐴. The bonus for B𝐴 = 100 indicates the objective that can be attained by

accessing Party 𝐵’s budget investment information while 𝐴 puts in a little campaigning effort

itself. Note that the increase in bonus in Figure 2a is not linear. Improving the allowed budget has

diminishing returns in the form of objectives. This is expected since the objective, and therefore

the bonus, is capped by the total number of seats available in both rounds.

Most interestingly, the bonus has a counterintuitive relation with increasing B𝐵 as shown in

Figure 2b. As opposed to a clear steady increase in 2a, increasing B𝐵 does not ensure a steady

decrease in the bonus. Although increasing B𝐵 may impact Party𝐴’s chances of winning in the first
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(a) Lower compactness (b) Higher compactness

Fig. 3. Party A’s votemandering objective with lower and higher compactness bounds

round, 𝐴 may use this information to create better districts in the second round. This is achieved

by letting Party 𝐵 win some districts in the votemandered map, only to lose those in the target map

as the campaign effects diminish. Because of this trade-off, the decreasing trend is not obvious:

Party 𝐴’s votemandering bonus remains largely unaffected until B𝐵 reaches 500.

4.3.2 Impact of increasing compactness. The metric of compactness is generally not perceived as a

fairness notion and is usually imposed to be in line with the (older) belief of creating districts that

minimize the physical distance between units within a district. The salamander-shaped district in

the first gerrymander suggests rejecting freehand-shaped districts and asking for compactness as a

proxy for partisan neutrality (Polsby and Popper 1991). However, compactness is often deemed

orthogonal to fairness measures (Gurnee and Shmoys 2021). Contrary to this belief, we demonstrate

that imposing tighter compactness bounds limits the ability of votemandering, leading to better

(robust) maps in general. We achieve this by comparing votemandering objectives on two separate

pools of maps, generated through recombination: one with looser and one with tighter compactness

constraints. For ease of handling, compactness is expressed through the number of cut edges, as

done in the foundational work on recombination (DeFord et al. 2021). The number of cut edges

is defined as the number of edges in a state’s unit adjacency graph with endpoints belonging to

different districts. For instance, a 20 × 20 grid graph with each district composed of two adjacent

columns—making 10 districts overall—will have 9 × 20 = 180 cut edges. For showing the effects of

compactness, the first pool has the maximum number of cut edges equal to 2 × 180 = 360, and the

second pool has a bound of 0.75 × 180 = 135 cut edges.

The results are given in Figure 3, which show that more compact plans lead to a lower number of

seats achieved through votemandering. Recall Lemma 4.1, which shows that investing in a losing

district is 3 times more beneficial in achieving fairness, while winning through campaigning marks

the investment as a winning-district specific. Then, campaigning in targeted units is usually followed

by their re-assignments to losing districts, as a votemandering strategy to achieve fairness benefits.

Compactness limits this scope of targeting units for the campaign and subsequent reassigning,

by disallowing arbitrary shapes. We elaborate more on the intuition behind this phenomenon,

as we discuss the local votemandering strategies in Section 5.3. Note that Figure 3 compares

votemandering objectives, as opposed to bonuses shown in Figure 2, as here two different pools are

used, which also significantly affects the distribution of wins in the initial maps, and thereby the

bonuses.

4.3.3 Impact of voter turnout. Intuitively, the ability to votemander is a function of how efficiently

and thus also, how disproportionately we can allocate budget across the units. The parameter 𝛼

captures the natural voter turnout and the selective campaigning by a party strategically adds
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(a) 𝛼 = 0.5 (b) 𝛼 = 0.9

Fig. 4. Increase in A’s votemandering bonus with voter turnout

Fig. 5. Votemandering bonus with increasing Moran’s I

more party votes, bounded above by the natural vote share of that party in every unit. Hence, it is

straightforward to see that an increase in 𝛼 would provide less flexibility to votemander, and will

more accurately represent the true vote share, putting less weight on the campaigned votes. We

rigorously show this in effect in Figure 4 where we plot the objective with respect to increasing 𝛼 .

With both the means and medians shifting downwards with increasing 𝛼 , this demonstrates that

a higher voter turnout supports a better representation of social choice through not only higher

volume and election credibility, but also through disallowing political parties to votemander.

4.3.4 Impact of spatial autocorrelation of voters (Moran’s I). One may question if the current

experimental setting of a geographically uniformly spread voter population is reasonable, as we

often see clusters of societies divided across political and geographic lines. In this experiment, we

show that clustering of this data does not have a very significant effect on the votemandering bonus.

To demonstrate this, we use a popular spacial auto-correlation metric called Moran’s I (Duchin and

Walch 2021). This is a measure of the overall clustering of the spatial data. For (𝑣1, ..𝑣 |𝐾 | ) as the
vector of vote shares, 𝑣 as the average vote share, 𝑦𝑖 𝑗 as a binary variable indicating adjacency of

units 𝑖, 𝑗 and 𝑌 =
∑ |𝐾 |
𝑖, 𝑗
𝑦𝑖 𝑗 as the number of total adjacencies, Moran’s I is defined as

𝐼 =
|𝐾 |
𝑌

∑ |𝐾 |
𝑖=1

∑ |𝐾 |
𝑗=1
𝑦𝑖 𝑗 (𝑣𝑖 − 𝑣) (𝑣 𝑗 − 𝑣)∑𝐾
𝑖=1
(𝑣𝑖 − 𝑣)2

(22)

Moran’s I is usually used to measure the segregation of geospatial data and it varies between

[−1, 1] with -1 indicating anti-segregation, 0 with no segregation, and 1 with extreme segregation.

The randomly generated voter patterns used in Section 4.3.1, 4.3.2, and 4.3.3 produce Moran’s I
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values in the range (−0.01, 0.01). For the current set of experiments, we generate voter distributions

with varying Moran’s I values, group those into nine bins, and plot the votemandering bonuses in

Figure 5. Note that the overall party vote-shares are kept around the same value while increasing

the clustering of data. The insensitivity of the votemandering bonus to variations in Moran’s I

supports the experimental design decision of keeping Moran’s I near zero when varying the other

redistricting factors in Sections 4.3.1, 4.3.2, and 4.3.3.

In summary, campaign budgets affect the votemandering bonus with diminishing marginal

improvements, high voter turnout and stricter compactness bounds curtail votemandering, and

voter clustering patterns have little effect on votemandering. Moreover, these factors together help

establish the robustness of votemandering objectives to smaller uncertainties in voter-data. For the

strategist party, assuming base voter inclinations at the lower end of their confidence intervals is

sufficient to devise votemandering strategies. While access to 𝐵’s budget allocation information

is essential, its slow rate of effect helps if the information is stochastic. In further continuation

with the discussion in Section 4.3.1, it is worth emphasizing that the fusion of gerrymandering and

strategic campaigning separates the effects of pure campaigning strategies from votemandering

strategies, enabling a more robust dependence of budgets and voter inclinations on votemandering.

5 LOCAL VOTEMANDERING
The votemanderingmethods in Section 3 allow district lines in the target map to deviate significantly

from those in the initial map. However, in practice, considerations are made for maintaining the

original community boundaries (e.g., retaining majority/minority districts) as well as structural

boundaries (e.g., disallowing county splits) while drawing new district plans on the ground. Some

states also demand that redistricting plans remain close to the existing plan. For example, Nebraska

requires the new plan to “preserve the cores of prior districts” (Nebraska 2021), and the Wisconsin

Supreme Court issued a similar “least-change” order for the 2020 cycle (Wisconsin 2021).

Inspired by these requirements, Section 5.1 introduces a local votemandering heuristic that con-
ducts a local search within smaller map sections. This approach generates new plans that satisfy

local proximity requirements while maintaining global fairness and budget constraints. The heuris-

tic aims to maximize the votemandering objective, offering insights into crucial votemandering

strategies as detailed in Section 5.2. Although local votemandering provides a lower bound on

global votemandering performance, it is a faster method for achieving a positive votemandering

bonus. Additionally, it is parallelizable and thus scales better with increasing state sizes. Section

5.3 further explores the relationship between local and global votemandering and emphasizes the

significance of key strategies in understanding this connection.

5.1 Local Votemandering Methods
The local votemandering heuristic generates new target plans by applying small changes, or local
boundary perturbations, to existing plans between pairs of neighboring districts. These perturbations
involve exchanging units between two districts while satisfying external proximity and redistricting

requirements. Unlike the top-down approach in Section 3 (hereafter referred to as the global

votemandering heuristic), this bottom-up approach strategically employs local perturbations to

increment the votemandering bonus by one. A district adjacency graph is formed, with edges that

have a potential positive bonus—containing at least one district with initial status 𝐿—assigned

weights representing (budget, fairness) costs associated with the perturbations.

The ultimate objective is to maximize the overall bonus by finding a maximum-sized matching

that adheres to budget and fairness constraints. The resulting target plan is created by applying

perturbations corresponding to the maximummatching. Matchings are utilized because they enable

mutually exclusive perturbations between district pairs.



Sanyukta Deshpande, Ian G. Ludden, and Sheldon H. Jacobson 17

(a)Between neighboring districts with𝑊, 𝐿 status (b) Between neighboring districts with 𝐿, 𝐿 status

Fig. 6. The three key strategies to locally improve the votemandering bonus. The shaded districts show an
improvement in the number of wins of the strategist party.

The new target plan remains similar to the initial plan in terms of unit-to-district assignments,

with alterations only involving districts that expect positive bonuses. Since matchings are used,

the difference is quantified as, at most,
𝑛
2
independent recombination steps away from the initial

map, where 𝑛 is the number of districts. The heuristic considers perturbations only between district

pairs to avoid the complexity of perturbations within an arbitrary number of districts, to create

plans closer to the initial plan, and to maintain the highest improvement ratio over the number

of perturbed districts. Although it is technically feasible to generalize the heuristic to consider

perturbing three or more districts simultaneously, the current approach focuses on pairs.

Generating bonuses within submaps—regions restricted to two adjacent districts—exposes the

functionality of votemandering’s key strategies, as illustrated in Figure 6. Recall the two general

votemanderingways discussed in Section 4.1. Stemming parallel to those, these strategies encompass

securing a first-round win in the campaigned map and either of the second-round wins in the target

map: with or without winning in the votemandered map. Depending on the initial map, any of

the key strategies could be more cost-effective in terms of budget and/or fairness (or be infeasible).

Given cost information about edges, we first formulate an optimization framework that produces

the maximum-matching solution and subsequently discuss the formation and cost computation of

the key strategies in Section 5.2.

5.1.1 An optimization framework for local votemandering. As illustrated above, the objective is to

select the maximum number of mutually exclusive edges while adhering to the fairness and budget

constraints. An edge in the optimal solution may correspond to any of the three strategies depicted

in Figure 6. Without loss of generality, we assume that the budget is never sufficient to win in all

districts in round-1; otherwise, finding efficient votemandering strategies becomes trivial.

Let 𝑛 represent the set of nodes in the district adjacency graph, and let 𝐸 denote the set of edges.

Let 𝐸𝑛𝑖 represent a set of edges (including those corresponding to all 3 strategies) incident on node

𝑛𝑖 ∈ 𝑛. Let 𝑏𝑒 , 𝑓𝑒 denote budget and fairness costs associated with an edge 𝑒 , and let 𝑏 represent

the budget spent to satisfy fairness constraints. Since we do not have a budget to win all districts,

𝑏 can always be spent on losing districts, contributing 3𝑏/2 to the fairness cost, as Lemma 4.1

demonstrates. The MIP formulation for the local votemandering heuristic can then be expressed as:

max

∑︁
𝑒∈𝐸

𝑥𝑒

𝑠 .𝑡 .
∑︁
𝑒∈𝐸

𝑏𝑒𝑥𝑒 + 𝑏 ≤ B𝐴∑︁
𝑒∈𝐸

𝑓𝑒𝑥𝑒 −
3

2

𝑏 ≤ Fairness cost
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𝑒∈𝐸𝑛𝑖

𝑥𝑒 ≤ 1 ∀𝑛𝑖 ∈ 𝑛

𝑥𝑒 ∈ {0, 1} ∀𝑒 ∈ 𝐸 (23)

Note that (23) is equivalent to finding a maximum cardinality matching with two knapsack

constraints. Although (23) is computationally challenging, it significantly simplifies the variable

space by discarding unit-specific variables in (10). In practice, the adjacency graph instance has |𝑛 |
nodes and only those edges with a positive bonus, making the instance sparse and the problem

tractable. We provide an example of this heuristic in Appendix D.1.

5.2 Taxonomy of Local Votemandering Strategies
As shown in (1), securing a win in round-1 is only possible through budget investment, while win-

ning in round-2 can only be achieved through target plan design, which considers the original vote

shares. The fairness constraint is relevant because the new plan must satisfy it on the votemandered

map, factoring in the vote shares after investments. A strategist party employs the strategies in

Figure 6 to generate bonuses using its budget and redistricting abilities:

(1) Strategy-1: Secure a votemandering bonus with an extra win only in the campaigned map,

using 𝐴’s budget investment. The edge weight vector is of the form: [significant budget,

insignificant fairness cost]. The implementation bottleneck is the budget needed for winning

(i.e., the vote margin for 𝐿 district) and finding perturbations that maintain the same𝑊 /𝐿
status in the votemandered map.

(2) Strategy-2: Secure an extra win only in the target map using 𝐵’s budget investment. The

edge weight vector is: [no budget, insignificant fairness cost]. The bottleneck is identifying

perturbations that enable 𝐵 to win in the votemandered map with a margin smaller than its

investment, allowing 𝐴 to win in the target map with original vote shares.

(3) Strategy-3: Use boundary perturbations to secure an extra win in the target map while

also achieving an additional win in the votemandered map. The edge weight vector is:

[insignificant budget, significant fairness cost]. The bottleneck is the fairness cost resulting

from the extra win in the votemandered map.

Other strategies, where 𝐴 wins in a different set of maps than shown in Figure 6, may be

considered. However, these are expensive and dominated by the key strategies when feasible. For

example, winning in both campaigned and votemandered maps incurs significantly higher fairness

costs than strategy-1 while providing the same bonus. Winning in both campaigned and target

maps combines strategies 1 and 2, making it less likely than either. Therefore, for practical purposes,

we only illustrate the three key strategies here and note the generalization of considering additional

edge types in (23).

Consequently, up to three edges may exist between any two districts, each associated with a

specific weight vector. Strategy-2 is particularly important because it only uses information about

party 𝐵’s budget and virtually imposes no cost on party 𝐴. More details and exact calculations of

edge weights can be found in Appendix D.2.

To determine the optimal edge weights as inputs for (23), i.e., costs 𝑏𝑒 , 𝑓𝑒 for all three strategies,

optimal boundary perturbations must be specified while adhering to redistricting constraints such

as compactness, contiguity, proximity, and population balance. To achieve this, we employ the

randomized recombination technique once again. As with the global heuristic, we separate the

problems of finding local perturbations and optimizing costs by creating a pool of plausible submaps

for each edge.

For each strategy, we can now examine this pool and select the best edge—i.e., the perturbations

leading to a new pair of districts with minimal costs. Finally, given a district adjacency graph, we
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add up to three edges for each pair of neighboring districts, with costs equal to those of the best

pairs from the corresponding pool.

5.3 Connection to Global Votemandering
As discussed in Section 3, the votemandering bonus Δ describes how effectively we can votemander.

Eq. (24) further divides Δ into three sub-parts.

Δ = E(𝐷0, �̃� ) + E(�̃�,𝑉0) − 2E (𝐷0,𝑉0)
= [E(𝐷0, �̃� ) − E (𝐷0,𝑉0)] + [E(�̃�,𝑉0) − E(�̃�, �̃� ] + [E(�̃�, �̃� ) − E (𝐷0,𝑉0)] (24)

The first part of Eq. (24), i.e., the bonus resulting from the difference between the number of wins

in campaigned and initial maps, depends on the optimal budget allocation of 𝐴. The second part,

i.e., the difference between the target and votemandered maps, depends on 𝐵’s budget allocation.

The third part, i.e., the difference between votemandered and initial maps, is essentially bounded

as only a few discrete EG values are acceptable for the maps, meaning that the votemandered and

initial maps can only have a small difference in their number of wins (Tam Cho 2017).

Comparing Δ for global maxima to when the space is restricted for local votemandering, the

bonus breakdown highlights the exact three areas where the local heuristic operates (approximating

the optimal) through its key strategies. This also suggests that the efficiency of votemandering can

be explained using the generalized versions of key strategies, i.e., without necessarily restricting to

two districts. Considering the efficiency of local votemandering, note that its produced optimal

plan is also achievable by the global heuristic if the plan is present in its pool of maps. In fact,

relaxing its more-than-sufficient matching constraints also indicates a possibility of improvement.

Despite this, the deeper and targeted local search between every pair of neighboring districts better

explores the existence of key strategies and may produce outlier plans more effectively. Moreover,

it works precisely by exploiting the information of the initial map. As seen in Section 6, the local

votemandering heuristic works efficiently, even outperforming the global heuristic in one case.

Eq. (24) also explains why increasing compactness leads to a lower objective and, consequently, a

decrease in the ability to votemander. Using the notion of cut edges, higher compactnessmeans fewer

cut edges, i.e., a smaller shared boundary between two districts. The efficiency of votemandering

depends on the ease of unit exchange across borders via strategies 1 and 2, and more generally,

via using Lemma 4.1 implications to invest to win in a campaigned map and re-structure to shift

this investment to a losing district in the votemandered map. This implies a relationship between

the number of cut edges and the ease of votemandering via its key strategies: With a mandated

fewer number of cut edges between any two districts, it is more challenging to find units that can

be exchanged, resulting in a positive votemandering bonus.

In conclusion, while the global heuristic bypasses the matching constraints, the local heuristic

provides an efficient search at the district level, generating plans that closely resemble the original

ones. The local search in submaps is entirely parallelizable, potentially yielding much faster results

compared to the global heuristic as instance sizes grow. In practice, this runs very quickly. After

performing the local search for all edges, the corresponding adjacency graph of the initial map

incorporates budget and fairness bounds as variable inputs in the optimization program (23). This

allows for a more targeted and efficient approach to votemandering, taking advantage of the districts

in the initial map.
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(a) Republican Party Votemandering (b) Democratic Party Votemandering

Fig. 7. Distribution of Votemandering Objectives

6 CASE STUDY: WISCONSIN STATE SENATE REDISTRICTING AFTER 2020
This section demonstrates the existence of practical votemandering strategies using Wisconsin

state senate redistricting after the 2020 census. The redistricting cycle was delayed due to lawsuits,

prompting theWisconsin state legislature and the governor’s People’s Maps Commission to propose

state and congressional district plans. The Wisconsin Supreme Court eventually approved the state

senate and house maps drawn by the legislature (Ballotpedia 2022).

Wisconsin’s balanced partisan composition provides a suitable environment for exploring vote-

mandering’s practical potential. The state senate has 33 seats, with approximately half up for

election every two years. The Republican party (R) controls the state senate with a 21-11 majority

(excluding one vacancy) and had a 51.1% statewide senate election vote share in previous elections.

Conversely, the Democratic party (D) won the 2020 presidential election in Wisconsin by a 0.63%

margin, and the state’s governor is a Democrat. The Democratic governor’s veto power over redis-

tricting proposals from the Republican state legislature ensures that both parties influence the final

state senate map. Additionally, the Wisconsin state constitution mandates that districts be compact,

contiguous, and "bounded by county, precinct, town, or ward lines where possible" (Wisconsin

2022).

Throughout this section, we consider the 2021 governor’s office final state senate plan (GOV2021)
as the initial map. Deemed fair by the Princeton Gerrymandering Project with a score of A (2022),

GOV2021 serves as a reasonable starting point for our votemandering case study, despite not being

enacted.

The GOV2021 plan incorporates state senate election data from 2018 and 2020 (for 17 and 16

seats, respectively). According to the 2020 census, the ideal population for each senate district is

178,598. We assume a statewide voter turnout of 65%, the average from the 2018 and 2020 elections.

Both parties receive a budget to influence 13,734 voters, constituting a 1% total investment of the

expected votes cast. The votemandering party strategizes its campaign investment, while the other

party is assumed to allocate its investment proportionally to unit populations.

Section 6.1 investigates global votemandering effects for eachmajor party, revealing that although

both parties can benefit, the Democratic party achieves a more substantial votemandering bonus

given GOV2021 as the initial map. Section 6.2 illustrates local votemandering strategies that better

align with the Wisconsin Supreme Court’s goal of minimizing changes to the previous district plan.

Both parties continue to benefit within this restricted strategy space, and the votemandering bonus

even increases for one party.

6.1 Wisconsin Global Votemandering
The global votemandering heuristic expounded in Section 3 is applied to Wisconsin state senate

redistricting, using a pool of 80,000 candidate target maps generated via recombination. Figure 7
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Fig. 8. Distribution of Efficiency Gap measure over the pool of maps

depicts the pool’s distribution of votemandering bonus from each party’s perspective. Each his-

togram shows the number of maps yielding a specific votemandering bonus for the votemandering

party when fixed as the target map. The EG of GOV2021, 0.1409, indicates more wasted votes for

the Democratic party, giving the Democratic party more room to gain seats while maintaining a

safe EG. Hence the Democratic party tends to achieve a greater votemandering bonus than does

the Republican party, i.e., the distribution in Figure 7b is shifted to the right of the distribution

in Figure 7a. Note the relatively high EG of GOV2021 does not necessarily imply the map is a

partisan gerrymander. Figure 8 shows the distribution of EG for the pool of maps. Due to the

spatial distribution of voters in Wisconsin, recombination tends to generate maps with positive (i.e.,

Republican-leaning) EG values. Based on the EG value of GOV2021 and the pool’s EG distribution,

we impose a fairness bound of 0.0 ≤ EG ≤ 0.15 throughout the case study.

Table 2. Wisconsin Global Votemandering Characteristics: Republican and Democratic Parties

Majority party Republican Votemandering Democratic Votemandering

Number of Wins Efficiency Gap Number of Wins Efficiency Gap

Initial Map 21 0.1409 12 0.1409

Campaigned Map 24 0.2314 15 0.0468

Votemandered Map 21 0.1285 16 0.0096

Target Map 23 0.1915 17 -0.0195

To show an illustration of how these votemandering objectives are attained, we next describe

optimal target maps with both parties as strategists. Table 2 shows the characteristics of vote-

mandering stages specific to our examples. Figures 9-10 visually show the initial and target maps,

strategic investment of the Republican party, and the various stages of votemandering on the real

state data of Wisconsin. Figures 11-12 show the same for the Democratic party.

For the Republican votemandering, the objective is 47 seats across two rounds, against 42 with

no strategic investment. The Democratic votemandering bonus is 8, showing a larger improvement

for the Democratic party as explained above. The proposed Republican map would show an EG of

0.1285 with the previous election data (apparently fairer than the initial map), with the actual value

being 0.1915. This is reflected in the difference of 2 seats between the votemandered and target

map. Most interestingly, although the investment leads to 3 new seats in the campaigned map, the

new plan is such that it completely negates this effect, making the votemandered map win 21 seats.

In these cases, both parties choose outlier maps as the target maps and make the votemandered

maps fair. The strategic investment for both cases is done across the map by smartly choosing

units: the bottom-left part in Figure 11c is largely uniform (to make a difference only in round-1),

the top-half part in both Figure 9c and 11c is non-uniform (to only affect units that remain part of
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(a) Initial Map (b) Target Map (c) Investment

Fig. 9. Republican Global Votemandering: The initial map, the chosen target map, and the strategic investment
of budget (with intensity indicated by the darker color)

(a) Initial Map (b) Campaigned Map (c) Votemandered Map (d) Target Map

Fig. 10. The Four Stages of Republican Global Votemandering, (with red and blue indicating the districts won
by the Republican and Democratic parties, respectively)

(a) Initial Map (b) Target Map (c) Investment

Fig. 11. Democratic Global Votemandering: The initial map, the chosen target map, and the strategic invest-
ment of budget (with intensity indicated by the darker color)

(a) Initial Map (b) Campaigned Map (c) Votemandered Map (d) Target Map

Fig. 12. The Four Stages of Democratic Global Votemandering, (with red and blue indicating the districts won
by the Republican and Democratic parties, respectively)
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losing districts in the target map) and finally, the bottom-half part in Figure 9c is sporadic, with the

right corner serving as an investment made to satisfy the fairness bound.

6.2 Wisconsin Local Votemandering
When forced to decide the final state senate district plan, the Wisconsin Supreme Court announced

that it would seek to make as few changes as possible to the existing map. In accordance with this

goal, this section applies the bottom-up local votemandering heuristic to find strategies for both

parties which produce target maps close to GOV2021.

Table 3. Local Votemandering Characteristics: Republican and Democratic Parties

Majority party Republican Votemandering Democratic Votemandering

Number of Wins Efficiency Gap Number of Wins Efficiency Gap

Initial Map 21 0.1409 12 0.1409

Campaigned Map 21 0.1478 14 0.1072

Votemandered Map 21 0.1442 12 0.1014

Target Map 25 0.2513 20 -0.0888

Both parties can gain advantages from local votemandering, although each party employs a

significantly different approach. Figure 13 illustrates the GOV2021 district adjacency graph (13a), the

best Republican strategy discovered (13b), and the best Democratic strategy discovered (13c). Node

colors represent the party with a higher vote-share in each district. Edges with nonzero weights

indicate strategy-1 edges, while 0 weights correspond to strategy-2, and ‘FC’ denotes fairness costs

associated with strategy-3.

(a) District Adjacency (b) Republican Solution (c) Democratic Solution

Fig. 13. Local Votemandering: The district adjacency graph and the maximum matching solutions

The maximum matching solution for the Republican party (Figure 13b) yields a votemandering

bonus of four seats through strategy-2 improvements (i.e., without incurring monetary or fairness

costs). Consequently, the Republicans’ local votemandering bonus, which results in 46 seats across

the two elections, is one seat fewer than their global votemandering bonus of 47 seats. Themaximum

matching solution for the Democratic party (Figure 13c) attains a votemandering bonus of ten seats,

surpassing their global votemandering bonus of eight, via two strategy-1, six strategy-2, and two

strategy-3 edges. Strategy-1 edges consume a budget of 11,347 to boost Democratic voter turnout.

Table 3 details the map characteristics for each stage of local votemandering by each party, while

Figures 19-22 in Appendix E display the corresponding maps and campaign strategies.

Local votemandering strategies for both parties are not only computationally more efficient

than their global votemandering counterparts but also generate target maps closer to GOV2021. As
described in Section 5, the closeness parameter is adjustable, allowing for the optimization of the
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bonus while producing maps as close to the initial map as desired. Notably, local votemandering re-

lies extensively on strategy-2 improvements, which exploit the other party’s campaign investments.

Overall, the case study demonstrates the vulnerability of Wisconsin state senate redistricting to

global and local votemandering.

7 CONCLUSIONS AND FUTURE DIRECTIONS
In this study, we introduce the concept of votemandering, a combination of strategic campaigning

and gerrymandering employed to deceive fairness measures and increase seat-share across multiple

elections. Focusing on the efficiency gap (EG) as a fairness metric, we establish sufficient conditions

for a positive votemandering bonus (Theorem 4.2) and present an efficient heuristic for identifying

votemandering strategies (Algorithm 1, Proposition 3.1, Theorem 4.3).

Through computational experiments, we investigate the impact of campaign budget, compact-

ness, voter turnout, and spatial autocorrelation of voters on votemandering efficacy. Our findings

indicate that enhancing voter turnout and compactness, parameters seemingly unrelated to partisan

fairness, can potentially mitigate the influence of votemandering. A case study of Wisconsin state

senate redistricting illustrates practical votemandering strategies for both parties, emphasizing its

applicability beyond hypothetical scenarios and into real-world instances.

To further demonstrate the practicality of votemandering, we introduce local votemandering,
which allows the party controlling redistricting to make minor adjustments to a limited number

of district boundaries. Our heuristic efficiently discovers profitable district maps with minimal

district pair recombination. In the Wisconsin case study, local votemandering yields a higher

votemandering bonus for one party compared to the global, pool-based heuristic.

Future research may explore votemandering in the context of alternative fairness measures by

utilizing the general framework outlined here. Determining the most effective fairness measure, or

a combination thereof, to prevent votemandering remains an open question. Our votemandering

model currently allows for strategic campaigning only in the first election; expanding it to include

the second election would increase realism but also complexity. Further extensions might examine

votemandering across more than two election rounds, which would necessitate accounting for

migration patterns and shifts in voter sentiment. From a technical perspective, the computation

of optimal votemandering strategies, perhaps within restricted settings, is an interesting problem.

Moreover, allowing both parties to strategically allocate their campaign budgets would introduce a

generalized version of the Colonel Blotto game in the redistricting context, presenting challenges

such as breaking ties and addressing increased computational complexity.

Finally, our work carries significant policy and practical implications. We demonstrate that

strategic campaigning can substantially impact redistricting outcomes despite the presence of

fairness constraints and that the sole use of EG as a fairness measure may be insufficient. Our

results advocate for additional measures that account for strategic behavior and policies that

curtail manipulative campaigning practices. Ultimately, this study underscores the importance of

considering strategic behavior when designing and evaluating redistricting processes, and the need

for ongoing research on the consequences of political manipulation in democratic systems.
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A NOTATION

Notation Definition

D Set of district plans {𝐷}
V Set of voter ballots {𝑉 }

𝐷0,𝑉0 Original plan, original vote data

�̃�, �̃� New plan, new vote data

E Election function D ×V → N
𝑓 Fairness function D ×V → R
𝛿 Fairness threshold; the map is fair if 𝑓 (𝐷,𝑉 ) ≤ 𝛿
𝐾 Set of units

𝑛 Number of districts

𝑧𝑟
𝑖 𝑗

Indicates 1 if unit 𝑗 is assigned to the district with center 𝑖

𝑣𝐴
𝑖𝑛𝑖𝑡,𝑘

, 𝑣𝐵
𝑖𝑛𝑖𝑡,𝑘

Vote shares of party 𝐴 and 𝐵 in unit 𝑘

𝛼 Fractional baseline voter turnout

B𝐴 , B𝐵 Party 𝐴 and 𝐵’s GOTV budgets

𝑏𝐴
𝑘
, 𝑏𝐵
𝑘

Budget allocation by 𝐴 and 𝐵 in unit 𝑘

𝑠1

𝑖
, 𝑠2

𝑖
Indicate 1 for 𝐴’s wins in campaigned, target maps

P Pool of district plans

I = {𝐼1, ..𝐼𝑛}, J = {𝐽1, ..𝐽𝑛} District assignments in the original, new plans

𝑥𝐼𝑖 , 𝑦𝐽𝑗 Indicate 1 for 𝐴’s wins in the campaigned, votemandered maps

(𝑉𝐴
𝑖𝑛𝑖𝑡,𝐼

, 𝑉 𝐵
𝑖𝑛𝑖𝑡,𝐼

) and (𝑉𝐴
𝐼
, 𝑉 𝐵
𝐼
) Pre-campaigning and post-campaigning votes in district 𝐼

W(𝐵 −𝐴)𝐼 Difference between wasted votes in district assignment 𝐼

Δ Votemandering bonus

Table 4. Table of Notation

B SECTION 3 DETAILS
B.1 Votemandering Illustration
As an illustration of the votemandering phenomenon, consider a hypothetical state comprised of a

10 × 10 grid of equipopulous counties to be partitioned into 𝑘 = 5 districts. We start with the initial

map with given unit vote shares as marked in Figure 14a. Both parties have close state-wide total

vote proportions (51%, 49%), spread uniformly throughout the map. Out of the total vote shares in

each unit, 50% votes are cast without any campaign influence, i.e., it is the baseline voter turnout,

allowing the remaining to be added through GOTV campaigning. In the initial map, party 𝐴 wins

three districts out of 5, as marked by the units with the symbol ‘A’. The resulting efficiency gap

(EG) of the initial map is 0.072. In this case of 5 districts, we call a map ‘fair’ if its EG is less than or

equal to 0.20 (Stephanopoulos and McGhee 2015). Thus, any map proposed by 𝐴 for the second

round must have its EG less than 0.20.

In this example, party 𝐵 adds zero extra votes through campaigning. This is done to illustrate

only the effect of A’s campaigning on the election results and the proposed plan for round-2. Party

B’s campaigning has a different type of effect on votemandering as discussed in Section 4. If party

𝐴 does not do any strategic campaigning or propose a different plan in round-2, it would win 3

seats in each round, making a total of 6 wins in two rounds. 𝐴 may choose to propose the plan in

Figure 16b, leading to 4 wins in round-2. However, the EG of this plan using the original vote shares,

i.e., that of the target map is 0.28, making it an unfair proposal. We show that 𝐴 can successfully

votemander in this case: via strategic campaigning, it manages to claim the fairness of this plan
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(a) Initial Map (b) Votemandered Map

Fig. 14. Initial map and the proposed map for round-2

(a) Initial Map (b) Target Map

Fig. 15. Investments as seen on both maps

(a) Round-1 (Campaigned map) (b) Round-2 (Target map)

Fig. 16. Final results
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(winning 4 seats in round-2), while simultaneously winning all 5 seats in round-1 elections. Hence,

as opposed to 6 without strategic campaigning, 𝐴 can win a total of 9 seats in two rounds.

We further illustrate the strategy implemented by 𝐴 through Figure 15. The chosen plan for

round-2 has multiple unit-to-district assignments same as that of the original plan, i.e., the two

plans are not drastically different from each other. We see that 𝐴 has majorly invested in the

districts it was already winning in the initial map. It also invests a sufficient budget in the districts

it initially loses on, thereby winning all 5 in round-1 elections. This investment is clever: there

is no investment in the units that are part of the losing district in the target map. The budget is

allocated in such a way that we win that district (top-right positioned) in round-1 elections and we

again lose it in the target map as well as the votemandered map (after redrawing its boundaries).

All investment then becomes a part of the winning districts in round-2, according to the new plan.

To maintain the EG bound in the votemandered map, 𝐴 needs to lose in at least one district. In

the target map (using original vote shares), 𝐴 loses in one district and the map attains an EG score

of 0.28, but the proposed votemandered map (using updated vote shares) gets an acceptable score

of 0.195. The final results can be seen in Figure 16. Using a budget of 250 for a state with a total

voter population 5000, i.e., by influencing just 5% of the total voter population, 𝐴 can successfully

votemander by winning 9/10 seats in two rounds. Moreover, if we extend this to 10 election rounds

per redistricting cycle (as in the U.S.), the differences become starker, with 41 wins (5 + 4 × 9)

through votemandering as opposed to 30 wins (3 × 10) without strategizing (out of 50).

B.2 Proof of Proposition 3.1
Proof. Algorithm 1 is a straightforward loop over all candidate plans in P. For each candidate

plan 𝐷𝑖 , Line 10 computes the optimal objective value of (10) when 𝐷𝑖 is used. The best_plan
variable maintains the candidate plan with maximum objective value, best_obj, among plans

considered so far.

It remains to prove the correctness of the termination condition in Line 7. Observe the objective

of 10 decomposes into round-1 wins in the campaigned map, 𝑠1 ≡ ∑
𝑖∈𝐾 𝑠

1

𝑖 ≡ E(𝐷0, �̃� ), and round-2
wins in the target map, 𝑠2 ≡ ∑

𝑖∈𝐾 𝑠
2

𝑖 ≡ E(�̃�,𝑉0). Fixing �̃� = 𝐷𝑖 determines 𝑠2
via the 𝑧𝐴

𝑖𝑘
variables,

and 𝑠1
becomes a function of the budget allocation variables 𝑏𝐴

𝑘
. The value of 𝑠1

max
computed in

Line 3 is found by removing the fairness constraints and second objective term from (10), so 𝑠1

max
is

an upper bound on 𝑠1

𝑖 for any given plan 𝐷𝑖 .

Suppose the loop in Algorithm 1 terminates in iteration 𝑗 with best_plan = 𝐷𝑖∗ for some 𝑖∗ < 𝑗 .

For any ℓ ∈ { 𝑗, 𝑗 + 1, . . . , 𝑁 }, the maximum objective value using new plan 𝐷ℓ is

𝑠2 + max{
𝑏𝐴
𝑘

}
𝑘

: feasible in (10) with 𝐷ℓ

(
𝑠1

)
≤ 𝑠1

max
+ 𝑠2

= 𝑠1

max
+ E (𝐷ℓ ,𝑉0)

≤ 𝑠1

max
+ E

(
𝐷 𝑗 ,𝑉0

)
(by sorting of P)

< best_obj (by Line 7)

= 𝑠1

𝑖∗ + E (𝐷𝑖∗ ,𝑉0) .
Hence none of the candidate plans omitted from consideration by loop termination could achieve a

larger objective value for (10) than best_plan. This completes the proof of Proposition 3.1. □

C SECTION 4 DETAILS
C.1 Proof of Lemma 4.1
Lemma 4.1. The actions of campaigning and vote shifts have an impact on the difference between

wasted votes, i.e.,W(𝐵 −𝐴), as given in Table 1.
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Table 5. Change in the difference between wasted votes (EG) as new votes are added/shifted

Action Impact onW(𝐵 −𝐴)
1 Wasting an additional vote on a losing district −3/2
2 Wasting an additional vote on a winning district −1/2
3 Winning a district 𝐼 through campaigning (3𝑉𝐴

𝐼
+𝑉 𝐵

𝐼
)/2

4 Shift 𝑥 votes from a winning to a losing district −𝑥
5 Shift 𝑥 votes from a losing to a winning district 𝑥

Proof. We discuss each action from Table 1 and its impact on the difference between wasted

votes below.

(1) Wasting an additional vote on a winning district 𝐼 : Before adding the extra vote, with votes

𝑉𝐴
𝐼
and 𝑉 𝐵

𝐼
for both parties, the wasted votes are as follows

𝑤𝐴𝐼 = 𝑉𝐴𝐼 −
𝑉𝐴
𝐼
+𝑉 𝐵

𝐼

2

, 𝑤𝐵𝐼 = 𝑉 𝐵𝐼 (25)

Then, the initial difference between wasted votes is

W(𝐵 −𝐴)𝑖𝑛𝑖𝑡 (𝐼 ) = 𝑉 𝐵𝐼 −𝑉
𝐴
𝐼 +

𝑉𝐴
𝐼
+𝑉 𝐵

𝐼

2

(26)

After adding a vote to party 𝐴 , the wasted votes are updated as

𝑤𝐴𝐼 = 𝑉𝐴𝐼 + 1 −
𝑉𝐴
𝐼
+ 1 +𝑉 𝐵

𝐼

2

, 𝑤𝐵𝐼 = 𝑉 𝐵𝐼 (27)

Then,

W(𝐵 −𝐴)𝑓 𝑖𝑛𝑎𝑙 (𝐼 ) = 𝑉 𝐵𝑖 −𝑉𝐴𝑖 +
𝑉𝐴𝑖 +𝑉 𝐵𝑖

2

− 1

2

=W(𝐵 −𝐴)𝑖𝑛𝑖𝑡 (𝐼 ) −
1

2

(28)

Resulting in ΔW(𝐵 −𝐴) = − 1

2
. In words, if party 𝐴 adds a vote to a winning district, the

difference between wasted votes changes by half a vote.

(2) Wasting an additional vote on a losing district: Before adding the extra vote, with votes 𝑃𝐴
and 𝑃𝐵 for both parties, the wasted votes are as follows:

𝑤𝐴𝐼 = 𝑉𝐴𝐼 , 𝑤𝐵𝐼 = 𝑉 𝐵𝐼 −
𝑉𝐴
𝐼
+𝑉 𝐵

𝐼

2

(29)

Then,

W(𝐵 −𝐴)𝑖𝑛𝑖𝑡 (𝐼 ) = 𝑉 𝐵𝐼 −
𝑉𝐴
𝐼
+𝑉 𝐵

𝐼

2

−𝑉𝐴𝐼 (30)

After adding a vote to party 𝐴 , the wasted votes are updated:

𝑤𝐴𝐼 = 𝑉𝐴𝐼 + 1, 𝑤𝐵𝐼 = 𝑉 𝐵𝐼 −
𝑉𝐴
𝐼
+𝑉 𝐵

𝐼
+ 1

2

(31)

Then,

W(𝐵 −𝐴)𝑓 𝑖𝑛𝑎𝑙 (𝐼 ) = 𝑉 𝐵𝐼 −
𝑉𝐴
𝐼
+𝑉 𝐵

𝐼

2

−𝑉𝐴𝐼 −
3

2

=W(𝐵 −𝐴)𝑖𝑛𝑖𝑡 (𝐼 ) −
3

2

(32)

Resulting in ΔW(𝐵 −𝐴) = − 3

2
. For each vote added by 𝐴 in a losing district, the difference

between wasted votes changes by −3/2 votes. Clearly, if 𝐴 wants to decrease𝑊 to satisfy

the EG bound, it is more beneficial to waste votes in a losing district.



Sanyukta Deshpande, Ian G. Ludden, and Sheldon H. Jacobson 32

(3) Winning a district through campaigning: To win district 𝐼 , 𝐴 just needs to add 𝑉 𝐵
𝐼
− 𝑉𝐴

𝐼

votes (assuming ties break in favor of 𝐴). Initially, the wasted votes difference is:

𝑤𝐴𝐼 = 𝑉𝐴𝐼 , 𝑤𝐵𝐼 = 𝑉 𝐵𝐼 −
𝑉𝐴
𝐼
+𝑉 𝐵

𝐼

2

(33)

W(𝐵 −𝐴)𝑖𝑛𝑖𝑡 (𝐼 ) = 𝑉 𝐵𝐼 −
𝑉𝐴
𝐼
+𝑉 𝐵

𝐼

2

−𝑉𝐴𝐼 (34)

After party 𝐴 adds 𝑉 𝐵
𝐼
−𝑉𝐴

𝐼
votes to win the district, the difference between wasted votes

is updated as:

𝑤𝐴𝐼 = 0 𝑤𝐵𝐼 = 𝑉 𝐵𝐼 (35)

W(𝐵 −𝐴)𝑓 𝑖𝑛𝑎𝑙 (𝐼 ) = 𝑉 𝐵𝐼 (36)

Then, the change in𝑊 is computed as:

ΔW(𝐵 −𝐴) = 𝑉 𝐵𝐼 − (𝑉
𝐵
𝐼 −

𝑉𝐴
𝐼
+𝑉 𝐵

𝐼

2

−𝑉𝐴𝐼 ) =
3𝑉𝐴
𝐼
+𝑉 𝐵

𝐼

2

(37)

Thus, given the initial vote count for district 𝐼 , we can compute the change in the difference

between wasted votes as

3𝑉𝐴
𝐼
+𝑉 𝐵

𝐼

2
.

(4) Shift 𝑥 votes from a winning to a losing district: Using the analysis for ΔW(𝐵 −𝐴) where
𝐴 wastes votes on a winning district, we computeW(𝐵 −𝐴) when its reverse operation is

performed. That is, when 𝐴 removes 𝑥 extra votes from district 𝑖 , ΔW(𝐵 −𝐴) is:

ΔW(𝐵 −𝐴) = 𝑥

2

(38)

Further, when 𝐴 distributes these votes in 𝐵’s winning district 𝐽 , ΔW(𝐵 −𝐴) is updated as:

ΔW(𝐵 −𝐴) = 𝑥

2

+ −3

2

× 𝑥 = −𝑥 (39)

If 𝐴 chooses to redistribute these votes to another 𝐴’s winning district 𝑙 , we get:

ΔW(𝐵 −𝐴) = 𝑥

2

+ −1

2

× 𝑥 = 0 (40)

(5) Shift 𝑥 votes from a losing to a winning district: Similar to the previous case, shift from a

losing to a winning district results in a difference of ΔW(𝐵 −𝐴) = 𝑥 .
This concludes the discussion of the impact of 𝐴’s strategies on fairness. □

C.2 Proof of Theorem 4.2
Theorem 4.2. For any vote-share distribution and a corresponding fair initial map with assignment
I, the existence of strategies leading to a positive votemandering bonus is guaranteed if

(1) A feasible, contiguous map with assignment J exists with a higher number of wins than the
initial map.

(2) The voter turnout 𝛼 satisfies:

𝛼 ≤ 1 −
(

2ΔW(𝐵 −𝐴)I→J∑
𝐽 ∈J(𝑊 )

∑
𝑗∈ 𝐽 𝑣

𝐴
𝑗

)
where ΔW(𝐵 −𝐴)I→J is the change in the difference between wasted votes from assignment
𝐼 to 𝐽 , and 𝑣𝐴𝑗 are party 𝐴’s votes in unit 𝑗 .
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Proof. Since assignment J has a higher number of wins for the majority party compared to

the initial map, the corresponding votemandering bonus is always positive. That is, even if we

maintain the same number of wins in the first round after campaigning, the second round has an

improvement. For a map with assignment J , we then need to establish fairness by showing

W(𝐵 −𝐴)J =W(𝐵 −𝐴)I + ΔW(𝐵 −𝐴)I→J + [campaign wasted votes] ≤ EG bound (41)

We know that the initial map is fair, i.e.,W(𝐵−𝐴)I ≤ EG bound. SinceJ has higher number of wins

than I, wlog, ΔW(𝐵 −𝐴)I→J is considered positive. If it’s negative and makesW(𝐵 −𝐴)J ≤ −
EG bound, we naturally establish that the map gives more advantage to the minority party as

compared to the initial map (and is acceptable), making a trivial case. IfW(𝐵 −𝐴)J ≥ EG bound,

then we use Table 1 to spend budget to satisfy the bound. However, this budget allocation is not

trivial: the allocation of budget should not change the𝑊 /𝐿 status of the districts in J and it needs

to satisfy the individual unit voter-turnout constraints. Intuitively, the constraints may get violated

under special cases like very high voter turnout or the election mandate hugely tilting towards a

party. We next deduce sufficient conditions that allow such budget allocation to occur.

For districts in J (𝑊 ),J (𝐿), i.e., the winning and losing districts respectively, the capacities of

budget allocation can be written as

Total capacity of winning districts =
∑︁

𝐽 ∈J(𝑊 )

∑︁
𝑗∈ 𝐽
(1 − 𝛼)𝑣𝐴𝑖 = 𝑐1 (42)

Total capacity of losing districts =
∑︁

𝐽 ∈J(𝑊 )
min{

∑︁
𝑗∈ 𝐽
(1 − 𝛼)𝑣𝐴𝑖 , 𝑉 𝐵𝐽 −𝑉

𝐴
𝐽 } = 𝑐2 (43)

Both 𝑐1 and 𝑐2 can be computed using the assignment J . Using Table 1, this translates to a bound

on the effect on wasted votes:

Max. achievable difference inW(𝐵 −𝐴) through budget allocation = −1

2

𝑐1 −
3

2

𝑐2

Then, the sufficient condition for votemandering becomes

W(𝐵 −𝐴)I + ΔW(𝐵 −𝐴)I→J −
1

2

𝑐1 −
3

2

𝑐2 ≤ EG bound (44)

We can simplify this condition further to deduce a (comparatively stringent) sufficient condition on

𝛼 by asking if allocating only on J (𝑊 ) can satisfy the bound:

0 ≥ ΔW(𝐵 −𝐴)I→J −
1

2

𝑐1

𝑐1 =
∑︁

𝐽 ∈J(𝑊 )

∑︁
𝑗∈ 𝐽
(1 − 𝛼)𝑣𝐴𝑖 ≥ 2ΔW(𝐵 −𝐴)I→J

(1 − 𝛼) ≥
(

2ΔW(𝐵 −𝐴)I→J∑
𝐽 ∈J(𝑊 )

∑
𝑗∈ 𝐽 𝑣

𝐴
𝑖

)
∴ 𝛼 ≤ 1 −

(
2ΔW(𝐵 −𝐴)I→J∑
𝐽 ∈J(𝑊 )

∑
𝑗∈ 𝐽 𝑣

𝐴
𝑖

)
(45)

Thus, we can see that the lesser the difference between the wasted votes of I and J , i.e., ΔW(𝐵 −
𝐴)I→J , the higher the voter turnout votemandering strategies can handle. □

C.3 Proof of Theorem 4.3
Theorem 4.3. Let P be a pool of 𝑁 candidate target district plans such that P is a subset of feasible,

but not necessarily fair, 𝑛-districts plans. A plan in P that maximizes the votemandering bonus may
be found in poly(𝑁 , 𝑛) time.
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Proof. We elaborate on each of the steps outlined in the main body. Careful observation of the

fairness MIP reveals that the first set of constraints (4)-(7) track the effects of budget on updating

vote shares, the second set of constraints (13)-(14) translates these effects into the𝑊 /𝐿 status of

campaigned and votemandered map, the third set (15)-(16) further translates this into the fairness

evaluation of the districts and finally the state in (17). The objective only uses the variables 𝑥𝐼 that

indicates the𝑊 /𝐿 status in the campaigned map.

We use 𝑏𝑘 variables (over the space of 𝐾 units) for capturing the budget investment in each

unit. Since all remaining constraints and objective use the win/lose variables (𝑥𝐼 , 𝑦 𝐽 ) using the set

notation, we can simplify the 𝑏𝑘 variables space to just capture the budget invested in pieces formed

by overlapping each district in I with each district in J . We let variables 𝑧𝐼 𝐽 denote the budget

invested in the set of units that belong to district 𝐼 and 𝐽 in round-1 and 2, respectively. As outlined

in the idea sketch, the spending capacity of each piece is defined as 𝑐𝐼 𝐽 = min(division voter-turnout

capacity, budget needed to win the round-2 district it is part of (if it’s a losing district)).

Further, when we fix the𝑊 /𝐿 status in the votemandered map, i.e., variables 𝑦 𝐽 , we simplify the

constraints by eliminating the 𝜏 variables. Finally, we see that the MIP is reduced to the following

linear formulation:

max

∑︁
𝐼 ∈I

𝑥𝐼

𝑠 .𝑡 . 1 −𝑀 (1 − 𝑥𝐼 ) ≤ (𝑉𝐴𝐼 −𝑉
𝐵
𝐼 ) ≤ 𝑀𝑥𝐼 ∀𝐼 ∈ I∑︁

𝐼 ∈I
𝑧𝐼 𝐽 ≤ 𝑉 𝐵𝐽 −𝑉

𝐴
𝐽 ∀𝐽 ∈ J (𝐿)∑︁

𝐼 ,𝐽 ∈I,J
𝑧𝐼 𝐽 ≤ B𝐴 ∀𝐼 ∈ I

1

2

∑︁
𝐽 ∈J(𝑊 )

𝑍𝐼 𝐽 +
3

2

∑︁
𝐽 ∈J(𝐿)

𝑍𝐼 𝐽 ≥ W(𝐵 −𝐴)J − EG bound

𝑧𝐼 𝐽 ≤ 𝑐𝐼 𝐽 ∀𝐼 , 𝐽 ∈ I,J
𝑥𝐼 ∈ (0, 1), 𝑧𝐼 𝐽 ≥ 0 ∀𝐼 , 𝐽 ∈ I,J (46)

After solving this linear program, we check if the optimal solution involves a tight

∑
𝐼 ∈I 𝑧𝐼 𝐽 ′ ≤

𝑉 𝐵
𝐽 ′ − 𝑉

𝐴
𝐽 ′ for a 𝐽

′ ∈ J (𝐿). If not, this implies that the optimal investment leading to maximum

seats in round-1 does not need to change the𝑊 /𝐿 status of any district in the votemandered map.

Otherwise, a tight constraint implies a change in𝑊 /𝐿 status of a district, i.e., 𝑦 𝐽 towards optimality

which changes the EG significantly and non-continuously. We thus make the required change in

constraints and solve the updated linear program again. Corresponding to district 𝐽 ′, the updates
include replacing

∑
𝐼 ∈I 𝑧𝐼 𝐽 ′ ≤ 𝑉 𝐵𝐽 ′ −𝑉

𝐴
𝐽 ′ with∑︁
𝐼 ∈I

𝑧𝐼 𝐽 ′ ≥ 𝑉 𝐵𝐽 ′ −𝑉
𝐴
𝐽 ′

and replacing the fairness constraint with

1

2

∑︁
𝐽 ∈J(𝑊 )∪𝐽 ′

𝑍𝐼 𝐽 −
1

2

(𝑉 𝐵𝐽 ′ −𝑉
𝐴
𝐽 ′ ) +

3

2

∑︁
𝐽 ∈J(𝑊 )/𝐽 ′

𝑍𝐼 𝐽 ≥ W(𝐵 −𝐴)J − EG bound +
3𝑉 𝐵

𝐽 ′ +𝑉
𝐴
𝐽 ′

2

or

1

2

∑︁
𝐽 ∈J(𝑊 )∪𝐽 ′

𝑍𝐼 𝐽 +
3

2

∑︁
𝐽 ∈J(𝑊 )/𝐽 ′

𝑍𝐼 𝐽 ≥ W(𝐵 −𝐴)J − EG bound + 2𝑉 𝐵𝐽 ′
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(a) Initial Map (b) Target Map

Fig. 17. Local Votemandering: Initial and Target Maps

(a) Problem Instance (b)Maximum Matching Solution

Fig. 18. Local Votemandering: Heuristic

In case we have two tight constraints at any step, we can greedily choose the district 𝐽 ′ that has

the less fairness cost in terms of

3𝑉 𝐵
𝐽 ′+𝑉

𝐴
𝐽 ′

2
. This way, we have to solve at most 𝑛 linear programs to

reach an optimal solution to the MIP, which is the case when every update to the linear program

produces an optimal solution that improves the objective. Thus, we can find an optimal solution

using polynomial efforts. □

D SECTION 4 DETAILS
D.1 Local votemandering example
Here we illustrate the local votemandering heuristic through a grid graph example. We consider a

20 × 20 grid with fixed vote shares for parties 𝐴 and 𝐵, forming 10 districts, with other parameters

the same as our settings in section 3. The initial map is given in Figure 17, in which 𝐴 wins 4 seats.

For each pair of neighbors in the initial map, we find strategy 1,2, and 3 edges and their corre-

sponding weights. The edge weights are computed using recombination local search. Finally, the

matching problem and its solution are shown in Figure 18. The edges with nonzero weights signify

strategy-1 edges, 0 weights are corresponding to strategy-2 and ‘FC’ refers to fairness costs from

strategy-3. The final target map is shown in Figure 17. This local votemandering solution gives a

votemandering bonus of 3, spending a budget of 174.

D.2 Local votemandering strategies
Strategy-1:
Consider a submap of a pair of neighboring districts (𝐷1, 𝐷2). In this strategy, we allocate sufficient
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budget in a currently losing district𝐷1 (change𝐷1 status from 𝐿 →𝑊 in the first round elections i.e.

in the campaigned submap) and propose perturbations with its neighbor 𝐷2 so that it again loses in

the second round (mark 𝐷1 status as 𝐿 in the second round i.e. in the votemandered/target submap).

We thus increase the votemandering bonus by 1, via a campaigned map win at 𝐷1. The budget

required here is simply the margin with which 𝐷1 loses in the campaigned map (𝑚𝑎𝑟𝑔𝑖𝑛(𝐷1)) with

no investment. Naturally, the perturbations for the new submap involve exchanging units across

districts 𝐷1, 𝐷2 that nullify the effect of budget investment and regain the 𝐿 status of 𝐷1 in the

votemandered submap. Let this imply a movement of 𝑉𝑇
𝐴
party 𝐴 votes and 𝑉𝑇

𝐵
party 𝐵 votes from

𝐷2 to 𝐷1. If (𝐷1, 𝐷2) have status (𝐿,𝑊 ) in the initial submap, Lemma 4.1 implies:

ΔW(𝐵 −𝐴)𝑖 for (𝐿,𝑊 ) = −𝑉𝑇𝐴 −𝑉
𝑇
𝐵 −

𝑎1

2

− 3𝑎2

2

+ 𝑏2

2

+ 3𝑏1

2

(47)

where, 𝑎𝑖 , 𝑏𝑖 is the budget allocation in district 𝑖 (in the initial submap) by party𝐴 and 𝐵 respectively.

Similarly, if the current status is (𝐿, 𝐿), we have:

ΔW(𝐵 −𝐴)𝑖 for (𝐿, 𝐿) = −𝑉𝑇𝐴 −𝑉
𝑇
𝐵 −

𝑎1

2

− 𝑎2

2

+ 3𝑏2

2

+ 3𝑏1

2

(48)

Strategy-1 edge weight is then given as (𝑚𝑎𝑟𝑔𝑖𝑛(𝐷1),ΔW(𝐵 − 𝐴)𝑖 ). Note the fairness cost from
the initial map to the votemandered map is insignificant since the votemandered submap retains

the𝑊 /𝐿 status of both districts.

Strategy-2:
In this strategy, we let party 𝐵 win 𝐷1 in campaigned and the votemandered submap and propose

perturbations between 𝐷1, 𝐷2 such that 𝐷1 wins in the second round (mark from 𝐿 →𝑊 in the

target submap). The target submap is chosen such that the votemandered submap leads to no change

in the wins, but the target submap (using original vote shares) secures a votemandering bonus

of 1. This is possible𝑚𝑎𝑟𝑔𝑖𝑛(𝐷1) is smaller than 𝐵’s budget allocation in 𝐷1. This also suggests

that with an increase in 𝐵’s budget allocation, 𝐴 can specifically use strategy-2 to votemander

more efficiently. The change in ΔW for this setting is exactly the same as for strategy-1, giving

strategy-2 edge weight as (0,ΔW(𝐵 −𝐴)𝑖 ). Moreover, we don’t expect ΔW to change a lot here as

well, since there is no change in the number of wins where the fairness constraint is concerned, i.e.

in the votemandered submap.

Strategy-3:
In this strategy, we let party 𝐵 win a district in the first round but propose perturbations such

that 𝐴 wins in both the votemandered as well as the target submaps (mark from 𝐿 →𝑊 in the

second round elections). The difference with strategy-2 is that here we don’t depend on 𝐵’s budget

allocation to secure a win, but achieve only via the changes in the district boundaries i.e. the local

perturbations. The target submap is chosen such that both the votemandered submap and the target

submap have 𝐷1 as a winning district. Naturally, here we expect ΔW to change significantly that

of the initial map, as 𝐴’s number of wins increases in the votemandered submap.

If (𝐷1, 𝐷2) have status (𝐿,𝑊 ) and 𝑉 1

𝐴
,𝑉 1

𝐵
are the original vote shares of district 𝐷1, Lemma 4.1

implies:

ΔW(𝐵 −𝐴)𝑖 for (𝐿,𝑊 ) = −𝑉 1

𝐴 −𝑉 1

𝐵 −
𝑎1

2

− 3𝑎2

2

+ 𝑏2

2

+ 3𝑏1

2

(49)

where, 𝑎𝑖 , 𝑏𝑖 are the budget allocations in district 𝑖 by party 𝐴 and 𝐵 respectively. Similarly, if the

status is (𝐿, 𝐿), we have:

ΔW(𝐵 −𝐴)𝑖 for (𝐿, 𝐿) = −𝑉 1

𝐴 −𝑉 1

𝐵 −
𝑎1

2

− 𝑎2

2

+ 3𝑏2

2

+ 3𝑏1

2

(50)
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E SECTION 5 DETAILS
We include the visualization of local votemandering strategies for both Republican and Democratic

parties in Figures 19- 22.

(a) Initial Map (b) Target Map (c) Investment

Fig. 19. Republican Local Votemandering: The initial map, the created target map, and the strategic investment
(here, zero investment followed by all strategy-2 improvements)

(a) Initial Map (b) Campaigned Map (c) Votemandered Map (d) Target Map

Fig. 20. The Four Stages of Republican Local Votemandering, (with red and blue indicating the districts won
by the Republican and Democratic parties, respectively)

(a) Initial Map (b) Target Map (c) Investment

Fig. 21. Democratic Local Votemandering: The initial map, the created target map, and the strategic investment

(a) Initial Map (b) Campaigned Map (c) Votemandered Map (d) Target Map

Fig. 22. The Four Stages of Democratic Local Votemandering
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