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Despite their vital role in the global rural economy, and as a major source of employment for women in

the developing world, artisanal supply chains continue to be plagued by low productivity and high poverty

levels. Identifying effective and implementable solutions to improve artisan productivity is a challenging task

due to high fragmentation in the upstream parts of the supply chain. This study presents research conducted

in close collaboration with one of the leading exporters of handmade rugs in India. Leveraging insights

from the field visits, we provide robust empirical evidence that frequent supervisor visits can play a crucial

role in improving artisans’ productivity. Our results from Instrumental Variables analysis indicate that a

one-day decrease in the average number of days between supervisor visits to remote weavers can decrease

weaving times by 13.1%-14.1%, which can lead to a 15%-17% increase in monthly income for weavers.

We also find that this impact is heterogeneous, with visits to difficult-to-weave rugs, and visits that are

more consistently scheduled, leading to maximum productivity gains for the weavers. To capitalize on these

insights, we propose a novel predict-then-optimize framework for optimizing supervisor visits in the supply

chain. Finally, using real-world data from our collaborator, we demonstrate that the proposed framework

can significantly increase weaver productivity even after accounting for various operational and scheduling

constraints. This research highlights how supply chain considerations can play a critical role in improving

the productivity of the workforce in resource-constrained settings.

Key words : Smallholder artisans, developing countries, poverty alleviation, empirical analysis,

multi-method, predict-then-optimize framework, sustainable operations

1. Introduction

Identifying effective strategies for improving productivity and increasing income in distributed

supply chains is of significant importance, particularly for developing countries that are dominated

by such supply chains. Distributed supply chains are characterized by small-scale producers who

operate independently or as part of a larger network, are dispersed across large geographical areas,

and rely on traditional techniques and manual labor for production. For instance, millions of

smallholder farmers across a vast geographical area dominate the upstream parts of agricultural

supply chains (World Bank 2021), and a significant fraction of textile and artisanal production
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in developing countries is still conducted by artisans from their individual households (Banik

2017). The widespread presence of distributed supply chains in developing countries highlights

their potential as a driver of economic growth and sustainable development.

One such distributed supply chain that is prevalent across many developing countries is

the artisanal supply chain. The United Nations Educational, Scientific and Cultural Organiza-

tion/Information Technology Community (UNESCO/ITC) Symposium on Crafts and the Inter-

national Market adopted the following definition for handicrafts in 1997, “Artisanal products or

handicrafts are those produced by artisans, completely by hand or with the help of hand-tools

and even mechanical means, as long as the direct manual contribution of the artisan remains the

most substantial component of the finished product” (Ted and Marina 2006). The total value of

the global artisanal and handicrafts market was $526 Billion (USD) in 2017 and is expected to

reach $984 Billion (USD) by 2023 (NEST 2018). It is the second largest employer of the workforce

in the developing world after agriculture and acts as a major contributor to the export economy.

More importantly, the sector is the second biggest source of employment for rural women. While

the artisan sector plays a crucial role in the global rural economy, many workers in this sector

struggle with low productivity and poverty (Banik 2017). Given its importance and sustained role

in the global rural economy, ex-Secretary of State John Kerry aptly remarked, “If you’re looking

for innovative ways to help developing countries flourish, artisans are a terrific place to begin.”(The

Artisan Alliance 2019). Therefore, identifying ways to improve productivity and income in these

supply chains is critical for many developing countries.

The existing literature on productivity improvement in developing countries, encompassing fields

such as economics (Syverson 2011), operations management (Diwas et al. 2020), and industrial

organization (De Loecker and Syverson 2021), predominantly focuses on conventional factories and

manufacturing plants. However, the insights from these studies may not be directly transferable

to highly distributed supply chains, which feature small-scale, individual household production

and considerable heterogeneity. For instance, while proven management strategies like maintaining

tidy factory floors, standardizing processes, and implementing quality control practices have been

demonstrated to enhance productivity in traditional factories (Bloom et al. 2013a), their application

is challenging in distributed supply chains where workers are geographically dispersed and operate

from their homes. As a result, there is a pressing need for research that explores productivity

improvement strategies specifically designed to address the unique attributes of distributed supply

chains.

This work is the outcome of a close collaboration with Jaipur Rugs, one of the largest handloom

rug exporters in India. Jaipur Rugs was established in 1978 and employs thousands of rural artisans

from as many as 800 villages in Northern India. A majority of the weavers in the company’s supply
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chain, approximately 80%, are rural women from geographically isolated regions in Rajasthan, Gu-

jarat, and Uttar Pradesh. Since most weavers are women in conservative rural areas, the company

installs looms in individual households, allowing women to work independently on rug weaving.

However, due to high fragmentation in the upstream parts of the supply chain, many artisans

suffer from low productivity. Moreover, since artisans are paid based on a piece-rate basis, low

productivity translates to low income and leads to high poverty among smallholder artisans. This

raises further concern for the artisans’ welfare since income matters even more for the subjective

well-being (SWB) of people at low-income levels (Diener and Biswas-Diener 2002).

In this paper, we employ a multi-method approach to assess and improve artisans’ productivity

and income in Jaipur Rugs’ supply chain. Through field visits and qualitative interviews, we identify

that supervisors, who have regular interactions with artisans, play a pivotal role in this supply

chain. As artisans are located in villages spread across a vast geographical area, supervisors are

recruited by the company from the local communities and each supervisor is mandated to supervise

all artisans in a group of villages. Given that each supervisor is responsible for overseeing hundreds

of artisans in the supply chain, it is infeasible for them to visit every artisan every day. Instead,

supervisors plan their own schedules and visit a subset of artisans on a daily basis. Each visit from

the supervisor includes monitoring artisans’ progress, carefully inspecting weaving done for errors,

providing feedback on the work done, and assigning the next rug for weaving to the artisan. A key

area that can be optimized in the company’s supply chain is the scheduling of supervisor visits.

However, it is unclear whether optimizing supervisor visits can benefit artisans in practice.

Supervision can play a dual role in rug weaving productivity. On the one hand, it can enhance pro-

ductivity by ensuring adherence to best practices, maintaining quality standards, providing timely

feedback, and motivating workers, as demonstrated in studies by Lurie and Swaminathan (2009),

Bloom and Van Reenen (2007) and Bloom et al. (2013b). On the other hand, excessive supervision

may hinder productivity by stifling creativity, diverting cognitive resources, limiting autonomy, re-

ducing intrinsic motivation, and causing burnout, as suggested by Gusnard (2005), Amabile et al.

(1996), Pierce and Aguinis (2013) and George (2007). Hence, this paper aims to investigate the

following key research questions: (i) What is the impact of the frequency of supervisor visits on

artisans’ productivity? (ii) What factors impact the effectiveness of supervisor visits on artisans’

productivity? (iii) How can we optimize supervisor operations to improve artisans’ productivity?

1.1. Contributions

Based on the insights from our field visits and empirical analysis using Jaipur Rugs’ internal supply

chain data, we identify two important findings. First, more frequent supervisor visits can play a key

role in improving artisans’ productivity. In particular, a one-day decrease in average days between
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visits can decrease weaving times by 2.8%-14.1%. Economically, the productivity gains from a one-

day decrease in average days between supervisor visits translate to a 15%-17% increase in monthly

income for the weavers. Second, the relationship between weaving times and supervisor visits is

heterogeneous. We find that, (i) visits to weavers with difficult-to-weave rugs and, (ii) visits that are

consistently scheduled, are most effective in improving artisans’ productivity. We hypothesize that

this heterogeneity is due to the fact that supervisor visits help in identifying inadvertent weaving

errors that are costly to rectify and these errors are more likely to occur in difficult-to-weave rugs.

These insights provide, to the best of our knowledge, the first empirical analysis of the impact of

supervision on productivity in distributed supply chains.

Following the findings from our empirical analysis, we devise a predict-then-optimize framework

to optimize supervisor visits. In particular, our two-step procedure first uses state-of-the-art ma-

chine learning methods to predict rugs that are likely to have low productivity. Then, using those

predictions, we formulate a scheduling-and-routing optimization problem that optimizes supervisor

visits to villages, accounting for various practical travel and working-time-related constraints. We

relate our problem to the celebrated prize-collecting TSP problem (Balas 1989, Feillet et al. 2005,

Chekuri et al. 2012, Xu et al. 2020) and as a consequence prove the existence of a polynomial

time algorithm with a provable performance guarantee. Finally, using data from our collaborator,

we perform extensive numerical analysis to demonstrate the value of the proposed methodology.

In particular, estimates suggest that optimally targeting supervisor visits can further increase

weaver productivity by 3.4%-17.2% even after accounting for various operational and scheduling

constraints.

While our empirical analysis is based on data from a specific context within the rug-weaving

industry, our study offers valuable insights for other artisanal supply chains in geographically

remote areas. The insights generated can directly benefit numerous platforms in developing coun-

tries with similar structures, such as Anou (https://www.theanou.com) in Morocco, Fab India

(https://www.fabindia.com/) and Mahila Print (https://www.mahilaprint.com) in India, and Soko

(https://www.shopsoko.com) in Kenya, that collectively employ millions of artisans. Further, our

findings can also be informative for other distributed supply chains in resource-constrained settings

that share similar characteristics. The impact of frequent and consistent supervisor visits observed

in our study can potentially be extended to such settings, as the challenges faced by the artisans in

our study (e.g., identifying and rectifying errors, learning tasks, geographical isolation) are similar

to those faced by other smallholder supply chains.

The remainder of the paper is organized as follows. In §2, we discuss relevant literature. In §3, we

describe the institutional setting and data in more detail. In §4, we describe the empirical analysis

that includes our fixed effects specification as well as two instrumental variables approaches. In
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§5, we present the results of the empirical analysis and explore cross-sectional heterogeneity in

the impact of supervisor visits. In §6 we present our predict-then-optimize approach to optimize

supervisor visits. §7 concludes the paper and identifies some future directions for research.

2. Literature Review

This paper focuses on improving operations in distributed artisanal supply chains of developing

countries and makes important contributions to both research and practice. Our work lies at the

intersection of three streams of literature.

The first stream is a growing body of operations management research focusing on social impact

at the Base of the Economic Pyramid (BoP) (see Sodhi and Tang 2014, Kalkanci et al. 2019,

Jónasson et al. 2019, Sunar and Swaminathan 2022, for recent reviews). Researchers have focused

on nano-retail operations (Gui et al. 2019, Fransoo and Mora-Quiñones 2021, Escamilla et al. 2021,

Fatunde et al. 2021, Acimovic et al. 2022), technology adoption (Guajardo 2019, Uppari et al.

2019, Kundu and Ramdas 2022, Ramdas and Sungu 2022), food and agriculture supply chains

(Anupindi and Sivakumar 2007, de Zegher et al. 2018, Ganesh et al. 2019, Levi et al. 2020a,b,

Peters et al. 2021, Adebola et al. 2022) and global health (Boutilier and Chan 2020, Gibson et al.

2020, De Boeck et al. 2022, Karamshetty et al. 2022). We add to this literature in two key aspects.

First, we focus on a novel setting of artisanal supply chains that employ a major workforce (of

mostly women) in many developing countries. Only a handful of studies (Plambeck and Taylor

2016, Chen and Lee 2017, Caro et al. 2021, Tuna and Swinney 2021, Alptekinoğlu and Örsdemir

2022) in operations management focus on textile supply chains. While the focus of these studies

is on responsible sourcing, we focus on improving smallholder artisans’ productivity in the supply

chain. As advocated by Plambeck and Ramdas (2020), this work also helps in empowering rural

women who form the majority of the workforce in artisanal supply chains. Second, we demonstrate

the importance and value of adopting a field-based, multi-method approach for driving impact in

practice. Using empirical analysis and a predict-then-optimize approach, our research shows that

optimizing supply chain interventions can play a critical role in improving artisans’ productivity

and be a win-win for both manufacturers as well as artisans in developing economies.

The second stream of related literature focuses on improving worker productivity in supply

chains. Researchers in organizational behavior and operations management have extensively stud-

ied key factors that affect worker productivity (see Diwas et al. 2020, for a recent review). Empirical

evidence suggests that past experience (Gibbons and Waldman 2004, Lin et al. 2021), task variety

(Ramdas et al. 2018), peer effects (Tan and Netessine 2019), team structure (Akşin et al. 2021),

feedback mechanisms (Staats et al. 2018, Song et al. 2018, Kotiloglu et al. 2021), feedback speci-

ficity (Goodman et al. 2004), leadership (Giardili et al. 2023) and exposure to exports (Atkin et al.
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2017) are all important factors that affect workers’ productivity.1 Closest to our setting is Atkin

et al. (2017) and Bloom and Van Reenen (2007) who analyze productivity outcomes for rug man-

ufacturers in Egypt, and textile manufacturers in India respectively using RCTs. However, there

are major differences in the insights generated from our work. First, while we analyze distributed

artisanal supply chains where artisans are located in geographically distant locations, these authors

focus on textile manufacturing units (similar to standard factories) where textile workers assemble

to produce rugs. Second, our focus is on improving artisan productivity by optimizing internal

operations in the supply chain in contrast to learning by exports. We identify the causal impact of

supervisor visits on artisan productivity and develop a data-driven optimization-based approach

to route supervisor visits built on these insights.

Finally, the third stream of related literature focuses on using machine-learning and data-driven

tools in operations management problems (Mǐsić and Perakis 2020, Baardman et al. 2023). Com-

mon applications include problems in revenue management (Ferreira et al. 2016, Cohen et al.

2017), inventory and supply chain management (Mehrotra et al. 2011, Gallien et al. 2015) and

healthcare (Chan et al. 2012, Deo et al. 2015). We leverage the popular predict-then-optimize

framework to optimize supervisor operations. Our underlying optimization problem is a supervisor

scheduling-and-routing problem that is similar to the classic prize-collecting traveling salesman

problem (PCTSP) (see Balas 1989, Feillet et al. 2005, Archetti et al. 2014, for detailed problem def-

inition). Our optimization problem is most closely related to a variant of the prize-collecting TSP,

the Orienteering Problem (OP), and its generalization the Team Orienteering Problem (TOP),

where a single agent (OP) or multiple agents (TOP) travel on the network and construct route(s)

that maximize(s) the profits of the trip subject to a fixed budget of costs (Tsiligirides 1984, Golden

et al. 1987, Vansteenwegen et al. 2011). Because both the Orienteering Problem and the Team

Orienteering Problem are NP-hard (Golden et al. 1987), past studies have focused on developing

approximation algorithms with provable performance guarantees (Bansal et al. 2004, Chekuri et al.

2012, Xu et al. 2020, Paul et al. 2022). We show the equivalence of our weekly supervisor scheduling

and routing optimization problem with the TOP problem. This equivalence allows us to leverage

existing literature (Xu et al. 2020) to develop a polynomial run-time algorithm with a provable

guarantee to solve our problem efficiently.

1 Another stream of literature includes empirical work that analyze ways to conduct quality-control inspections.
Current research highlights the importance of well-designed inspection schedules, accounting for factors such as
worker fatigue, the timing between inspections, and investigator experience to effectively promote quality and safety
improvements across industries (Staats et al. 2017, Ball et al. 2017, Ibanez and Toffel 2019). While the focus of this
stream is on inspections, supervisors in our setting focus on multiple tasks, such as motivating workers, monitoring
progress, and identifying inadvertent weaving errors.
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3. Institutional Setting and Data

In order to fully appreciate the operational context, we made a series of field visits (see Appendix

§O.1 for more details on field visits) and interacted with different stakeholders in Jaipur Rugs’

supply chain. Based on these insights, we first describe the rug-making operations in more detail

(also illustrated in Figure 1). Because Jaipur Rugs is vertically integrated, it oversees all tasks

(weavers’ training, raw material procurement, finishing, weaving, and marketing) in the supply

chain. First, raw wool is spinned, hanked, and dyed into different colors. New designs for different

rugs are produced by the design team based on market demand and historical trends. A design map

along with threads of different colors is supplied to the weavers. Based on a design map, trained

weavers then start weaving rugs on handlooms in individual homes. After rugs are fully woven,

they are sent to the finishing center where dust and minute fibers are removed. Finally, these rugs

are marketed and sold through different channels to local customers as well as exported to other

countries. Our research focus is on handloom weaving operations (Step 6 in Figure 1) which is

described in more detail next.

Figure 1 Rug Making Operations

Note. The supply chain starts with hanking of the raw wool and ends with selling finished rugs through multiple

channels including exports, online retail, and showrooms. The focus of this research is rug weaving by artisans (labeled

Step 6). Some photos for this figure are reproduced from Ramin (2021).

3.1. Weaving Operations

Weaving handloom rugs is an intricate and intensive task. The handlooms are run without elec-

tricity, using the traditional weaving method and the weaving involves constant weaver attention.

All types of weaves involve three main actions (shedding, picking, and battening). For details on

each of these actions, we refer the interested readers to Taylor (2017). The company compensates
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the weavers using a piecework scheme that varies based on the knot density. For each knot density,

a per square feet rate is used and weavers are paid monthly based on the amount of weaving they

finish in that particular month. The company has a significant backlog of customer orders and

also maintains an inventory of popular designs. As a result, it never runs out of weaving tasks for

weavers. As such, increased productivity for weavers directly translates to increased income in our

setting.

Various rug-level features affect weaving times, including the textile used, the density of knots,

design, size, and colors. For instance, greater weaving density allows the rugs to become finer

and enables more delicate weaving patterns and thus take longer to weave. Next, during family

events and harvesting months, weaving speed is similarly impacted because weavers are busy with

other activities. A key challenge that also hampers weavers’ productivity is inadvertent errors

while weaving these rugs. Weaving is a labor-intensive task and it is common for even the most

experienced weavers to make errors. For instance, a common mistake discussed during our field

visits is slanted weaving. Once it is caught, weavers have to spend many hours rectifying the errors.

Further, since weavers are paid for the incremental weaving completed in a month, and not for

the reweaving, these errors reduce weavers’ productivity. Thus, if not caught on time, these errors

can be costly as they directly affect the income of the weavers. While many standard factories

implement Poka-yoke (mistake-proofing) methods to prevent production errors (Widjajanto et al.

2020), implementing such methods in our setting is not straightforward. Because of a high level of

heterogeneity in both weavers’ skills and rug characteristics, identifying such simple techniques for

every new rug design is not feasible.2

3.2. Supervisor Visits

Unlike standard factories, weaving operations at Jaipur Rugs are highly distributed and spread

across a large geographical area (the maximum distance between any two weavers in our dataset

is in the order of hundreds of kms). As a result, Jaipur Rugs has invested significant resources

to reach and communicate effectively with weavers. The geographical area with looms is divided

into multiple different branches. On average, each branch has hundreds of weavers and the branch

manager is responsible for assigning and monitoring the weaving progress for his respective looms.

For each branch, Jaipur Rugs maintains a list of rugs that need to be assigned to weavers. Every

time a weaver is done weaving the current rug, the branch manager assigns her the next rug from

this list of rugs if/when she becomes available. Once the new rug assignment is made, the weaver

2 Indeed, Jaipur Rugs has implemented (before 2016) some operational interventions, with limited success, that are
preventive in nature (e.g., drawing straight lines with special blue ink to avoid slanted weaving). While our interactions
suggest that errors have decreased after such interventions, a significant number of errors continue to be identified
by supervisors during their visits.
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is provided with the design map of the rug as well as threads of different colors that are to be used

in the rug.

To assist the branch managers in monitoring progress and minimizing weaving errors, each branch

also has multiple quality supervisors who are tasked with physically visiting weavers at regular

intervals. Since weavers are located in remote locations, supervisors act as a major node of com-

munication between the company and the weavers. Supervisors are hired from local communities,

paid a fixed monthly income, and treated as regular employees of the company. Every supervisor is

pre-assigned a set of looms and is tasked with monitoring the progress of weaving in those looms.

Since the company doesn’t require supervisors to follow exact visit schedules, supervisors currently

plan their own schedules based on their individual preferences. Each loom visit lasts about 15-20

minutes and involves a combination of tasks. First, the supervisors maintain a log and update the

amount of work done by the weaver since his last visit. Next, they carefully inspect the rug to en-

sure that there are no weaving errors. Finally, if the weaver finishes the current rug, the supervisor

ensures that the raw materials and design map for the next rug are sent to the weaver.

Our objective is to find the causal impact of supervisor visits on weavers’ productivity. Supervi-

sors in our setting are mandated to perform multiple tasks when they visit a weaver. Consequently,

it is uncertain whether frequent visits by supervisors will result in an improvement in the produc-

tivity of weavers. If supervisors concentrate their efforts on motivating weavers and identifying any

weaving errors during their visits, it is reasonable to assume that productivity will be positively

impacted. This is because errors that are identified early on in the process require less reweaving,

whereas errors detected later necessitate a greater amount of reweaving. Therefore, if supervisors

assist in identifying errors, frequent visits can enhance productivity by reducing the amount of

reweaving required for each rug. However, visits may have no effect on productivity if supervisors

primarily focus on monitoring progress and updating logs, or if such errors are already minimal

in the supply chain. Finally, frequent supervisor visits may actually lower weavers’ productivity if

weavers start to focus excessively on avoiding weaving errors or if the supervisor visits make them

anxious (Gusnard 2005, George 2007, Pierce and Aguinis 2013). To summarize, it is not obvious

a-priori whether more frequent supervisor visits will increase weavers’ productivity in the supply

chain.

3.3. Data and Variables

We obtain the following proprietary datasets from our collaborator. First, for all branches in the

state of Rajasthan, we have a rug-level dataset that consists of extensive covariate information

for all rugs that were assigned to weavers between 2017-2021. We observe the date on which the

rug was assigned, the loom to which the rug was assigned, the size (in feet) of the loom, and
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Table 1 Summary of Variables

Explanation Mean Min Max SD
Weaving Time (days per

rug)
Number of days taken to
complete a rug 68.9 21 151 25.8

Avg days between visits
(days)

Average number of days between
supervisor visits per rug 9.0 2.8 19.7 4.5

Product Cubage (sq.
feet) Cubage of the rug 85.3 23.7 189.8 35.8

Total Colors Total colors in the rug 7.4 1 25 4.1
Weaving Density(knots

per sq. inch) Density of knots weaved in a rug 63.7 36 121 21.78

Avg Temperature (K)
Average temperature across days
during weaving per rug 299.1 285.1 310.1 5.8

Distance (kms)
Driving distance between weaver
and supervisor pair 18.5 0.09 53.8 13.5

Looms per supervisor
Number of looms assigned to
each supervisor 46 21 75 20

Looms per village Number of looms in each village 6 1 51 8

Note. The total number of supervisors in the dataset is 20, the total number of villages in the dataset is 50, and

the total number of rugs in the dataset is 8,061.

the weaving time (in days) to complete the rug. In addition, we also observe the following rug

characteristics: design code of the rug3, size of the rug, the textile used in the rug, length and width

of the rug, number of colors in the rug, weaving density in the rug and unique ID of the supervisor

who monitored the rug. Second, we obtain a supervisor visit dataset that contains the exact dates

on which the assigned supervisor visited the rug during the course of its completion. Using this

data, we calculate the average number of days between consecutive visits by the supervisor for each

rug. We also obtain the geo-location of all installed looms and supervisors’ home locations. We

leverage open-sourced Google Map API to query the driving distances between the supervisor’s

home and his assigned loom locations. This driving distance measure is used to do our IV analysis

which is discussed in more detail in §4.3. Finally, we collect satellite-based daily temperature

data from National Oceanic and Atmospheric Administration (NOAA) for all loom locations since

temperature may also affect productivity (Burke et al. 2015) and visit schedules of the supervisors.

To identify the impact of supervisor visits on weaving times, we aggregate the data at the rug level.

We choose this level of aggregation because the supervisor visits each rug multiple times in our

dataset and it is difficult to control for spillover effects on productivity from consecutive visits for

the same rug. Nevertheless, we confirm that our results remain consistent when we use individual

visit level datasets (see §5.3 for more details). A summary of key variables used in our analysis is

provided in Table 1.

3 Weavers follow a design map when weaving rugs, and each design map has a unique design code of the rug.
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4. Empirical Analysis

We start this section by providing some model-free evidence from the collaborator’s data. Let Irl

be the average number of days between visits for rug r assigned on loom l. Rugs with the above-

median average number of days between visits take 71 weaving days on average for completion

while those with the below-median average number of days between visits take 67 weaving days on

average for completion and this difference is statistically significant (t-test, p= 0.0001). Figure O.1

in Appendix O.2 illustrates this insight. This result provides some model-free evidence that more

frequent supervisor visits (equivalently, lower average number of days between visits) may reduce

weaving times and thereby increase weavers’ productivity.

4.1. Fixed Effects (FE) Specification

We now turn to a regression framework to estimate the impact of supervisor visits on weaving

times. Our base specification is a fixed-effects model with an extensive set of controls to account for

factors that affect weaving times. We estimate the following model as our main FE specification:

log(Wrlt) = β1Irl +βXrlt +ϕl + δs +ψh +ωy + ϵrlt. (1)

log(Wrlt) is the logarithm of the total weaving days taken to complete rug r on loom l assigned

in time t. Irl is the average number of days between supervisor visits to rug r on loom l. Xrlt

includes the following time-invariant and time-variant rug and loom-level attributes. The first set

of controls is rug-level features that affect weaving times. These include time-invariant variables

such as the total number of colors in the rug, the weaving density of the rug, the total cubage of

the rug, and the daily temperature at loom location l averaged across all days on which rug r was

actively being weaved. Finally, we control for the weaver experience in the following manner. We

compute a new variable, Erlt, that is the log transformation of the total cubage weaved by the loom

l until the date of the assignment t of the focal rug r, and encode all rugs for which Erlt is below

(above) the median of the distribution of Erlt as “low-experience” (“high-experience”). We add

this experience dummy in our specification. In §5.3, we consider alternate experience definitions

and confirm consistent results.

In addition to these controls, we also add loom, supervisor, harvesting season, and year fixed

effects ( ϕl, δs, ψh, ωy). Loom and supervisor fixed effects control for idiosyncratic differences

between weaving speeds and monitoring quality of weavers and supervisors respectively. Harvesting

season and year fixed effects adjust for seasonality and trends.4 Finally, ϵrlt is the idiosyncratic

shock to total weaving days for rug r on loom l at time t. Standard errors are clustered at the

loom level to account for correlation across observations from the same loom. Our key variable of

interest in this specification is Irl.

4 Our results remain consistent if we control for month fixed effects instead of harvesting season fixed effects. See
Appendix §O.3 for more details.
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4.2. Identification Challenges

Although this fixed effects specification controls for observed and unobserved heterogeneity at the

rug, loom, and supervisor levels, there are two econometric challenges. The first concern is reverse

causality. While we are interested in assessing the impact of visit frequency on weaving times, it

is plausible that if weaving times are longer than expected, supervisors increase their frequency of

visits. Given that the weaving times are long and there are multiple visits for the same rug, we

expect that our key variable of interest, “average days between visits” should not be significantly

affected by this concern. However, if this concern is indeed significant, rugs with longer weaving

times would in fact have more frequent visits and smaller average days between visits by the

supervisor. Since this would lead to an underestimation of the true effect size, the estimated β1

in Equation 1 is a conservative estimate of the true effect size. Note that the reverse causality

concerns are most severe for rugs after they are delayed because supervisors may increase efforts

on rugs that are already delayed to speed up the work. In addition to the IV analysis, we perform

an additional robustness check (see §5.3) by re-estimating Equation 1 using data from all rugs

before they were delayed and confirm consistent results.

The second key concern is that of unobserved confounders. Our model can still lead to biased

estimates if there are unobserved variables that are correlated with both weaving time and average

days between visits. One omitted variable is the weaver’s expected household expenditure (e.g.,

educational and medical expenses) during different times of the year. An increase in expenditure

may increase her intrinsic motivation to work and thus reduce weaving times. However, given

the close social bonds in rural communities, if the supervisor anticipates increased motivation, he

may reduce the frequency of visits to the weaver. Thus, household expenditure could be positively

correlated to the average number of days between supervisor visits but negatively correlated to

weaving times. The omission of household expenditure would thus lead to an underestimation of

the true impact of supervisor visits on weaving times.

4.3. Identification using Instrumental Variables

To tackle the above challenges, we use the instrumental variable (IV) approach, which has been

widely used in the empirical literature (Angrist and Pischke 2009). In order to find a good IV,

two conditions must be met. First, the IV should be correlated with the endogenous variable

(Relevance Condition). Second, the IV should be uncorrelated with the error term (Exclusion

Restriction). Under these conditions, the IV is correlated with the dependent variable only through

the endogenous variable. We use two types of IVs in our estimation.

The first IV is the distance between the supervisor’s home location, and the location of the

weaver working on rug r (drls). Each supervisor is hired from rural communities to manage a
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large geographical area leading to natural variation in his distance from weavers. Further, a larger

distance to rug r should lead to less frequent visits by the supervisors due to the additional travel

required to visit these rugs. Finally, distance should not directly affect the total weaving times, thus

satisfying the exclusion condition. In line with our mechanism, we observe that the coefficient of

drls is positive and statistically significant in the first-stage regression (see Table O.1). In addition,

the Cragg-Donald F statistic is greater than 10 which verifies that the IV is not weak. Because

the distance IV, drls, does not vary between the same loom-supervisor pair, we cannot control for

loom fixed effects in this specification. Instead, we add additional controls at the loom level. In

particular, we control for loom size and also add fixed effects for the district in which the loom is

installed to control for district-level heterogeneity.

We further supplement this IV with a Hausman-type IV following the literature (Cameron and

Trivedi 2005, Caro et al. 2021). In particular, we use the average number of days between visits by

supervisor s to the previous rug r− 1 on the same loom l, Ir−1l as an IV for Irl. This IV should

satisfy the relevance condition since supervisors prefer consistency in their schedules: the frequency

of visits by the supervisor to the previous rug assigned on the same loom should be correlated to the

frequency of visits for this focal rug. Further, this IV should satisfy the exclusion restriction under

the assumption that visit frequency during previous rugs does not directly impact the weaving

times of the focal rug after controlling for the weaver experience. Under this assumption, Ir−1l

should be independent of the focal rug r’s error term. In line with this hypothesis, we again find

that the coefficient of Ir−1l is positive and statistically significant. Further, the Cragg-Donald F

statistic verifies that the IV is not weak. These first-stage results for both IVs are reported in

Tables O.1 of the online appendix.

5. Results

In this section, we first discuss the estimation results from the fixed-effects model and instrumental

variables model (§5.1). Next, we examine cross-sectional heterogeneity in effect across rugs with

different features (§5.2). Finally, we present results from multiple robustness tests that confirm the

validity of our findings (§5.3).

5.1. Estimation Results

Table 2 contains the results of our analysis on the impact of the average number of days between

visits on weaving times. Column (1) shows results from the FE model (Equation 1). We find that

a one-day increase in average days between visits increases total weaving days by 2.8% (p= 0.002).

Columns (2) and (3) show results with the distance and Hausman-type IVs respectively. The results

are directionally consistent with the FE model. In particular, we find that a one-day increase in

average days between visits increases total weaving times by 13% and 14% respectively. From
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all three estimates, we can conclude that supervisor visits have a significant positive impact on

weaving times.

One noteworthy aspect that warrants additional discussion is the significantly magnified impact

of supervisor visits on weaving times estimated from IV analysis. The difference suggests that the

impact of supervisor visits is heterogeneous (Kundu and Ramdas 2022). This is because IV analyses

estimate local average treatment effects (LATE), while the FE model estimates average treatment

effect (ATE) (Angrist and Pischke 2009). The LATE is for “compliers”, the subset of the population

that is affected by the instrument in question. Nevertheless, consistent and statistically significant

effects in all three models confirm the positive effects of supervisor visits on weaving times. The

coefficient estimates for the rest of the control variables are consistent with our intuition. Rugs

with larger product cubage, larger knot density, more colors in the design, and lower temperatures

are all associated with longer weaving times.

Recall from Table 1 that rugs take 69 days on average to complete and supervisors visit every

loom in 9 days on average in our dataset. Interpreting the results with the IV, this result suggests

that all else equal, if supervisors instead visit every loom in 8 days on average, the total weaving

time on average for rugs would decrease to 59 days. Assuming that the weavers can then work

on additional rugs given that the company has enough demand and backlog for rugs, this directly

translates to a substantial 15%-17% increase in monthly income for the weavers. Our field interac-

tions suggest that supervisors do not influence weavers’ working hours since most weavers already

work full-time on the loom. This suggests that the estimated increase in monthly income is due to

increased efficiency in weaving and would not compromise the artisans’ welfare. Finally, increased

weaver productivity can be a win-win proposition as customer satisfaction is expected to improve

substantially if delays in delivering finished rugs to Jaipur Rugs’ customers are reduced.

5.2. Heterogeneous Effects

The above analysis establishes that visits by quality supervisors lead to a significant reduction in

weaving times. In what follows, we provide evidence that the impact of visits on weaving times

also has cross-sectional heterogeneity.

5.2.1. Impact on Difficult-to-Weave Rugs We hypothesize that the impact of visits from

quality supervisors will be greater for rugs that are more difficult to weave. A key objective of

supervisor visits is to identify inadvertent errors during weaving. Once a mistake is identified,

weavers often have to unthread the rug and reweave it from the point of the error. If visits are

less frequent, the amount of work that needs to be redone (conditional on an error occurring) is

more, and total weaving time also increases. While it would be ideal to analyze data on inadvertent

errors identified during individual visits by supervisors, that data is unfortunately not collected by
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Table 2 Estimated Impact of Avg. Days Between Supervisor Visits on Log-transformed Weaving Times

(1) (2) (3)
Variable Fixed Effects IV1 IV2

(Driving Distance) (Previous Visit)
Avg. days between visits 0.028∗∗∗ 0.131∗∗ 0.141∗∗∗

(0.002) (0.043) (0.022)
Product Cubage 0.005∗∗∗ 0.038∗∗∗ 0.004∗∗∗

(0.000) (0.000) (0.000)
Knot Density 0.006∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.000) (0.000) (0.001)
Number of Colors 0.006∗∗∗ 0.005∗∗∗ 0.006∗∗∗

(0.001) (0.002) (0.002)
Avg. temperature -0.007∗∗∗ -0.013∗∗ -0.017∗∗∗

(0.001) (0.003) (0.002)
Size of Loom – -0.034∗∗∗ -0.037∗∗∗

(0.005) (0.006)
Other Controls Y Y Y
Observations 8,006 8,006 7,150

Notes. “–” means the variable is not present in the model. Standard errors (in parentheses) are clustered at

the loom level. Other controls include supervisor, time, and experience fixed effects in all three specifications.
In addition, we control for loom fixed effects in Column (1) and district fixed effects in Column (2) and

Column (3). ∗∗∗: p < 0.01; ∗∗: p < 0.05; ∗: p < 0.1.

our collaborator. Nevertheless, we collected survey data from the weavers on how supervisor visits

affect their work. Out of the 1950 completed responses we received, 99.43% of the weavers find

supervisor visits “help in identifying errors (slanted weaving, wrong threads, etc.)” (with 83.79%

strongly agree and 15.64% somewhat agree). Our interactions with multiple branch managers and

supervisors also suggest that the chances of such errors are more in rugs that are more difficult to

weave. As such, rugs that are more difficult to weave should benefit more from supervisor visits

and see a stronger impact on weaving times. Recall from §3.1 that rugs differ significantly with

regard to weaving difficulty. The first feature that we use as a proxy for weaving difficulty is the

number of colors in the design map. Our field visits and interactions with the weavers suggest

that rugs with multiple colors are significantly more difficult to weave. This is because weavers

have to switch between threads of different colors based on the design map during weaving. This

switching between colors is difficult and it is easy to mistake between shades and use the wrong

thread if weavers are not attentive. Thus, as the number of colors in the rug increases, weaving

difficulty also increases. This difference is also reflected in our data. Rugs in the lowest quartile

based on the number of colors take fewer days to complete than all other rugs and the difference is

statistically significant (Wilcoxon rank sum test, p= 0.0001). The second feature that we use as a

proxy for weaving difficulty is the weaving density or the number of knots per square inch. As the

weaving density increases, rugs become finer, and more delicate patterns can be weaved on them.

However, this increased density also increases weaving difficulty since the weaver needs to weave

a higher number of knots in the same area. While rugs with smallest weaving density of 36 knots
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per square inch in our dataset take 57 days, those with the largest weaving density of 121 knots

per square inch take 72 days and the difference is statistically significant (Wilcoxon rank sum test,

p= 0.0001).

Following the literature (Parker et al. 2016, Zhang et al. 2018), we estimate the following model

in order to test for differential impact from supervisor visits:

log(Wrlt) = β0Irl +β1Irl ×ZrH +βXrlt +ϕl + δs +ψh +ωy + ϵrlt. (2)

Using weaving density (number of colors) as a proxy for weaving difficulty, we define ZrH as

an indicator variable that is equal to 1 if weaving density (number of colors) in the rug is greater

than or equal to 64 knots per sq. inch (in the top three quartiles) and 0 otherwise in Equation 2.5

All other variables remain the same as before. The baseline group in the specification represents

rugs with lower weaving difficulty. Thus, coefficient β1 captures the additional impact of supervisor

visits on rugs with more weaving difficulty. Since we already control for both the weaving density as

well as the total number of colors in the rug, we do not control for ZrH directly in this specification.

The regression results for the two proxies are presented in Columns (1) and (2) of Table 3 and

demonstrate that supervisor visits have a stronger positive impact on rugs with greater weaving

difficulty. We observe that the coefficient for the interaction term in row 2 (β1) is positive and

statistically significant in both the models. Interpreting estimates from the IV analysis in Column

(1), a one-day increase in average days between the visits increases total weaving times by an

additional 0.6% for rugs with higher weaving density (or a 27% relative increase over rugs with

lower weaving density). Note that the heterogeneous impact for rugs with additional colors is also

significant but much smaller in magnitude (7% relative increase over rugs with fewer colors). This

result suggests that errors associated with higher weaving density are more common and may

benefit more from increased supervision than errors related to color mismatches. We confirm that

these results remain consistent with IV analysis. Overall, the results highlight that the impact

of supervisor visits is heterogeneous, and rugs with greater weaving difficulty benefit more from

supervisor visits.

5.2.2. Impact from Consistency in Visits One aspect that may additionally influence

the effectiveness of supervisor visits is the consistency in their visit schedule to the focal rug. To

measure consistency in supervisor visits, we use the variance of the number of days between each

supervisor visit for a rug. A low (high) variance in the number of days between the visits implies

that the supervisors maintained a consistent (inconsistent) schedule while the weaver was working

5 The results remain consistent if we instead use median of the distribution of number of colors to classify rugs with
higher weaving difficulty.
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on the rug. We hypothesize that in addition to frequent visits (with a lower average number of days

between visits), visits that are consistent (with a lower variance in the number of days between

visits) are most effective in improving weavers’ productivity. Since most of the weavers are from

rural households and have known supervisors for years, supervisors do not announce their visits in

advance. It is worth noting that there is a significant body of literature (Van Loocke and Put 2011)

that suggests that surprise (or equivalently, inconsistent) audit schedules may have a greater impact

on improving performance and quality standards. However, in contrast to the extant literature

which focuses on strategic violations that need to be detected, supervisors in our case primarily

focus on inadvertent errors as there is no incentive for weavers to deliberately make these errors.

As supervisors consistently visit weavers over time, weavers may come to expect regular intervals

of supervision for the focal rug. This expectation may motivate weavers to complete the rug in

a timely manner as they anticipate the supervisor to consistently monitor their progress. Finally,

if the supervisor visits the weaver frequently and consistently, he may be able to detect weaving

errors sooner, which can further help to reduce the reweaving costs. We estimate the following

model in order to test for the differential impact from consistent supervisor visits:

log(Wrlt) = β0Irl +β2ZrH +β1Irl ×ZrH +βXrlt +ϕl + δs +ψh +ωy + ϵrlt. (3)

Using variance in the number of days between visits as a measure for consistency, we define

ZrH in Equation 3 as an indicator variable that is equal to 1 if the variance in visits for a rug is

greater than the median of variance in visits over all observations in our data and 0 otherwise. All

other variables remain the same as before. Thus, coefficient β2 captures the difference in weaving

times between rugs with above-median and below-median variances in visit schedules, coefficient

β0 captures the impact from increasing average days between visits for rugs with below-median

variance, and coefficient β1 captures the incremental effect from increasing the average days between

visits for rugs with above-median variance in the number of days between visits.

The regression results from Equation 3 are given in Column (3), Table 3 and demonstrate

that consistent visit schedules can further benefit the weavers by improving their productivity

and reducing weaving times. We observe that coefficient β2 in row 3 is positive and statistically

significant, suggesting that the average weaving time in rugs with inconsistent visit schedules is

higher and the difference is statistically significant. Further, the coefficient for the interaction term

in row 2 (β1) is positive and statistically significant. Interpreting estimates from the analysis, a

one-day increase in average days between visits is associated with an additional 0.6% increase in

the total weaving time when supervisor schedules are inconsistent (or a 19% increase relative to the

rugs with consistent visits). We confirm that this result remains consistent with the IV analysis.

This result suggests that supervisor visits that are regular and consistent are most beneficial in

improving the weavers’ productivity.
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Table 3 Estimated Differential Impact of Avg. Days Between Supervisor Visits on Log-transformed Weaving
Times

Variable (1) (2) (3)
Knot Density Number of Colors Consistency in Visits

Avg. days between visits 0.022∗∗∗ 0.027∗∗∗ 0.031∗∗∗

(0.003) (0.002) (0.002)
Avg. days between visits ×ZrH 0.006∗∗∗ 0.002∗ 0.006∗∗

(0.002) (0.001) (0.002)
ZrH – – 0.069∗∗∗

(0.001)
Product Cubage 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.000) (0.000) (0.000)
Knot Density 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗

(0.000) (0.001) (0.001)
Number of Colors 0.007∗∗∗ 0.005∗∗∗ 0.007∗∗∗

(0.001) (0.001) (0.001)
Avg. temperature -0.007∗∗∗ -0.007∗∗∗ -0.006∗∗∗

(0.001) (0.001) (0.001)
Other Controls Y Y Y
Observations 8,006 8,006 8,006

Notes. “–” means the variable is not present in the model. Standard errors (in parentheses) are clustered at

the loom level. Other controls include loom, supervisor, time, and experience fixed effects. ∗∗∗: p < 0.01; ∗∗:
p < 0.05; ∗: p < 0.1.

5.3. Robustness Tests

We perform a series of robustness checks to further strengthen our results. Our results remain

consistent under, (i) alternative dependent variable; (ii) alternative experience definitions; (iii)

alternative data preparation; (iv) additional controls; (v) village-level aggregation to account for

spillover concerns; (vi) alternative clustering; (vii) data filtering to tackle COVID-19 interference;

(viii) using weavers’ payment data as an alternate data source; (ix) redoing the analysis at an

individual visit level. Appendix O.3 presents the details of these analyses.

6. Framework for Optimizing Supervisor Visits

Following results from §5, one strategy to increase productivity could be to simply increase super-

visor visits for all the weavers. However, uniformly increasing visits for all looms is operationally

infeasible without hiring more supervisors.6 Instead, an alternate strategy could be to selectively

increase visits for rugs assigned to weavers with low productivity. To implement such a targeted

supervision strategy, two steps are necessary: (i) prediction of whether a rug will have lower-than-

expected productivity; (ii) optimization of supervisor schedules to ensure additional visits to rugs

6 In exploring potential interventions to increase supervision, we considered the possibility of leveraging digital tools
to supervise weavers remotely. However, we identified two significant challenges that may limit the effectiveness of
this approach. First, the majority of the weavers in Jaipur Rugs’ supply chain use basic phones that lack video
capabilities, making it difficult to conduct digital visits. Second, our field visits revealed that most households share a
single mobile phone, which is usually controlled by male members, whereas the majority of the weavers in the network
are women. These challenges could impede the adoption and effectiveness of digital tools for remote supervision.
Nevertheless, this direction remains an important avenue for future research.
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predicted to have lower-than-expected productivity. In what follows, we discuss each of these steps

in detail.

6.1. Predicting Rugs with Lower Productivity

In order to target supervisor visits, we need a forecast of whether rug r will have lower-than-

expected productivity or not. As previously discussed, we have access to very detailed data on past

rugs, along with information on baseline weaving days, as well as the realized weaving days for

every rug. We leverage this data to formulate a supervised learning task and then use state-of-the-

art ML methods to predict which rugs will have lower-than-expected productivity at any instance.

Rugs with lower-than-expected productivity are simply defined as those rugs whose weaving days

are higher than the baseline. More formally, let Wr denote the total weaving days of rug r and Hr

denote the baseline weaving days for rug r. Note that Hr depends on rug-level features (such as

weaving density, and product cubage) and is pre-decided by Jaipur Rugs. A rug is classified to have

lower-than-expected productivity if Wr >Hr. We let Yr be 1 if the rug has lower-than-expected

productivity and 0 otherwise. 7

Then the objective of the predictive task is to estimate a mapping function f(Xr) :Rd →R that

predicts the probability of lower-than-expected productivity for rug r with features Xr ∈ Rd. To

estimate such a function f , one can solve the following error-minimization problem

min
f∈F

∑
r∈[N ]

(Yr − f(Xr))
2 ,

where F is the class of predictive functions (for e.g., generalized linear model, decision trees,

random forests, etc.) and N is the total number of rugs in the data set. Naturally, the lower the

error, the better does the model fit for the available data. Nevertheless, to ensure good out-of-

sample performance, controlling over-fitting is necessary. In Appendix O.5, we briefly discuss, (i)

the feature engineering for this prediction task, (ii) the predictive accuracy of different machine

learning models, (iii) the train-test-validate framework (to control for over-fitting).8

We compare different algorithms based on four popularly used metrics for classification: (i)

accuracy (ii) balanced accuracy (iii) ROC AUC and (iv) F1 score. Appendix O.4 describes each of

these metrics in more detail. Table O.5 in Appendix O.5 presents results from different benchmark

methods on these metrics. We find that the XGBoost classifier outperforms all other methods on

all metrics with an out-of-sample balanced accuracy of 0.71 showing robust predictive performance.

Hence, we use this method to make out-of-sample predictions for rugs.

7 Using this classification rule, we find that 57.31 % of the rugs have lower-than-expected productivity in the historical
data.

8 Note that we use outcome predictions to target supervisor visits instead of directly using the empirical estimates
identified in §4. This is motivated by recent research that has shown that in several cases simple outcome prediction
model is preferable to using HTE estimation when optimizing treatment assignment (Fernández-Loŕıa and Provost
2022).
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6.2. Optimizing Supervisor Visits

Next, we consider an optimization framework to optimize the routes of existing supervisors and

generate schedules that target rugs predicted to have lower-than-expected productivity.9

6.2.1. Model and Notation Consider a rug r located in village vj that is predicted to have

lower-than-expected productivity based on the machine learning model.

To accomplish these additional supervisor visits, we let ΩT
j be the pre-decided target number of

supervisor visits for a village vj over the next T days (for e.g., 1 week), given by

ΩT
j :=

{
c̄ if there exists a rug in village vj with lower-than-expected productivity,

c otherwise.
(4)

We do not optimize the number of target visits (c, c̄) but assume it to be given in this for-

mulation because of operational considerations. Based on our discussions with the management

team, suggesting highly variable visits for each supervisor-loom pair may raise fairness concerns

and make proposed solutions difficult to implement. As a result, the chosen target function in Eq.

4, (i) uniformly increases visits to c̄ for all rugs that are predicted to have lower-than-expected

productivity, (ii) assigns target visits at village level and assumes that all looms in a village will be

visited by the supervisor every time he makes a visit to a village. Nevertheless, since a continuous

objective that optimizes the number of visits directly based on the productivity predictions could

be of independent interest, we explore this direction further in Appendix O.7. As discussed, such

an objective leads to highly variable visits, both across different villages, and over time.

Since none of the supervisors share any villages, the optimization problem can be solved sep-

arately for each supervisor. We aim to generate a supervisor route that minimizes the difference

between target visits (Ω) and actual visits by the supervisor. More specifically, let ytj be a binary

decision variable that is 1 if village vj is visited on day t, and 0 otherwise. Then, we seek to optimize

the following objective: miny

∑
vj
|ΩT

j −
∑

t y
t
j| . To introduce other operational constraints that

affect supervisor schedules, we define additional notation. Let ν denote the average travel speed

(in kilometers per hour) of the quality supervisor, and τ denote the time (in hours) the supervisor

spends inspecting each loom. Let nj be the number of rugs being weaved in village vj, and Tmax

be an upper bound on the maximum number of hours that the supervisor can work on any given

day. In our case, Tmax ranges from 5-7 hours. Let V denote a set (or a subset) of villages assigned

to a supervisor, along with the supervisor’s home village. Let G(V ) represent a fully-connected

9 Another intervention that can be effective in increasing supervisor visits is to hire more supervisors. We provide a
detailed analysis of this intervention in Appendix §O.6. Our focus on optimizing the routes of current supervisors is
motivated by our interactions with the management team at Jaipur Rugs, who informed us that recruiting competent
supervisors can be challenging due to the specialized skills and experience required. In fact, supervisors in the network
have an average experience of more than 5 years, which underscores the difficulty of finding suitable candidates.
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undirected graph over the set of villages V . An edge connecting villages (vi, vj) on this graph has

a weight equal to the shortest driving distance between the two villages (Dij). Let x
t
ij be a binary

decision variable that is 1 if arc (vi, vj) is traversed on day t, and 0 otherwise.

We are now in a position to present the Optimal Supervisor Visit Problem (OSVP) given by,

OSVP(Ω) = min
x,y,w

∑
vj

wj (5a)

s.t.
∑
t

ytj ≥ c, ∀ vj (5b)∑
t

ytj ≤ c̄, ∀ vj (5c)

∑
(vi,vj)

(
Dij

ν
+ τ ·nj) ·xt

ij ≤ Tmax, ∀ t (5d)

∑
(vi,vj)

for vj ̸=vi

xt
ij = yti , ∀ vi, t (5e)

∑
(vj ,vi)

for vj ̸=vi

xt
ji = yti , ∀ vi, t (5f)

∑
(vi,vj)

for vi∈S,
vj ̸∈S

xt
ij ≥ yth, ∀ S ⊆ V \{v0}, vh ∈ S, t (5g)

ΩT
j −

∑
t

ytj ≤wj, ∀ vj (5h)

−ΩT
j +

∑
t

ytj ≤wj, ∀ vj (5i)

ytj, x
t
ij ∈ {0,1}, ∀ vi, vj, t (5j)

wj ≥ 0, ∀ vj (5k)

Notice that OSVP(Ω) optimizes both scheduling (ytj) and routing (xt
ij) decisions of the quality

supervisor. Constraints (5b) and (5c) guarantee that for each village, there are at least c supervisor

visits and at most c̄ supervisor visits across the planning time horizon T . Constraint (5d) is a

maximum working time constraint on any day t. By limiting the maximum working time, we

implicitly set an upper bound on the distance traveled by a supervisor, which is an important

constraint to account for in practice (Cappanera and Scutellà 2015). Constraints (5e) and (5f)

ensure that one arc enters and one arc leaves each visited village. Subtours are eliminated through

constraint (5g). It indicates that if village vh ∈ S is visited, an arc necessarily leaves the set S, thus

breaking the subtours within S (Feillet et al. 2005). Finally, constraints (5h) and (5i) link together

the scheduling variables with the objective function.

The OSVP problem proposes a static optimization framework to find an optimized route for

the next T periods (for example, the next week). This problem can be resolved every T periods
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(with updated predictions) to continuously optimize and update routes for the supervisors over

time.10 The OSVP problem is infeasible when the minimum number of visits to villages (c) is

very high relative to the number of time periods (T ). Similarly, if the total time period (T ) is

very large relative to the maximum number of visits (c̄), then the problem has a trivial optimal

solution (visit one village every day). Nevertheless, in the intermediate ranges which is of interest

in our problem setting, solving OSVP(Ω) directly is computationally expensive. In particular, the

formulation contains an exponential number of constraints (in |V |T , the product of the number of

villages and time horizon), and (|V |2 + |V |)T decision variables. Hence, in what follows, we draw

the connection between OSVP(Ω) and the well-studied prize orienteering problem (Archetti et al.

2014), and leverage a recent result on team orienteering problem to solve OSVP(Ω) in polynomial

time with a provable performance guarantee.

6.2.2. Team OP Based Approach for Solving OSVP(Ω) We begin with a brief descrip-

tion of a variant of the classical Team Orienteering Problem (TOP), which was first introduced by

Butt and Cavalier 1994 and Chao et al. 1996. The problem considers K vehicles, K ≥ 1 navigating

on a graph G(V ) with profits pre-assigned at each village vi, where the goal is to generate K routes

(one route for each vehicle) that maximizes the total profits collected by all vehicles under global

constraints of each vehicle route (for example, vehicle travel time). Note that each vehicle has the

binary decision of whether to visit a village and each village can be visited by multiple vehicles.

More specifically, we let ∆i(ni) be the profit of visiting village vi, ni number of times among the K

vehicles, where ∆i(·) is a non-decreasing submodular profit function for village vi that generates

diminishing marginal returns with additional visits. Let P1, P2 . . . PK be the K paths for K vehicles,

each starting and ending at a specified home location v0, and we denote ξ(Pk) as the cost for taking

path Pk. Then the TOP problem with vehicle travel budget constraint Bk, 1≤ k≤K is given by

TOP(∆,G(V )) =max

{ ∑
vi∈

⋃K
k=1 Pk

∆i(ni)| ξ(Pk)≤Bk, ∀1≤ k≤K

}
(6)

Notice that both OSVP(Ω) and the Team Orienteering Problem TOP(∆,G(V )) consider rout-

ing under travel budget, yet they differ from each other mainly in two aspects.

1. Time horizon: TOP considers a single time period problem, where the decisions are made for

a single time step over K vehicle routes. In contrast, OSVP(Ω) considers the problem of planning

and scheduling over multiple time periods for a single quality supervisor, and total visits across all

time periods are constrained based on Ω.

10 While the current objective minimizes the difference between target and assigned visits, an alternate objective
could also be to ensure that the proposed routes remain as close as possible to the existing routes that the supervisors
use to visit different villages. Such an objective would simplify implementation in practice since supervisors would
need to make minimal changes to their existing schedules. We can easily update the formulation to account for such
a consideration. In Appendix O.8, we discuss and present this alternative formulation.
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2. Profits of village visits: While TOP(∆,G(V )) problem maximizes profits defined by ∆(·)

acrossK vehicles, theOSVP(Ω) problem does not model explicit village-level profits. In particular,

OSVP(Ω) ensures that each village is visited at most once per day and the total number of visits

is upper and lower bounded by c̄ and c respectively.

Given these differences, how to use Team Orienteering Problem to solveOSVP(Ω) is not obvious

a-priori. In what follows, we identify a specific village-level profit function ∆̃(·) that establishes

the equivalence between OSVP(Ω) and TOP(∆,G(V )) problem under mild conditions.

Intuition: Recall that the objective of the OSVP(Ω) problem is to match the number of visits

to each village according to Ω. Hence, one intuitive strategy to define village-level profits is to

simply let the profit collected from each visit to a village vi as the difference between total visits

to the village so far versus the number of visits prescribed by ΩT
i . Note that the profit described

above is a decreasing step function: as the number of visits to village vi increases before surpassing

ΩT
i , the difference from its target visit decreases, leading to diminishing profitability for further

visits to that village. Following this intuition, we formalize the idea of profit gain from each village

visit and define a village-level non-decreasing submodular profit function.

Definition 1. For any village vi ∈ V , the profit of each village visit δi(·) is a function of unful-

filled target visits ΩT
i . More specifically, δi(ci) = (ΩT

i − ci)+, where ci is the number of times village

vi has been visited prior to the current visit, 0≤ ci <ΩT
i .

The total profit from visiting village vi, ni times, denoted as ∆̃i(ni) is thus

∆̃i(ni) =

ni−1∑
ci=0

δi(ci) =

ni−1∑
ci=0

(ΩT
i − ci)

+, (7)

where we have ∆̃i(0) = 0 and ni ≥ 1.

Note that for each additional visit, the marginal profit decreases by one unit, which characterizes

the submodularity property of ∆̃(·), and the profit function ∆̃(·) is non-decreasing. Figure O.2 in

Appendix O.2 demonstrates the definition of δi and ∆̃i(·). In Proposition 1 we show the existence

of a computationally tractable algorithm for solving the supervisor scheduling and routing problem

with a provable performance guarantee.

Proposition 1 Assume the OSVP(Ω) problem has feasible solutions and c=0, then there exists

a polynomial time algorithm to solve OSVP(Ω) with a competitive ratio of 1− ( 1
e
)

1
2+ϵ , where ϵ is

any fixed constant with 0< ϵ≤ 1.

While the proof of the Proposition is relegated to Appendix O.10, we discuss the main intuition

here. We prove Proposition 1 by showing the equivalence of OSVP(Ω) and TOP(∆̃,G(V )). In

particular, we prove that the village-level profit function ∆̃(·) is non-decreasing and submodular and

there exists an equivalence between OSVP(Ω) and TOP(∆̃,G(V )). Leveraging results from Xu
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et al. (2020), there is a (1− ( 1
e
)α)-approximation algorithm for OSVP(Ω), assuming the existence

of a α-approximation solution for the classic Orienteering Problem (Golden et al. 1987), 0<α< 1.

Applying the state-of-art 1
2+ϵ

-approximation algorithm for the Orienteering Problem due to Chekuri

et al. (2012), we prove that the supervisor visit optimization problem OSVP(Ω) can be solved

efficiently with a competitive ratio of 1− ( 1
e
)

1
2+ϵ .

6.3. Case Study: Impact of Targeted Supervisor Visits

In this section, we discuss our end-to-end predict-then-optimize approach and its impact on weaver

productivity by applying it to the real-world data from our collaborator’s supply chain.

Problem setting and baseline: Recall from §6.1 that we have access to detailed rug-level data

which is used for the prediction task. As before, we split the data into training and testing sets

where we keep the last three months of data on rugs that are actively being weaved in the test set.

For all active rugs in the test set, we perform the following four steps in every one-week period to

generate weekly schedules: (i) Use the ML model to predict whether each active rug in the test

set will have lower-than-expected productivity or not. Subsequently, identify villages that have

any rug which is predicted to have lower-than-expected productivity. (ii) Let the corresponding

target visits by the supervisor for these villages, c̄, be 2 over the next week. Otherwise, for all

other villages let the target visits over next week, c, be 1. (iii) Design schedules and routes for the

next week for each supervisor using the optimization formulation described in §6.2. (iv) Update

rug-level features using information generated by supervisor visits and start from Step (i) again.

Let LRa (HRa) be the set of rugs in the test dataset that had lower-than-expected (higher-

than-expected) productivity. Similarly, let LRp (HRp) be the set of rugs in the test dataset that

are predicted to have lower-than-expected (higher-than-expected) productivity. We compare the

performance of the baseline policy of supervisor visits to two different policies that we discuss next.

1. Policy MPTO (Proposed visits from ML prediction and optimization framework) This policy

outputs supervisor routes generated by the predict-then-optimize framework and we track the total

number of visits it recommends for rugs in LRa and HRa separately as a metric of efficiency.

Note that the predict-then-optimize framework is effective if a relatively higher number of visits is

scheduled for rugs in the set LRa. For the problem scale of interest to our collaborator, we are able

to solve the exact OSVP problem on Lenovo SD650 with an Intel 2.9 GHz eight-core processor and

96 GB of RAM in 48.75 seconds on average. For large-scale problems where an exact IP solution

is not feasible, one can leverage the polynomial-time algorithm discussed in §6.

2. Policy NPTO (Proposed visits from naive prediction and optimization framework) Although

the previous metric tracks the predict-then-optimize framework, it does not reveal whether the

ML-based prediction models are essential for improving performance over the baseline. To better
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understand the value of ML-based predictions, we also compare the results to a naive prediction

model. Specifically, we calculate the cumulative work done by the weaver during the previous two

supervisor visits for each rug. If the amount of work done is lower (higher) than what it should

be based on the standard weaving rate for a given rug r11, we classify it to the set LRp (HRp),

respectively. If the optimization framework with this naive prediction model performs equally well

as the previous policy, it would suggest that the ML-based prediction model is not critical to our

framework.

Estimated Improvement: In Table 4, we provide a simple comparison between the current route

followed by Supervisor X (Policy Baseline, on the left) and our proposed visit route (generated

by Policy MPTO, on the right). Note that villages with rugs in LRa are marked in bold in Table

4 and ideally should be visited twice. Comparing the current and optimized routes, we observe

that some daily tours are very similar, such as Day 3 of current routes and Day 6 of optimized

routes (blue cells), and Day 4 of current routes and optimized routes (yellow cells). However, the

optimized routes are more efficient in two ways: (i) optimizing the sequence of village visits (blue

cells) and (ii) grouping together nearby villages to save time and effort (yellow and red cells).

Although the proposed routes increase Supervisor X’s workload by 13.24% (from 68 to 77 looms per

week), they increase visits to villages with lower-than-expected productivity rugs from 57.14% to

85.71%. In particular, while current routes visit four out of seven villages with lower-than-expected

productivity rugs twice, optimized routes visit six out of these seven villages twice. These results

provide insights into the productivity improvement from an individual supervisor’s perspective by

comparing the changes from current to proposed routes.

Next, we analyze the improvement from our framework at an aggregate level. Figure 2 illus-

trates the overall effectiveness of the two policies vis-a-vis the current baseline policy. On the left

(right) we plot the average weekly visits from the three policies across villages that had any rug

with lower-than-expected (higher-than-expected) productivity in the test dataset. With regards to

the effectiveness of the ML prediction and optimization framework (Policy MPTO), we find that

average weekly visits to lower-than-expected productivity rugs (1.60 visits per week) is 33.65%

more than the visits proposed on higher-than-expected productivity rugs (1.20 visits per week),

thereby showing that the framework is able to appropriately target visits on lower-productivity

rugs. Further, in comparison to the baseline policy, Policy MPTO increases weekly visits to lower-

than-expected productivity rugs by 24.69% (from 1.29 to 1.60) while it decreases weekly visits to

higher-than-expected productivity rugs by 8.40% (from 1.31 to 1.20). These results suggest that

Policy MPTO is able to more efficiently allocate supervisor visits to looms that have lower-than-

expected productivity. Comparing average weekly supervisor visits from naive prediction (Policy

11 Standard weaving rate of rug r is defined as the product cubage of rug r divided by baseline weaving days Hr.
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Table 4 Comparison of current weekly routes and the proposed routes for Supervisor X

Current routes
Total
looms

Distance
(kms) Optimized routes

Total
looms

Distance
(kms)

Day 1
village A, village B,

village C 11 65.92 village I, village E 14 45.12
Day 2 village D, village E 11 53.78 village C, village K 13 62.78

Day 3
village F, village G,
village H, village I 12 55.56

village D, village E,
village G 12 54.52

Day 4
village J, village K,
village L, village M 12 70.31

village M, village K,
village J, village L,

village B 13 66.09

Day 5
village A, village B,

village C 11 65.92
village A, village C,

village D 13 75.98

Day 6 village D, village E 11 53.78
village G, village F,
village H, village I 12 49.46

Total 18 villages 68 365.27 19 villages 77 353.95

Note. Jaipur Rugs supervisors work for 6 days per week. The current routes (on the left) present a weekly schedule followed
by a randomly chosen supervisor from the dataset, whereas the proposed routes (on the right) present the optimized schedule

generated by Policy MPTO. Villages with rugs in LRa are marked in bold. Cells of the same color follow similar daily routes

but have improved efficiency in the proposed routes.

NPTO) with the baseline policy, we again find that even with naive prediction, the optimization

framework is able to target rugs with lower-than-expected productivity more effectively. However,

Policy MPTO is better able to utilize supervisor resources to target rugs with lower-than-expected

productivity (1.60 visits versus 1.54 visits). Recall from §4.3 that reducing the average number of

days between visits by a day can lead to a 2.8-14.1% decrease in weaving times. Using these esti-

mates, we can calculate the effect on weaving times from increased visits on lower-than-expected

productivity rugs under the MPTO Policy. Our estimates indicate that increased supervisor visits

can decrease weaving times by 2.35-11.83 days per rug, which translates to a 3.4-17.2% increase

in weaver productivity (recall 68.9 days for average rug weaving time). It subsequently reduces

the number of rugs with lower-than-expected productivity by 1.70%-12.17% while increasing the

supervisor visit consistency by 71.9% (variance of days between supervisor visits reduced from 9.10

to 2.56) (see Appendix §O.9 for more details on the improvement).

7. Conclusions

The artisanal supply chain plays a major role in the rural economy and is a major employer for

women across the developing world. Nevertheless, the industry remains highly fragmented and a

key challenge is the low productivity of artisans in the supply chain due to limited supervision.

By collaborating closely with Jaipur Rugs, a major employer of smallholder weavers in India,

we provide empirical evidence that frequent supervision can play an important role in improving

artisans’ productivity. Further, this impact is heterogeneous, and weavers working on difficult-to-

weave rugs benefit the most from supervisor visits. Based on the empirical insights, we develop

a novel predict-then-optimize framework for optimizing supervisor visits and perform numerical



Singhvi, Singhvi, Zhang: A Data-driven Approach to Improve Artisans’ Productivity
00(0), pp. 000–000, © 0000 INFORMS 27

Figure 2 Average weekly village visits for lower-than-expected productivity and higher-than-expected productivity

rugs, Policy MPTO is in green, Policy NPTO is in magenta and Baseline Policy is in orange in the

figure.

experiments to show that this approach can considerably improve the productivity of rural artisans

in the supply chain. We believe that the methods introduced in this paper can provide useful

insights and tools for other researchers and practitioners to optimize supervision in other distributed

supply chains in resource-constrained settings. This work also opens multiple avenues for future

research. In particular, while we focus on optimizing supervisor visits for improving productivity,

other important directions which can also benefit weavers include optimizing incentive contracts for

smallholder weavers, as well as optimizing weaver-rug matching assignments taking into account

their individual preferences and resource constraints. Finally, extending the predict-then-optimize

framework to decision-aware learning (Kotary et al. 2021, Chung et al. 2022, Elmachtoub and

Grigas 2022) and evaluating its impact could be another interesting direction for future research.
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Kalkanci, Başak, Morvarid Rahmani, L Beril Toktay. 2019. The role of inclusive innovation in promoting
social sustainability. Production and Operations Management 28(12) 2960–2982.

Karamshetty, Varun, Harwin De Vries, Luk N Van Wassenhove, Sarah Dewilde, Warnyta Minnaard, Den-
nis Ongarora, Kennedy Abuga, Prashant Yadav. 2022. Inventory management practices in private
healthcare facilities in nairobi county. Production and Operations Management 31(2) 828–846.

Ke, Guolin, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, Tie-Yan Liu. 2017.
Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing
systems 30 3146–3154.

Kotary, James, Ferdinando Fioretto, Pascal Van Hentenryck, Bryan Wilder. 2021. End-to-end constrained
optimization learning: A survey. arXiv preprint arXiv:2103.16378 .

Kotiloglu, Serhan, Yan Chen, Thomas Lechler. 2021. Organizational responses to performance feedback: A
meta-analytic review. Strategic Organization 19(2) 285–311.

Kundu, Amrita, Kamalini Ramdas. 2022. Timely after-sales service and technology adoption: Evidence from
the off-grid solar market in uganda. Manufacturing & Service Operations Management .

Levi, Retsef, Manoj Rajan, Somya Singhvi, Yanchong Zheng. 2020a. The impact of unifying agricultural
wholesale markets on prices and farmers’ profitability. Proceedings of the National Academy of Sciences
117(5) 2366–2371.

Levi, Retsef, Manoj Rajan, Somya Singhvi, Yanchong Zheng. 2020b. Improving farmers’ income on online
agri-platforms: Theory and field implementation of a two-stage auction. Available at SSRN 3486623 .

Lin, Wilson, Susan Feng Lu, Tianshu Sun. 2021. Worker experience and donor heterogeneity: The impact
of charitable workers on donors’ blood donation decisions .

Lurie, Nicholas H, Jayashankar M Swaminathan. 2009. Is timely information always better? the effect of
feedback frequency on decision making. Organizational Behavior and Human decisión processes 108(2)
315–329.

Mehrotra, Mili, Milind Dawande, Srinagesh Gavirneni, Mehmet Demirci, Sridhar Tayur. 2011. Or prac-
tice—production planning with patterns: A problem from processed food manufacturing. Operations
research 59(2) 267–282.



Singhvi, Singhvi, Zhang: A Data-driven Approach to Improve Artisans’ Productivity
00(0), pp. 000–000, © 0000 INFORMS 31
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Online Appendix

O.1. Field Visit Details

Different stakeholders in Jaipur Rugs’ supply chain were interviewed during 3 separate trips in

March, June, and December of 2022. The objective was to visit villages and better understand

Jaipur Rugs’ supply chain operations. The visits involved semi-structured interviews and focused

on, (i) understanding the process of rug weaving; (ii) collecting perspectives on supervisor-weaver

interactions in the supply chain. In total, the team visited 6 different locations and interacted with

more than 20 weavers, 5 supervisors, and 2 branch managers during these visits. Key insights from

the interactions are summarized below.

Weaver Interviews: Each interview with the weavers lasted for approximately 30 minutes.

While some weavers were interviewed individually in their courtyards, others were interviewed in

groups at the training centers of Jaipur Rugs. The findings from interviews conducted with weavers

for the project revealed that the majority of weavers are women who work from 9 am to 5 pm,

treating rug making as a regular job and relying on it as their primary source of income. Several

key factors were identified that affect the speed and quality of rug making. The experience was

noted as a crucial factor, with an estimated time of 3 years to achieve full speed. Additionally,

unforeseen deaths or diseases in the family that require the weavers’ attention were found to have

an impact on their productivity. Most defects in rug making were attributed to issues such as

wrong thread colors, loose strings, and slanted designs, particularly in designs with similar nearby

colors. Furthermore, harvest season and rains were identified as potential factors that may affect the

speed of rug making, as some artisans may also work on farms during these periods. These insights

highlight the complexities and challenges faced by weavers and provide valuable information for

understanding the dynamics of rug making as a livelihood for women artisans.

Supervisor Interviews: Supervisors were interviewed individually and asked about key aspects

of supervision and scheduling their routes. Insights obtained from interviews with supervisors

revealed their significant role in identifying defects in a timely manner by actively inspecting and

communicating with the weavers. Additionally, supervisors also provide transparency on defects

found in previous rugs at the finishing center, which serves as motivation for weavers to be more

careful in their work. However, it was noted that more experienced weavers may become over-

confident, resulting in more defects despite taking less time. Furthermore, supervisors visit each

loom once every 4-5 days, covering 15-20 looms in a day. They decide their schedules by picking an

area and covering all looms in that area on a particular day, or sequencing across different areas

based on requirements. These insights highlight the crucial role of supervisors in quality control

and their strategic approach to managing multiple looms and weavers for efficient rug production.
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O.2. Additional Tables and Figures

We present results from the first stage for our two instrumental variables used in Table O.1. The

results confirm that we find strong first-stage results for both instruments.

Table O.1 First-stage Results of Instrumental Variables

Variable IV1 IV2
Avg. Days Between

Visits
Avg. Days Between

Visits
Driving Distance 0.011∗∗∗ –

(0.003)
Avg. Days Between
Visits (Previous Rug) – 0.071∗∗∗

(0.010)
Product Cubage -0.001 -0.001

(0.001) (0.001)
Knot Density 0.004∗∗ 0.003∗

(0.001) (0.001)
Number of Colors -0.014∗ -0.013∗

(0.007) (0.007)
Avg. temperature 0.061∗∗∗ 0.063∗∗∗

(0.007) (0.003)
Size of Loom -0.021 0.003

(0.025) (0.026)
City FE Y Y

Supervisor FE Y Y
Time FE Y Y

Experience FE Y Y
Cragg-Donald F statistic 16 66

Observations 8,006 7,150

Notes. “–” means the variable is not present in the model. Standard errors (in parentheses)

are clustered at the loom level. ∗∗∗: p < 0.01; ∗∗: p < 0.05; ∗: p < 0.1.

Figure O.1 Average weaving times for rugs with above-median (below-median) average number of days between

supervisor visits are in the red (blue) bar.
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(a) Profit of each visit to vil-
lage vi

(b) Profit of visiting village vi,
ni times

Figure O.2 Profit function of visiting village vi when the target visit ΩT
i = 3. Figure O.2a demonstrates the profit

gain from each additional visit to village vi. For example, the first visit to village vi generates profit

δi = 3 since vi has never been visited before and ci = 0. Similarly, δi = (3− 1)+ = 2 for the second

visit because the number of visits prior to the current visit is 1. Figure O.2b illustrates the definition

of total profits collected at village vi, ∆̃i when village vi is visited ni times (Equation (7)).

O.3. Results from Robustness Checks

We perform a number of robustness checks to further strengthen our results. Our results remain

consistent under, (i) alternative dependent variable; (ii) alternative experience definitions; (iii)

alternative data preparation; (iv) additional controls; (v) village-level aggregation to account for

spillover concerns; (vi) alternative clustering; (vii) data filtering to tackle COVID-19 interference;

(viii) using payments data instead as an alternate data source; (ix) redoing the analysis at an

individual visit level.

Alternate Dependent Variable We consider the average number of knots weaved per day for

each rug as an alternate measure of productivity and use it as our dependent variable. The average

number of knots weaved per day for each rug is calculated by dividing the total number of knots in

each rug by the total weaving days. We expect β1 to be negative and statistically significant since

increase in the average number of days between visits should be associated with a lower number

of average knots weaved per day. The results from the specification are shown in Column (1) of

Table O.2 and confirm that our results are consistent with the results from the main model.

Alternate Experience Definitions We consider an alternate experience measure based on the

literature (Akşin et al. 2021). In particular, we find the log-transformed cumulative cubage weaved

and use that as an alternate covariate to proxy experience in our specification. The results from

the specification are shown in Column (2) of Table O.2 and confirm that our results are consistent

with results from the main model. In particular, β1 is again positive and statistically significant.

Alternate Data Preparation In order to check the robustness of our results against reverse

causality concerns, we re-estimate Equation (1) by re-preparing the data in the following manner.
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It is likely that (if) supervisors increase visits on a loom, they do so after the rug is already delayed.

In order to minimize such concerns, for each rug we first calculate the expected date of completion

without delay by using the expected daily weaving rate. Next, we recalculate the average number

of days between visits by only using data from visits that happened before the expected date of

completion. We also update the dependent variable to be the average number of knots weaved per

day before the expected date of completion. The results from the analysis are in Column (3) of

Table O.2 and are consistent with the results from the main model. In line with our hypothesis,

we again find that a one-day increase in average days between visits leads to a 2.2% decrease in

the average number of knots weaved per day.

Alternate Control Variables First, we additionally control for the design code fixed effects

in this specification. Since the total number of colors and knot density will be identical for all rugs

with the same design code, the effects of these variables are absorbed in the design code fixed

effects. Column (4) of Table O.2 shows results that are consistent with the main model. Second, we

control for month-fixed effects instead of season-fixed effects and confirm that the results remain

consistent (Column (6), Table O.3).

Spillover Effects If weavers in the same village interact, supervisor’s visit to one loom may

also affect the productivity of other looms in the village. For example, if the supervisor shares

knowledge about weaving errors with a weaver, weavers of neighboring looms may also be more

cognizant of such errors after talking to the weaver of the focal loom. Therefore in order to control

for these spillover effects from supervisor visits, we aggregate our data at the village level and

re-estimate Equation (1) to check the robustness of our results. Column (5) of Table O.2 confirms

that the results are consistent with the main model.

Alternate Clustering Recall that we estimate Equation (1) by clustering standard errors at

the loom level. We consider a two-way clustering of standard errors at the month and loom level,

and confirm that the results remain consistent under this alternative (Column (7), Table O.3).

Impact from COVID-19 To test the robustness of our results against concerns that the

estimates may be driven by COVID-19, we re-estimate Equation (1) using data only from before

2019. Column (8) of Table O.3 confirms that the results are consistent with the main model.

Payments Data An alternative way to test the impact of supervisor visits on weavers’ produc-

tivity is to use payment data. Results from Equation (1) suggest that if supervisors increase visit

frequency in a month, weavers’ productivity should increase. Increased productivity of a weaver

should lead to an increase in payments made to her by Jaipur Rugs in that month since weavers

are paid on a piece-rate basis. We obtain monthly payment data for weavers across branches in

the state of Rajasthan between 2020-2021 and estimate the following specification to test this

hypothesis.

Plmy = βvlmy +ϕl + δs +ψm + γy + ϵlmy
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Plmy in this specification is payment made to loom l in month m and year y. vlmy is the number

of visits made by supervisor to loom l in month m of year y. We also control for month (ψm),

year (γy), loom (ϕl) and supervisor (δs) fixed effects in this specification. We cluster standard

errors at the loom level to account for correlation among observations from the same loom in this

specification. Note that we cannot control for additional rug-level characteristics in this specification

since weavers may work on multiple rugs in the same month. The estimates from the specification

are included in Column (9) of Table O.3. We find that β is positive and statistically significant,

suggesting that the increased visits are associated with an increase in payments for weavers.

Individual Visit Data Recall from §3.3 that we also observe supervisor visit dates and incre-

mental work done since the last visit in our dataset. An alternative way to test our key hypothesis

involves analyzing this dataset as follows. Suppose a supervisor s visits loom l at times trli, i =

1,2,3.. and records the incremental cubage weaved during visit i as crli. We calculate the weav-

ing rate in period i as srli ≡ crli/(trli − trli−1). This rate is influenced by errors detected during

the supervisor visit at period i− 1. If the time gap between trli−1 and trli−2 is large, errors like

slanted weaving or wrong thread colors would have persisted for a longer cubage, making them

more time-consuming to rectify. As a result, a lower (higher) weaving rate, srli, is expected if the

days between visits i−1 and i−2 are large (small). Let drli ≡ trli−1− trli−2, i > 3. We estimate the

following model in order to test this hypothesis.

log(srli) = β0drli +βXrli +ϕl + δs +ψm +ωy + ϵrli. (O.1)

Xrli includes time-varying rug and loom-level attributes discussed in §4. ψm, ωy are month and

year fixed effects during visit i. Standard errors are clustered at the loom level in this specification

as before. A negative and statistically significant value of β0 would suggest a negative correlation

between days between visits, drli and weaving rates, srli. The estimates from the specification are

included in Column (10) of Table O.3. We find that β0 is negative and statistically significant,

suggesting that the increased average days between individual visits are associated with a decrease

in weaving rate during the subsequent visit.

O.4. Machine Learning Evaluation Metrics

We describe evaluation metrics for different ML methods for binary classification tasks:

Accuracy: The percentage of instances where predicted labels equal actual labels.

Precision: The fraction of true positives among all predicted positive label instances (Pedregosa

et al. 2011).

Recall: The fraction of true positives among all positive label instances.
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Table O.2 Robustness Checks I

Variable (1) (2) (3) (4) (5)
Alt. Dep.
Variable Alt. Exp.

Alt. Data
Prep.

Additional
Controls Spillover

Avg. days between visits -0.017∗∗∗ 0.028∗∗∗ – 0.028∗∗∗ 0.032∗∗∗

(0.002) (0.002) (0.002) (0.003)
Avg. days between visits prior to delay – – -0.022∗∗∗ – –

(0.002)
Product Cubage – 0.005∗∗∗ – 0.005∗∗∗ 0.003∗∗∗

(0.000) (0.000) (0.000)
Knot Density -0.009∗∗∗ 0.006∗∗∗ -0.009∗∗∗ – 0.005∗∗∗

(0.000) (0.000) (0.000) (0.000)
Number of Colors -0.005∗∗∗ 0.006∗∗∗ -0.005∗∗∗ – 0.004∗∗∗

(0.001) (0.001) (0.001) (0.002)
Avg. temperature 0.006∗∗∗ -0.006∗∗∗ 0.006∗∗∗ -0.007∗∗∗ -0.006∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
(log) Cum. Cubage Weaved – 0.011∗∗∗ – – –

(0.004)
Experience FE Y N Y Y
Design FE N N N Y

Other Controls Y Y Y Y Y
Observations 8,006 8,006 7,981 8,006 6,967

Notes. “–” means the variable is not present in the model. Standard errors (in parentheses) are clustered at the loom level. ∗∗∗:
p < 0.01; ∗∗: p < 0.05; ∗: p < 0.1. Note that the dependent variable in Columns (1) and (3) is the average number of knots weaved per

day and in all other columns is log-transformed total weaving time (in days). Other controls include loom, supervisor and time fixed

effects in all specifications. For Column (5), we take the average of the independent variables wherever appropriate.

Table O.3 Robustness Checks II

Variable (6) (7) (8) (9) (10)
Month Controls Alt. Clustering COVID-19 Payment Individual Visit

Avg. days between visits 0.026∗∗∗ 0.028∗∗∗ 0.023∗∗∗ 0.014∗∗∗ -0.012∗∗∗

(0.002) (0.007) (0.003) (0.006) (0.001)
Product Cubage 0.005∗∗∗ 0.005∗∗∗ 0.006∗∗∗ – 0.005∗∗∗

(0.000) (0.000) (0.000) (0.000)
Knot Density 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗ – -0.007∗∗∗

(0.000) (0.000) (0.000) (0.000)
Number of Colors 0.006∗∗∗ 0.006∗∗∗ 0.005∗∗∗ – 0.0001

(0.001) (0.001) (0.001) 0.001
Avg. temperature -0.009∗∗∗ -0.007 -0.012∗∗∗ – -0.0002

(0.002) (0.007) (0.001) (0.0002)
Other Controls Y Y Y Y Y
Observations 8,006 8,006 8,006 9,028 50,838

Notes. “–” means the variable is not present in the model. Standard errors (in parentheses) are clustered at the loom level. ∗∗∗:

p < 0.01; ∗∗: p < 0.05; ∗: p < 0.1.

Balanced Accuracy: The average recall obtained on each class.

Receiver Operating Characteristic (ROC) Curve: plots the true positive rate against the

false positive rate (Pedregosa et al. 2011).

ROC AUC: ROC AUC is the Area Under the Receiver Operating Characteristic Curve (Pedregosa
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et al. 2011).

F1 Score: F1 score is the harmonic average of precision and recall (Pedregosa et al. 2011).

O.5. Details on the Machine Learning Framework

In this section, we briefly discuss the details of the ML framework used to predict lower-than-

expected productivity rugs.

Feature engineering and selection of control features: Our objective is to predict whether a rug

will have lower-than-expected productivity or not. Hence, some of the features used as a control

in §4 might not be available at the time of making a delay prediction. For example, consider Irl

which is the average number of days between supervisor visits to rug r on loom l. Naturally, Irl

cannot be calculated until the rug is finished. Hence, we instead use the number of days on average

between supervisor visits from the previous rug on loom l, Ir−1l, as a proxy for Irl. Table O.4

describes different independent variables that we used as features, along with their descriptions,

for the prediction task.

Benchmark algorithms: We compare state-of-art ML classification models such as Logistic Re-

gression, XGBoost Classifier (Chen and Guestrin 2016), LGBM Classifier (Ke et al. 2017) and

Random Forest Classifier (Ho 1995). While logistic regression is a parametric generalized linear

classifier, the other methods use non-parametric tree-based classifiers with increased complexity.

These models were mainly selected based on their superior performance and ease of usage.12

Test-train-validate framework and parameter tuning: To ensure there is no over-fitting, we con-

sider a time-based split of the available data such that 70% of the data (from January 2017 to

December 2020) is used for training, 10% of the data (from December 2020 to February 2021) is

used to validate (tune different tuning parameters of the benchmark algorithms) and 20% of the

most recent data for testing (from February 2021 to June 2021). We tune algorithm-specific tuning

parameters (e.g., tree depth) independently using a uniform grid search.

O.6. Alternative Scheme of Hiring Additional Supervisors

While we discuss optimizing the routes of existing supervisors and targeting rugs predicted to have

lower-than-expected productivity in §6.2, we may consider an alternative scheme and hire additional

supervisors to improve weavers’ productivity. More formally, recall that ΩT
j is the pre-decided

target number of supervisor visits for a village vj over a time horizon T . We let Ω
scheduled(T )
j denote

the scheduled number of supervisor visits for village vj recommended by Policy MPTO without

increasing the supervisor’s workload. In other words, Ωschedule(T ) is the solution of OSVP(Ω) with

an additional constraint
∑

(vi,vj)
(
Dij

ν
+ τ ·nj) ·xt

ij ≤ T̄ , where T̄ is the average daily working hours

12 We use open-source Python implementation of these algorithms so that they can be easily used by our collaborator.
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Table O.4 Feature Names and Definitions

Feature Name Definition
Loom Size Size (in ft) of loom

Prod. Length Length (in ft) of rug
Prod. Cubage Cubage (in sqft) of rug

QS Quality supervisor name
Quality A Quality code segment that

represents color
Quality B Quality code segment that

represents style and knots density
Branch location Branch location name
Loom Count Number of looms at the same location
Order Priority Internal company priority code for rugs
Month Issued Issue month of rug
Year Issued Issue year of rug

Order to Delivery Days between issue date and
estimated finish date

Previous Lead Time Lead time (in days) of rug that
is weaved on the same loom

Previous Avg. iat Average supervisor inter-arrival
time (in days) for previous rug

Table O.5 Prediction Results from Different Machine Learning Methods

Model Accuracy Balanced Accuracy ROC AUC F1 Score
XGBClassifier 0.72 0.71 0.71 0.72
LGBMClassifier 0.72 0.71 0.71 0.71

RandomForestClassifier 0.72 0.70 0.70 0.72
SVC 0.72 0.70 0.70 0.71

LogisticRegression 0.68 0.68 0.68 0.68

of the supervisor. We capture the marginal effect of hiring an additional supervisor by solving the

optimization problem OSVP(Ω−Ωschedule), where Ω−Ωschedule represents the unfulfilled target

visits given the visiting schedule of the existing supervisor.

Figure O.3 illustrates the cumulative average additional village visits per week facilitated by

recruiting more quality supervisors. Note that while an additional supervisor increases the cumula-

tive village visits, we observe diminishing marginal returns from supervisor recruitment and newly

hired supervisors may be left idle, thus leading to another source of inefficiency (for example, the

seventh supervisor only visits 2 villages throughout a weekly schedule). Recall from §4.3 that a

one-day decrease in the average number of days between supervisor visits can decrease the weav-

ing times by 2.8% -14.1%. Using these estimates, we can calculate the effect on weaving times

from increased number of available supervisors and more frequent supervisor visits. In particular,

Figure O.4 demonstrates that recruiting additional supervisors can decrease weaving times and

subsequently reduce the number of rugs with lower-than-expected productivity by 1.56%-9.97%

conservatively (7.91%-38.89% optimistically).
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Figure O.3 Cumulative average weekly extra village visits from hiring additional supervisors

Figure O.4 Cumulative reduction in rugs with lower-than-expected productivity from hiring additional supervisors,

the optimistic estimate is in orange and conservative estimate is in blue in the figure.

O.7. Continuous Model of Supervisor Visits (CMSV)

To increase supervisor visits on looms predicted to have lower-than-expected productivity, instead

of having a binary model of pre-decided target number of supervisor visits Ω
binary(T )
j

13 (as specified

in Equation 4), we may alternatively consider a continuous function for village vj, Ω
cont(T )
j =

γj
∑

i(hij −fij)+, where hij is the standard weaving rate for the rug on loom i in village vj and fij

is the corresponding machine-learning prediction of the weaving rate. Note that γj is a normalizing

constant and it depends on the number of rugs being weaved in village vj, nj. We further define

xj as the integer decision variable indicating the number of supervisor visits to village vj over the

next T days, and we find Ωcont by solving an integer program given by,

CMSV=max
x

∑
vj

rjxj (O.2a)

13 We use Ω
binary(T )
j to denote the binary target number of supervisor visits ΩT

j in Equation 4 for ease of reference
in this section.
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s.t. xj ≥ c, ∀ vj (O.2b)

xj ≤ T, ∀ vj (O.2c)∑
vj

xj ≤ c̄ · |V |, (O.2d)

xj ∈Z, ∀ vj, (O.2e)

where rj :=
∑

i(hij−fij)
+

nj
is the average delay in weaving rates across all rugs in village vj. Therefore

CMSV would prioritize visiting villages with lower than expected productivity, while ensuring

that (i) each village is visited at least c times and at most T times (once per day)(O.2b and O.2c),

and (ii) the total number of visits is upper bounded by the product of c̄ and the number of villages

(O.2d).

To better compare Ω
binary(T )
j and Ω

cont(T )
j , we further consider a normalized continuous model,

where we solve CMSV with an additional constraint
∑

vj
xj =

∑
vj
Ω

binary(T )
j , which enforces the

same supervisor workload as in the binary model. Figure O.5 illustrates the results of solving

CMSV for Ω using real-world data from Jaipur Rugs when T is one week, c= 1 and c̄= 2. On the

left (Panel a), we plot the average weekly target visits for villages with a loom that is predicted

to have lower-than-expected productivity and villages with no such looms. For both the sets of

villages, we compare the average number of weekly visits in the binary model (Equation (4)), the

continuous model (CMSV) and the normalized continuous model, respectively. The error bars plot

the standard deviation in visits scheduled from the corresponding model. By definition (Equation

(4)), the binary model has constant weekly visit numbers across villages in each group. We find that,

compared to the benchmark binary model, the continuous model slightly increases average weekly

visits to villages with lower-than-expected productivity looms (villages with higher-than-expected

productivity looms) by 5.5% (23.14%), but significantly increases the variability in the number

of visits across villages. These results suggest that formulating a continuous model of supervisor

visits leads to a highly variable number of visits across villages, making it difficult to implement

in practice. The density plot on the right (Panel (b)) illustrates the distribution of differences in

visits over 2 weeks within the same village. While the binary model has a maximum change of one

visit, there is high variability in visits over time for the continuous model. In particular, for 21.74%

of villages, the total number of visits more than doubled over the previous week. Similarly, for

10.14% of the villages, visits changed from one extreme to the other over two weeks (a difference

of 5 visits week-over-week). Our calculations thus indicate that the continuous formulation results

in supervisor visits that are more sensitive to the machine-learning predictions, and in turn highly

variable across villages and time. Therefore we consider the binary objective visit formulation

specified in Equation (4).
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(a) Supervisor objective visits
(b) Visits variability across weeks

Figure O.5 Average weekly objective visits for villages with a predicted low-productivity loom and villages with

predicted high-productivity looms when c= 1 and c̄= 2 (Panel (a)), where the error bars plot the

standard deviation in visits from the corresponding policy. Density plot of difference in visits to villages

over 2 weeks (Panel (b)). Binary Model is in red, Continuous Model is in green and Normalized

Continuous Model is in orange in the figure.

O.8. Alternative Objective Formulation

While the formulation of OSVP(Ω) in (5a)-(5k) aims at minimizing the difference between the

target and scheduled supervisor visits, we may also want to ensure that the newly proposed routes

remain as close as possible to current supervisor routes for easier acceptance and real-world imple-

mentation. We account for this objective and present an alternative formulation.

As before, we let ytj = 1 if village vj is visited on day t, and 0 otherwise and xt
ij = 1 if arc (vi, vj)

is traversed on day t, and 0 otherwise. We further define x
existing(t)
ij = 1 if the current supervisor

routes traverse across village vi and vj on day t, and 0 otherwise. Note that the value of xexisting

is fixed and given and thus we have,

min
x,y,w,s

λ
∑
vj

wj +(1−λ)
∑
t

st (O.3a)

s.t.
∑

(vi,vj)

x
existing(t)
ij −xt

ij ≤ st, ∀ t (O.3b)

∑
(vi,vj)

−xexisting(t)
ij +xt

ij ≤ st, ∀ t (O.3c)

st ≥ 0, ∀ t (O.3d)

(5b)− (5k), (O.3e)

where 0 < λ < 1 is a tuning parameter, and the additional constraints (O.3b)- (O.3d), together

with the auxiliary variable st, set limits on the proposed changes to existing routes.
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O.9. Details on Estimated Impact of Targeted Supervisor Visits

In this section, we give detailed steps of how we derive the estimated reduction in rugs with

lower-than-expected productivity.

Recall that our datasets include rug-level production data with features of rug weaving time (in

days), baseline expected completion time (in days) used by Jaipur Rugs, and the supervisor visit

data with the exact dates on which the supervisor visited a rug. A rug is considered to have lower-

than-expected productivity if its weaving time exceeds the baseline expected completion time.

With the datasets and features above, we are able to calculate (i) the actual number of rugs with

lower-than-expected productivity, (ii) the actual average number of days between supervisor visits

for any rug, and (iii) the scheduled average number of days between supervisor visits under Policy

MPTO for any rug. Since a one-day decrease in the average number of days between supervisor

visits can decrease the weaving times by 2.8% -14.1% (see §4.3), we obtain the new rug weaving

time under Policy MPTO by taking the difference between (ii) and (iii) and then multiplying by

the value of improvement rate (2.8% -14.1%). Following the same definition of rug productivity, we

derive the updated number of rugs with lower-than-expected productivity by comparing the new

weaving time with the baseline expected completion time.

O.10. Proofs

Proof of Proposition 1 To show the existence of a computationally tractable algorithm for

solving the supervisor visit optimization problem OSVP(Ω) when c= 0, we prove the equivalence

of OSVP(Ω) and TOP(∆̃,G(V )) so that the proposition follows immediately by applying the

result of Xu et al. (2020).

Assume c = 0. We claim that the OSVP(Ω) problem with time horizon T is equivalent to

TOP(∆̃,G(V )) with K vehicles if T =K. To see this, we establish a one-on-one correspondence

between the conditions of the OSVP(Ω) problem and the TOP(∆̃,G(V )) problem. We first show

that the village-level profit function ∆̃i(·) has two properties. (i) the non-decreasing property:

suppose 1≤ ni ≤ n′
i are two integers, then we have ∆̃i(ni) =

∑ni−1

ci=0 (Ω
T
i − ci)+ ≤

∑n′
i−1

ci=0 (Ω
T
i − ci)+ =

∆̃i(n
′
i), since each term (ΩT

i − ci)
+ is non-negative; (ii) the submodularity property: suppose 0≤

ni ≤ n′
i, then for any non-negative integer δ, we have ∆̃i(ni + δ)− ∆̃i(ni) =

∑ni+δ−1

ci=ni
(ΩT

i − ci)
+ ≥∑n′

i+δ−1

ci=n′
i

(ΩT
i − ci)

+ = ∆̃i(n
′
i + δ) − ∆̃i(n

′
i) because each term (ΩT

i − ci)
+ is non-increasing with

respect to the visit number ci.

Next, recall that in the OSVP(Ω) problem, we have binary decision variables xt
ij indicating

whether arc (vi, vj) is traversed on day t or not. We note that the set of active arcs ({xt
ij = 1})

satisfying the valid arc flow constraints ((5e)-(5f)) and the no subtour constraint (5g) translates

directly to the decision variable Pk of valid path starting and ending at v0 in the TOP(∆̃,G(V ))
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problem, and vice versa. With the assumption that c = 0, constraint (5b) becomes trivial and

constraint (5c) is automatically satisfied in the TOP(∆̃,G(V )) problem since the marginal profit

beyond Ω is set to 0. The cost budget Bk in Xu et al. (2020) corresponds to Tmax in constraint

(5d). The cost function ξ(Pk) defined as
∑

vi∈Pk
hk(vi) +

∑
(vi,vj)∈Pk

ck(vi, vj) in Xu et al. (2020),

where hk is the node service cost and ck is the edge travel cost, maps exactly to constraint (5d),

where we have the loom inspection time cost τ · nj at village vj and travel time cost
Dij

ν
per arc

(vi, vj), respectively. We therefore conclude that the feasible regions of the OSVP(Ω) problem

and TOP(∆̃,G(V )) problem are equivalent. For the objective functions, note that closing the gap

between scheduled visits and target visits (as in OSVP(Ω)) is the same as allocating reward for

each lower-than-target visit and maximizing total collected rewards (as in TOP(∆̃,G(V ))). Hence,

OSVP(Ω) is equivalent to TOP(∆̃,G(V )) when c= 0.

Having established the equivalence of TOP(∆̃,G(V )) and our supervisor scheduling and rout-

ing optimization problem, we may leverage the polynomial run-time algorithm developed by Xu

et al. (2020) to solve OSVP(Ω) efficiently. In particular, this implies that there is a (1− ( 1
e
)α)-

approximation algorithm for OSVP(Ω) following Theorem 1 of Xu et al. (2020), assuming that

there is a α-approximation solution for the classic Orienteering Problem (Golden et al. 1987),

0<α< 1. Applying the state-of-art 1
2+ϵ

-approximation algorithm for the Orienteering Problem due

to Chekuri et al. (2012), where ϵ is any fixed constant with 0< ϵ≤ 1, we state that our supervisor

visit optimization problem OSVP(Ω) can be solved efficiently with competitive ratio of 1− ( 1
e
)

1
2+ϵ .


