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We study a problem faced by a national food rescue platform which matches donations to the first recipient who claims it. Recipients

have very different response rates, leading to a few highly responsive recipients claiming the bulk of the donations. We ask whether

priority lists, which control when the donation is announced to each recipient, are a remedy for these potentially inequitable outcomes.

We show that an 𝑛-stage priority list, which controls the announcement time for every agent individually, can achieve any desired

fractional allocation, hence any fairness target. Two-stage priority lists, which announce a donation in only two waves, are simpler to

implement and administer but offer less fine-grained control over fairness outcomes. We give polynomial-time algorithms to find the

2-stage and 𝑛-stage priority lists that maximize a class of Rawlsian objective functions. Computational experiments confirm that even

simple, 2-stage priority lists lead to significantly more balanced allocations than the existing first-come first-served allocation rule.
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1 INTRODUCTION

We partner with a food rescue platform (FRP) which matches donations to recipients in 50 states. The organization

maintains a database of recipients in each area (typically food pantries and emergency relief organizations) who sign

up to receive notifications when donations are available. When the FRP is notified of a donation, which can range from

left-over already-prepared meals at a catered event to 20, 000 gallons of dairy, they announce the donation, including

a description and pickup location, to those recipients who are able collect the donation from the donor location (for

smaller donations this is usually recipients within a 15-30 mile radius, for larger donations this may include recipients

in other states). The first recipient to respond that they want the donation ‘claims’ it and is placed into contact with the

donor to arrange pickup.

By acting as matchmaker in this way,
1
the FRP enables donations to reach those who have active and current need

for it with minimal intervention and without the informational and logistical overhead of eliciting each recipient’s

value for an item, which may be necessary for any centralized allocation algorithm. Of course, the first-come first-serve

(FCFS) nature of the matching system also has a very real downside. Due to differences in size and staffing levels, some

organizations are able to receive and respond to notifications much more quickly than others. As a result, in a three

year sample of data from several counties in Florida, 5% of recipients recieved 50% of donations (and 82% of the donated

pounds of food). This concentration of donations is common across the industry even at organizations who do not make

1
The FRP has recently experimented with providing delivery services themselves and offering the option of splitting a large donation into multiple

smaller ones. However, in the majority of states they still function only as a matching platform — we study this aspect and leave the interesting logistical

questions around volunteer delivery services and when to break bulk for future work.

Authors’ addresses: Gerdus Benadè, Boston University, USA, benade@bu.edu; Aydin Alptekinoglu, Pennsylvania State University, USA, aydin@psu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 Benadè and Alptekinoglu

allocations on an FCFS basis; for example, Lee et al. [7] report that (prior to intervention) 412 Food Rescue
2
allocated

70% of their donations to 20% of recipients.

Our goal is to develop a framework for the more equitable distribution of donations, given the constraints of the

FRP’s existing IT infrastructure and without increasing the elicitation or reporting burden on any party.

Intuitively, we may agree that allocating 50% of donations to 5% of recipients is not a desirable outcome, but this

does not answer the question of what objective function to optimize. From discussions with the FRP, we learn that they

value allocating donations to recipients proportional to the recipient’s current demand or, if demand information is not

readily available,
3
closer to uniformly. After deliberation, the FRP set a Rawlsian objective of maximizing the value for

the worst-off recipient. We consider three possible meanings of ‘value’: the number of donations received, the total

weight (in pounds) of the donations received, and the fraction of the recipient’s demand fulfilled by the donations.

Next, we narrow down the space of potential allocation mechanisms. The FRP wants to minimize any disruption

caused to existing recipients by a new mechanism. This excludes market-based mechanisms (as employed at Feeding

America [8]) that require eliciting every recipient’s value for every item. A promising class of allocation mechanisms

are priority lists, which retains all of the existing FCFS infrastructure but gives the FRP control over one additional

parameter: exactly when a donation is announced to each recipient. Ideally, by delaying announcing an item to the

fastest responders, others will have more opportunity to claim donations, eventually leading to more equitable outcomes.

Priority lists offer several other benefits. Compared to the FRP unilaterally deciding where to assign each item, it

continues to involve recipients in the allocation process and avoids situations where the FRP makes inappropriate or

wasteful allocations due to incomplete information about the current operational constraints (capacity, need etc.) at the

recipient. Priority lists are easy to explain to recipients, and require only minor changes to the current IT infrastructure.

From the recipient’s perspective this intervention is minimally disruptive — the claiming process under a priority list

works exactly as before, in fact, it may not even be possible for a recipient to tell when a priority list is used.

1.1 Our contribution

We study whether priority lists lead to more a more equitable distribution of donations and show how to construct

priority lists that optimize Rawlsian objectives under exponentially distributed response rates.

In Section 3, we study 𝑛-stage priority lists, which take the form of an ordering of the recipients and, for each recipient,

the time after which the donation is announced to them (if still unclaimed). We characterize the expected (fractional)

allocations that are achievable for each ordering of the recipients. Next, we observe that equal fractional allocations can

be achieved by a priority list which orders recipients from slowest to fastest. We show the flexibility of 𝑛-stage priority

lists and generalize this idea to achieve any desired fractional allocation: order recipients in decreasing order of desired

fractional share divided by response rate. This observation, together with a simple water-filling algorithm, is enough to

maximize the value of the worst-off agent.

Next, in Section 4, we study a simpler form of priority lists we call binary or 2-stage priority lists, in which a donation

is first announced to some subset of recipients and, after some time, announced to the rest. In other words, a donation

is announced to everyone after only two stages, rather than individually in 𝑛 stages. Binary priority lists are less

flexible than 𝑛-stage priority lists and can not achieve every fractional allocation. However, we show that there are

always optimal binary priority lists where the set of priority recipients have a very particular structure, specifically,

2
A food rescue service operating out of Pittsburgh, PA.

3
There are good reasons why recipients may not want to publicize or share how many individuals they serve, for example, if the organization works

exclusively with undocumented immigrants.
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Achieving Rawlsian Justice in Food Rescue 3

sort recipients by the ratio of their desired fractional allocation to their response rate and include them in the priority

set in this order (until some cut-off). This enables an efficient algorithm for finding the optimal binary priority list.

Finally, we test our ideas on real data in Section 5. We use a sample of data from Florida to calibrate our response

rates and item sizes and simulate the existing FCFS mechanism as well as some variants on the optimal binary priority

lists. We find that priority lists lead to a significantly more equitable distribution of donations across all metrics. For

example, under FCFS roughly 20% of recipients receive no items and 75% of items are concentrated among only 20% of

recipients, in contrast, all recipients receive at least one item under the optimal binary priority list and the best-off 20%

of recipients receive only 30% of all items. The simulations also reveal a drawback of priority lists, which is that they

slow down allocation times, suggesting that they should be deployed carefully when allocating perishable goods. We

leave further investigation of this for future study.

1.2 Related work

We briefly remark on some of the most closely related literature. On the theoretical side, Kawase and Sumita[6] maximize

minimum welfare in an online allocation problem and provide approximations to the optimal max-min welfare in

hindsight, under the assumption that valuations are additive and item values are drawn from a distribution. In contrast,

we ignore agent values and focus on the effect of response rates in an FCFS setting where the allocation mechanism can

control the (fractional) allocation only indirectly through the construction of an appropriate priority list.

Several papers study or propose allocation mechanisms in real-world food rescue organizations. Prendergast [8]

analyzes a marketplace rolled out at Feeding America which lets each recipient bid some artificial currency on roughly

30 truckloads of donations every day. In our context donations are smaller and less regular, making it harder to

ask for (cognitively demanding) bids on the items. Lee et al. [7], in collaboration with 412 Food Rescue, develop an

algorithmic framework that lets dispatchers train a model which recommends who should receive a donation and how

it should be delivered to them. Shi et al. [9], working with the same organization, propose a machine learning algorithm

to recommend which recipients should be contacted first for a given donation. Aleksandrov et al. [1] study simple

mechanisms where an agent only indicates whether they like an item or not, and give results on envy-freeness (which

requires that every agent prefers their own bundle over every other) and strategyproofness.

Several papers study the fair allocation of indivisible resources arriving online with an eye to minimizing envy [5]

and simultaneously maintaining efficiency [4, 10, 11], even in cases where the allocation algorithm has only limited

information about recipients’ preferences [3]. Closer to our objective, Banerjee et al. [2] aim for proportional allocations

instead of envy-freeness and ask if having predictions of recipients’ values for goods help. In contrast, our notion of

fairness is maximizing the welfare of the worst-off recipient rather than proportional allocation or minimizing envy

and we do not evaluate the outcome with regards to underlying values.

2 MODEL

We develop a simplified model of the decision problem faced by the food rescue service. Consider a set N of 𝑛 agents,

or recipients. Let [𝑛] = {1, . . . , 𝑛}. For set 𝑆 ⊂ N , let 𝑆 = N \ 𝑆. A sequence of𝑚 items or donations arrive, one after the

other, to be allocated immediately and irrevocably. A item typically consists of a quantity of food from one or more

categories (for example, produce, dairy or prepared meals). We let 𝑠𝑡 denote the size of donation 𝑡 , typically measured

in pounds. Donation 𝑡 is within the pickup radius of recipients 𝑅𝑡 ⊆ N , we take 𝑅𝑡 as known since recipients specify a

pickup radius when signing up. Each item will be announced to (and competed for by) agents in 𝑅𝑡 . The food rescue

platform’s existing allocation system does not elicit any signals of preferences or interest. However, if this information
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was available we could incorporate it in a similar way, for example, if 𝐼𝑡 is the set of agents interested in item 𝑡 the item

would be announced to 𝑅𝑡 ∩ 𝐼𝑡 .
Let Δ𝑛 denote the simplex Δ𝑛 = {𝑥 ∈ R𝑛 :

∑𝑛
𝑖=1

𝑥𝑖 = 1}. Denote with 𝑥𝑡 ∈ Δ𝑛 the allocation of the 𝑡-th item, where

𝑥𝑡
𝑖
is the fraction of item 𝑡 received by 𝑖 . Let 𝑋 𝑡 ∈ R𝑛×𝑡 be the matrix with 𝑥𝑘 as its 𝑘-th column, for 𝑘 = 1, . . . , 𝑡 . Let

𝑋 = 𝑋𝑚
, the final allocation. For logistical reasons, donations are allocated in their entirety to a single recipient, so

eventually 𝑥𝑡 ∈ {0, 1}𝑛 . However, when the item arrives and before it is assigned, it will be useful to think of 𝑥𝑡 as

fractional with 𝑥𝑡
𝑖
representing the probability that 𝑖 receives item 𝑖 under a particular allocation mechanism.

2.1 Valuation functions and Rawlsian justice criteria

Given realized assignments of the𝑚 items, 𝑋𝑚
, the food rescue platform keeps track of several metrics in its efforts to

ensure a reasonable distribution of the donations among recipients. Principal among these are

• The number of items recipient 𝑖 received, with 𝑣N
𝑖
(𝑋 ) = ∑𝑚

𝑗=1
𝑋𝑖 𝑗 .

• The total poundage received by recipient 𝑖 , with 𝑣LB
𝑖
(𝑋 ) = ∑𝑚

𝑗=1
𝑋𝑖 𝑗𝑠 𝑗 .

• The fraction of recipient 𝑖’s demand that is fulfilled 𝑣D
𝑖
(𝑋 ) = ∑𝑚

𝑗=1
𝑋𝑖 𝑗𝑠 𝑗/𝑑𝑖 .

We focus on these valuation functions but note that our results apply to any valuation function linearly increasing in

each of the 𝑋𝑖 𝑗 . At intermediate points of the process, say after the arrival of 𝑗 items, 𝑥 𝑗 may be fractional (representing

the expected allocation) and 𝑥𝑘 = 0 for those 𝑗 < 𝑘 ≤ 𝑚 items that are yet to arrive.

The food rescue organization is interested in Rawlsian welfare, as measured by the welfare of the worst-off recipient.

If all items were known in advance, we could formulate this problem as max𝑋 min𝑖∈N 𝑣𝑖 (𝑋 ). Given the online nature of

the problem and the fact that previous allocations are irreversible, we instead consider a sequence of single stage decision

problems: upon the arrival of the 𝑡-th item we wish to solve max𝑥𝑡 ∈Δ𝑛
min𝑖∈𝑅𝑡 𝑣𝑖 (𝑋 𝑡−1, 𝑥𝑡 ). Notice the minimization is

over only those agents eligible to receive item 𝑡 .

2.2 Exponential response rates and FCFS allocations

The food rescue platform currently allocates donations on a first come first served basis. Arriving items are announced

to recipients in 𝑅𝑡 and allocated to the first recipient who claims it.

We model this by associating each recipient 𝑖 with response rate, modelled with an exponential distribution with

parameter 𝜆𝑖 > 0. Let 𝜏𝑖,𝑡 be the time that passes between 𝑖 hearing of item 𝑡 and moving to claim it. We assume

𝜏𝑖,𝑡 ∼ Exp(𝜆𝑖 ) when 𝑖 ∈ 𝑅𝑡 (𝑖 wants donation 𝑡 and it is within 𝑖’s pickup radius), and set 𝜏𝑖,𝑡 = ∞ otherwise. When

𝜏𝑖,𝑡 ∼ Exp(𝜆𝑖 ), it is known that the expected response time E[𝜏𝑖 ] = 1/𝜆𝑖 . For a subset of participants 𝑆 ⊆ N with

exponential response rates, let 𝜆𝑆 =
∑
𝑖∈𝑆 𝜆𝑖 . A property of the exponential distribution is that, for any such subset,

𝜏𝑆 = min𝑖∈𝑆 {𝜏𝑖 } ∼ Exp(𝜆𝑆 ), so E[min𝑖∈𝑆 𝜏𝑖 ] = 1/𝜆𝑆 . Furthermore, the probability that any 𝑖 ∈ 𝑆 responds first and

receives an item is 𝜆𝑖/𝜆𝑆 . In particular, in the first-come first-served regime outlined above where each item is announced

to recipients in 𝑅𝑡 , 𝑥
𝑡
𝑖
= 𝜆𝑖/𝜆𝑅𝑡 .

Example 1. Consider three recipients with response rates 𝜆𝑖 = 𝑖, for 𝑖 = 1, 2, 3, all able to pick up the donation. In the

basic FCFS setting, with exponentially distributed response times, 𝑥FCFS
𝑖

= 𝜆𝑖/(𝜆1 + 𝜆2 + 𝜆3), as a result, 𝑥FCFS = ( 1
6
, 2

6
, 3

6
) .

2.3 Priority lists

One approach available to the food rescue platform is to solvemax𝑥𝑡 ∈Δ𝑛
min𝑖∈𝑅𝑡 𝑣𝑖 (𝑋 𝑡−1, 𝑥𝑡 ) for the fractional allocation

that maximizes the Rawlsian objective at the arrival of every time 𝑡 , and then randomize accordingly to decide who
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receives the item. We call the ideal (fractional) assignment of the current item 𝑥∗ and the resulting objective function

value 𝑧∗. In the remainder of this section we consider a generic item within the pick-up radius of 𝑅 ⊆ N . Such explicit

randomization may easily appear unfair, and this approach also ignores any real-time constraints or demands from the

recipient orgnaizations.

Instead, the FRP wishes to augment their existing FCFS system with a priority list. Before defining priority lists it is

necessary to fix notation to speak about permutations. For permutations 𝜋 : [𝑛] → [𝑛] over the recipients, 𝜋 (1) is
the position of recipient 1 and 𝜋−1 (1) is the recipient in position 1 — the one with highest priority. We use 𝜋 ≜ 𝜋−1

and write permutations in word representation (omitting braces as conventional), so 𝜋 = 231 means that recipient 3 is

placed first on the priority list. It is often more convenient to refer to the inverse permutation 𝜋 = 312, since recipients

appear here in order of priority, with the highest priority recipient appearing first. For vector 𝑣 ∈ R𝑛 and permutation

𝜋 , let 𝜋 ∗ 𝑣 = (𝑣𝜋 (1) , . . . , 𝑣𝜋 (𝑛) ), in particular, the components of 𝜋 ∗ 𝑣 appear in the order of priority.

An 𝑛-stage priority list is defined as (𝜋, ®𝑡 = (𝑡1, . . . , 𝑡𝑛)), where 𝜋 is a permutation of the recipients based on priority

and ®𝑡 a sequence of time intervals. An 𝑛-stage priority list (𝜋, ®𝑡) announces the available donation to one agent at a

time in order of 𝜋 . Let 𝑡𝑘 be the time between the donation being announced to 𝜋 (𝑘) and 𝜋 (𝑘 + 1), with 𝑡0 = 0 and

𝑡𝑛 = ∞. Call the time interval [∑𝑖−1

𝑡=0
𝑡𝑖 ,

∑𝑖
𝑡=0

𝑡𝑖 ] period 𝑖 , so that 𝜋 (𝑖) and all 𝜋 (𝑖′), 𝑖′ < 𝑖 are aware of the item in period

𝑖 . To account for the radius 𝑅 we further constrain 𝜋 so that 𝜋 (𝑖) < 𝜋 ( 𝑗) for all 𝑖 ∈ 𝑅, 𝑗 ∈ N \ 𝑅 and set 𝑡 |𝑅 | = ∞, so
recipients able to pick the donation up is given highest priority and the item is allocated to one of them with probability

1. When the ordering 𝜋 is clear from the context, we assume recipients are relabeled according to 𝜋 , so that the item is

announced to 𝑖 at the beginning of period 𝑖 .

Perhaps the simplest implementation of a priority list scheme is a 2-stage (or binary) priority list (𝐿,𝑇𝐿) defined by a

subset of recipients 𝐿 ⊆ 𝑅 and a time 𝑇𝐿 . Upon arrival, the item is announced to the set of recipients 𝐿. If it remains

unclaimed at time 𝑇𝐿 , the remainder of the recipients in 𝑅 \ 𝐿 are also notified of the item.

Recall Δ𝑛 denotes the simplex. Employing a (𝑛-stage or 2-stage) priority list results in an expected (fractional)

allocation 𝑥𝑡 ∈ Δ𝑛 where 𝑥𝑡
𝑖
is the probability that 𝑖 receives the donation. Using a priority list appears to limit the

amount of control that the food rescue platform has over 𝑥𝑡 . However, by carefully controlling when each recipient

finds out about the available item, there is still hope that the resulting expected allocation 𝑥𝑡 is close to 𝑥∗ and

𝑧 = min𝑖∈𝑅 𝑣𝑖 (𝑋 𝑡−1, 𝑥𝑡 ) is close to 𝑧∗.

3 GENERAL 𝑛-STAGE PRIORITY LISTS

Consider the problem facing the food rescue platform when the 𝑡-th item arrives. The first 𝑡 − 1 items are already

allocated, with 𝑋 𝑡−1

𝑖 𝑗
= 1 when the 𝑗-th item went to 𝑖 . The food rescue platform wishes to maximize the expected value

of the worst-off recipient. New item 𝑡 can only be received by recipients in 𝑅𝑡 , so 𝑥
𝑡
𝑖
= 0 for 𝑖 ∈ N \ 𝑅𝑡 and, for the

valuation functions we consider, 𝑣𝑖 (𝑋 𝑡−1, 𝑥𝑡 ) = 𝑣𝑖 (𝑋 𝑡−1) . Since agents outside 𝑅𝑡 are not eligible to receive 𝑡 , let

𝑧∗ = max

𝑥𝑡 ∈Δ𝑛

min

𝑖∈𝑅𝑡
𝑣𝑖 (𝑋 𝑡−1, 𝑥𝑡 ).

In this single stage problem, recipients in N \ 𝑅𝑡 are completely irrelevant: the donation is not announced or allocated

to them, and they do not affect the objective function. As a result, we may restrict the problem only to recipients in 𝑅𝑡 ;

for notational convenience we make the equivalent assumption thatN = 𝑅𝑡 . We also suppress the dependence on 𝑡 and

write 𝑋 to represent the previous allocation instead of 𝑋 𝑡−1
and 𝑥 for the allocation of the new item instead of 𝑥𝑡 . Now

𝑧∗ = max

𝑥𝑡 ∈Δ𝑛

min

𝑖∈N
𝑣𝑖 (𝑋, 𝑥) .
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Practically, the food rescue platform does not get to decide 𝑥 . Instead, it decides on an allocation policy, in this case an

𝑛-stage priority list 𝐿 = (𝜋, ®𝑡), which results in some expected allocation 𝑥𝐿 . We write this as

𝑧PL = max

𝐿
min

𝑖∈N
𝑣𝑖 (𝑋, 𝑥𝐿) .

Our main result in this section is that, for the valuation functions we care about, the food rescue platform does not give

up any flexibility when it commits to using an 𝑛-stage priority list rather than unilaterally enforcing a (randomized)

assignment, in other words, 𝑧∗ = 𝑧PL .

3.1 Finding the optimal fractional allocation

Given previous allocation𝑋 , let 𝑠 be the quantity of the newly arrived item and𝑥∗ the optimal solution tomax𝑥∈Δ𝑛
min𝑖∈N 𝑣𝑖 (𝑋, 𝑥).

We show that 𝑥∗ can be found with a simple water-filling algorithm, Algorithm 1, for 𝑣 = 𝑣D . The same algorithm

also yields 𝑥∗ for 𝑣 = 𝑣LB by setting 𝑑𝑖 = 1 for all 𝑖 ∈ N , and for 𝑣 = 𝑣N by setting 𝑠 = 1 for all items. The algorithm

considers the agents in order from lowest value on the 𝑋 to highest. First, it adds recipient 1 (the recipient with lowest

value) to the set of active recipients (those that determine the objective function value) 𝑁 . Then it determines how

much the value of 1 must increase to equal the value of the second highest agent and, assuming it is possible, increases

𝑥1 until the values of agents 1 and 2 are equal. Now agent 2 is added to the set of active recipients, the algorithm checks

the increase required to reach the value of the third highest agent and raises agents 1 and 2 simultaneously. At some

point it may not be possible to increase all the active agents to match the next value, in which case their values are

increased as much as possible until

∑
𝑖∈N 𝑥𝑖 = 1.

Algorithm 1:Water-filling algorithm to find 𝑥∗ = arg max𝑥∈Δ𝑛
min𝑖∈N 𝑣D

𝑖
(𝑋, 𝑥)

Data: Demands 𝑑𝑖 for 𝑖 ∈ N . Previous allocations 𝑋 . Agents labelled so that 𝑣1 (𝑋 ) ≤ 𝑣2 (𝑋 ) ≤ · · · . Item of size 𝑠 .

Result: Fractional allocation 𝑥 ∈ Δ𝑛 maximizing min𝑖∈N 𝑣D
𝑖
(𝑋, 𝑥) = min𝑖∈N (

∑𝑡−1

𝑗=1
𝑋𝑖 𝑗𝑠 𝑗 + 𝑥𝑖𝑠)/𝑑𝑖

1 𝑥 ← 0; 𝑖 ← 1; 𝑋remain = 1;

2 𝑣𝐷
𝑛+1 (𝑋 ) ← max𝑖∈N 𝑣D

𝑖
(𝑋 ) + 𝑠/min𝑖∈N 𝑑𝑖 ; /* largest value achievable */

3 𝑁 ← {1} ; /* set of agents with minimum value */

4 while 𝑋remain > 0 do
5 𝛿 = 𝑣D

𝑖+1 (𝑋 ) − (𝑣
D

1
(𝑋 ) + 𝑥1𝑠

𝑑1

) ; /* gap to next lowest value */

6 if
∑
𝑖∈𝑁

𝛿 ·𝑑𝑖
𝑠 ≤ 𝑋remain then /* increase value of all agents in 𝑁 to match 𝑖 + 1’s */

7 𝑥 [𝑁 ] ← 𝑥 [𝑁 ] + 𝛿
𝑠 · 𝑑𝑖

8 𝑋remain ← 𝑋remain −
∑
𝑖∈𝑁

𝛿
𝑠 · 𝑑𝑖

9 𝑖 ← 𝑖 + 1

10 𝑁 ← 𝑁 ∪ {𝑖}
11 else /* increase values proportional to what remains */

12 𝑥 [𝑁 ] ← 𝑥 [𝑁 ] + 𝑋remain∑
𝑖∈𝑁

𝛿 ·𝑑𝑖
𝑠

· 𝛿𝑠 · 𝑑𝑖

13 𝑋remain ← 0

We illustrate the working of the algorithm on a small example.

Example 2. Consider an instance with three recipients with 𝑑1 = 5, 𝑑2 = 𝑑3 = 10 and 𝑣D
1
(𝑋 ) = 1, 𝑣D

2
(𝑋 ) = 4 and

𝑣D
3
(𝑋 ) = 10. Suppose the arriving item has size 30. Initially 𝑥 = 0. The algorithm starts by increasing 𝑥1 until 1’s value is

equal to 2’s. This happens at 𝑥1 = 0.5, where 1 + 0.5 · 30/5 = 4. Now 1 and 2’s values are increased simultaneously until it
Manuscript submitted to ACM
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reaches 𝑣D
3
(𝑋 ) or the entire item is allocated. Here the latter happens and the algorithm terminates with 𝑥1 = 4

6
, 𝑥2 = 2

6

and 𝑣D
1
(𝑋, 𝑥) = 1 + ( 4

6
· 30)/5 = 5 = 4 + ( 2

6
· 30)/10 = 𝑣D

2
(𝑋, 𝑥).

Theorem 3. The output of Alg 1, denoted 𝑥∗, is an optimal solution to max𝑥∈Δ𝑛
min𝑖∈N 𝑣D

𝑖
(𝑋, 𝑥).

Before proving Theorem 3, we establish the following fact about Algorithm 1.

Lemma 4. At the end of any iteration of Algorithm 1, 𝑣D
𝑖
(𝑋, 𝑥) = 𝑧 (𝑥) for all 𝑖 ∈ 𝑁 .

Proof of Lemma 4. Call 𝑁 at the end of iteration 𝑖 , 𝑁𝑖 , and similarly use 𝑥𝑖 , 𝑋 𝑖
remain

to refer to 𝑥 and 𝑋remain,

respectively, at that point. We prove by induction that at the end of iteration 𝑘 , 𝑣D
𝑖
(𝑋, 𝑥𝑘 ) = 𝑧 (𝑥𝑘 ) for all 𝑖 ∈ 𝑁𝑘 .

As base case for the induction, consider iteration 1 of Algorithm 1. If 𝑁1 = {1}, it means that 𝛿 is large enough that

𝛿 ·𝑑1

𝑠 > 𝑋remain = 1. In this case 𝑥1 <
𝛿 ·𝑑1

𝑠 , implying that

𝑣D
1
(𝑋, 𝑥1) = 𝑣D

1
(𝑋 ) + 𝑥1𝑠

𝑑1

< 𝑣D
1
(𝑋 ) + 𝛿 = 𝑣D

1
(𝑋 ) + (𝑣D

2
(𝑋 ) − (𝑣D

1
(𝑋 ) + 0 · 𝑠

𝑑1

)) = 𝑣D
2
(𝑋 ).

Recipients are labelled in order of increasing values, so this implies 𝑧 (𝑥1) = 𝑣D
𝑖
(𝑋, 𝑥1), as required. Suppose instead

that 𝑁1 = {, 21}. Now 𝛿 ·𝑑1

𝑠 < 𝑋remain = 1 and 𝑥1

1
=

𝛿 ·𝑑1

𝑠 so that

𝑣D
1
(𝑋, 𝑥1) = 𝑣D

1
(𝑋 ) + 𝑥1𝑠

𝑑1

= 𝑣D
1
(𝑋 ) + 𝛿 = 𝑣D

1
(𝑋 ) + (𝑣D

2
(𝑋 ) − (𝑣D

1
(𝑋 ) + 0 · 𝑠

𝑑1

)) = 𝑣D
2
(𝑋 ) .

Since 1 had smallest value, 2 second smallest value and for all 𝑗 ≠ 1, 𝑥1

𝑗
= 0, we again obtain the required condition.

Now, suppose the induction hypothesis holds for all iterations up to 𝑘 − 1. At the end of iteration 𝑘 − 1 (equivalently,

the start of iteration 𝑘), 𝑥𝑘−1

𝑗
= 0 for all 𝑗 ≥ 𝑘 and (by the induction hypothesis) 𝑣𝑖 (𝑋, 𝑥𝑘−1) = 𝑣 𝑗 (𝑋, 𝑥𝑘−1) for all

𝑖, 𝑗 ∈ 𝑁𝑘−1 . 𝑁𝑘−1
takes two possible values: it either includes 𝑘 or not depending on the result of the ‘if’ statement in

the previous iteration.

If 𝑘 ∉ 𝑁𝑘−1, then 𝑋remain = 0 and the algorithm terminates with final 𝑁 = 𝑁𝑘−1
and 𝑥 = 𝑥𝑘−1

, and the induction

hypothesis continues to hold. Suppose instead that𝑘 ∈ 𝑁𝑘
. Now 𝑣1 (𝑋, 𝑥𝑘−1) = 𝑣 𝑗 (𝑋, 𝑥𝑘−1) for all 𝑗 ∈ 𝑁𝑘−1 = {1, . . . , 𝑘}.

Line 5 computes 𝛿 = 𝑣D
𝑘+1 (𝑋, 𝑥

𝑘−1) − 𝑣D
1
(𝑋, 𝑥𝑘−1). If line 6 evaluates to true, there is enough of the item remaining to

increase the allocation of all agents in 𝑁𝑘−1
so that their values match 𝑘 + 1’s. After the value update,

𝑣D𝑗 (𝑋, 𝑥
𝑘 ) = 𝑣D𝑗 (𝑋, 𝑥

𝑘−1) + (𝑥
𝑘 − 𝑥𝑘−1)𝑠

𝑑 𝑗
= 𝑣D𝑗 (𝑋, 𝑥

𝑘−1) +
𝛿𝑑 𝑗

𝑠

𝑠

𝑑 𝑗
= 𝑣D𝑗 (𝑋, 𝑥

𝑘−1) + 𝑣D
𝑘+1 (𝑋, 𝑥

𝑘−1) − 𝑣D
1
(𝑋, 𝑥𝑘−1),

for any 𝑗 ∈ 𝑁𝑘−1
; it follows from the induction hypothesis that 𝑣D

𝑗
(𝑋, 𝑥𝑘 ) = 𝑣D

𝑘+1 (𝑋, 𝑥
𝑘−1). Values don’t decrease

during the remainder of the iteration, and 𝑁𝑘 = 𝑁𝑘−1 ∪ {𝑘 + 1}. We conclude that, since recipients are ordered by

increasing values, 𝑧 (𝑥𝑘 ) = 𝑣D
𝑗
(𝑋, 𝑥𝑘 ) for every 𝑗 ∈ 𝑁𝑘−1

.

It is also possible that line 6 evaluates to False. We perform the computation as before and see that

𝑣D𝑗 (𝑋, 𝑥
𝑘 ) − 𝑣D𝑗 (𝑋, 𝑥

𝑘−1) = 𝛿 · 𝑋remain∑
𝑖∈𝑁𝑘−1

𝛿 ·𝑑𝑖
𝑠

,

which is a constant. No further updates are made to 𝑥𝑘 or 𝑁𝑘 = 𝑁𝑘−1 . Since the values of all recipients in 𝑁𝑘−1
start

equal (by the induction hypothesis) and increase by the same constant, their values at the end of iteration 𝑘 remain

equal. Moreover, 𝑣D
𝑗
(𝑋, 𝑥𝑘 ) < 𝑣D

𝑘+1 (𝑋, 𝑥
𝑘 ) for any 𝑗 ∈ 𝑁𝑘 , so 𝑧 (𝑘) = 𝑣D

𝑗
(𝑋, 𝑥𝑘 ) = 𝑣D

1
(𝑋, 𝑥𝑘 ) . □

Now we are ready to prove that Algorithm 1 returns an optimal fractional allocation.
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8 Benadè and Alptekinoglu

Proof of Theorem 3. Consider output 𝑥∗ with objective function value 𝑧∗. Call 𝑁 ∗ = {𝑖 ∈ N : 𝑣D
𝑖
(𝑋, 𝑥∗) = 𝑧∗} the

set of active recipients, those that have values equal to the objective function value.

Suppose for contradiction there exists an alternative fractional allocation 𝑥 ′ ∈ Δ𝑛 with objective function value

𝑧′ > 𝑧∗. For every 𝑖 ∈ 𝑁 ∗, it holds that∑𝑡−1

𝑗=1
𝑋𝑖 𝑗𝑠 𝑗 + 𝑥 ′𝑖 𝑠
𝑑𝑖

= 𝑣D𝑖 (𝑋, 𝑥
′) ≥ min

𝑘∈N
𝑣D
𝑘
(𝑋, 𝑥 ′) = 𝑧′ > 𝑧∗ = 𝑣D𝑖 (𝑋, 𝑥

∗) =
∑𝑡−1

𝑗=1
𝑋𝑖 𝑗𝑠 𝑗 + 𝑥∗𝑖 𝑠
𝑑𝑖

,

in other words, 𝑥 ′
𝑖
> 𝑥∗

𝑖
and each active recipient must receive a strictly larger fraction of the item in 𝑥 ′ than in 𝑥∗.

Since

∑
𝑖∈N 𝑥 ′

𝑖
= 1 =

∑
𝑖∈N 𝑥∗

𝑖
, this implies there is some 𝑖 ∈ N \ 𝑁 ∗ for which 𝑥 ′

𝑖
< 𝑥∗

𝑖
. Since 𝑥 ′ ≥ 0, this requires

that there is some inactive recipient 𝑘 ∈ N \𝑁 ∗ for who 𝑣D
𝑘
(𝑋, 𝑥∗) > 𝑧∗ and 𝑥∗

𝑘
> 0. Alg 1 only increases the assignments

of the recipients in the set 𝑁 , so at some point during execution 𝑘 must have been added to 𝑁 .

By Lemma 4 and the fact that recipients are never removed from 𝑁 , 𝑘 ∈ 𝑁 at termination and thus 𝑣D
𝑘
(𝑋, 𝑥∗) = 𝑧∗,

contradicting 𝑘 ∈ N \ 𝑁 ∗. We conclude that 𝑥∗ is optimal. □

3.2 Priority lists can achieve all fractional allocations

In the previous section we show that it is possible to find the fractional allocation which maximizes the value of the

worst-off recipient. In this section we sometimes call such a fractional allocation a target allocation and denote it with

𝑥 . Because the allocation process, even under priority lists, remains inherently an FCFS procedure that depends on

agent’s response rates, there is no guarantee that any particular target allocation is achievable within our framework.

In particular, the order of an 𝑛-stage priority list impacts which target allocations are feasible.

Example 5. Consider the same three recipients as before with response rates 𝜆𝑖 = 𝑖, for 𝑖 = 1, 2, 3. A simple fairness

requirement is to ask that each recipient has the same probability to receive the current item, which has target allocation

𝑥 = ( 1
3
, 1

3
, 1

3
).

Consider an 𝑛-stage priority list which orders the agents 𝜋 = 231. Recipient 1 has the largest probability of receiving the

item when it is immediately announced to all three recipients, so for any vector of announcement times ®𝑡 . 𝑥PL-231
1

≤ 1

6
. This

shows 𝑥 is not feasible for this permutation.

Consider, instead, 𝜋 = 123. Now 𝑥 is feasible, and achieved with announcement times ®𝑡 = (0,− ln
5

6
,− 1

3
ln

5

6
) . We verify

that this priority list results in the target allocation. Period 1 lasts − ln
5

6
≈ 0.182 time units, the probability that recipient

claims the item before this time is P(𝜏𝑖 ≤ − ln
5

6
) = 1 − exp(−1 · (− ln

5

6
)) = 1

6
. At the end of the first period, the expected

fractional allocation is therefore 𝑥PL-123 = ( 1
6
, 0, 0). By the memorylessness of the exponential distribution and the fact

that the minimum of multiple exponentially distributed variables are again distributed exponentially, we analyze period 2

similarly, P(min(𝜏1, 𝜏2) ≤ 𝑡2) = 1 − exp(−3 · (− 1

3
ln

5

6
) = 1

6
. Conditioned on the item being claimed in period 2, 1 receives

it with probability 𝜆1

𝜆1+𝜆2

= 1/3. As a result, at the end of period 2, 𝑥PL-123 = ( 1
6
+ 1

18
, 2

18
, 0). Finally, the item is claimed

with remaining probability 2/3 during period 3 and, conditioned on this happening, it goes each recipient proportionally to

their response rates. We conclude that 𝑥PL-123 = ( 1
6
+ 1

18
+ 1

6

2

3
, 2

18
+ 2

6

2

3
, 3

6

2

3
) = ( 1

3
, 1

3
, 1

3
) .

In the previous example, the priority list on 𝜋 = 123 is able to assign the item with equal probability to each agent

because the recipients appear in the permutation ordered from slowest response rate to fastest. This gives slower

recipients a period of exclusive access to the item where they are not forced to compete with the faster recipients.

Ordering recipients from slowest to fastest always works when 𝑥 = ( 1

𝑛 , . . . ,
1

𝑛 ). This is a special case of a more general

result to follow, so we state it without proof for now.
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Proposition 6. The balanced target allocation 𝑥 = ( 1

𝑛 , . . . ,
1

𝑛 ) is feasible for a priority list with permutation 𝜋 satisfying

𝜆𝜋 (1) ≤ 𝜆𝜋 (2) ≤ · · · ≤ 𝜆𝜋 (𝑛) .

However, ordering recipients from slowest to fastest does not achieve all target allocations. For example, consider

the recipients from Example 5 with 𝜋 = 123 and suppose that 𝑥3 = 2

3
. Recipient 3 has greatest probability of receiving

the item when it is immediately announced to all recipients (𝑡1 = 𝑡2 = 0), but even then 𝑥PL-123
3

= 1

2
. Achieving 𝑥3 = 2

3

requires an ordering in which 3 does not appear last. Let 𝑋𝜋
denote the allocations achievable with a priority list on

permutation 𝜋 . The following result establishes, for a particular order, which target allocations are feasible.

Theorem 7. The feasible allocations of a general 𝑛-stage priority list on 𝜋 is the convex hull of {𝑎1, . . . , 𝑎𝑛}, i.e.
𝑋𝜋 = Conv(𝑎1, . . . , 𝑎𝑛), where 𝜋 ∗ 𝑎1 = (1, 0, . . . , 0) ∈ R𝑛 , 𝜋 ∗ 𝑎𝑖 = ( 𝜆𝜋 (1)∑𝑖

𝑗=1
𝜆𝜋 ( 𝑗 )

, . . . ,
𝜆𝜋 (𝑖 )∑𝑖
𝑗=1

𝜆𝜋 ( 𝑗 )
, 0, . . . , 0) ∈ R𝑛 and

𝜋 ∗ 𝑎𝑛 = ( 𝜆𝜋 (1)
𝜆𝑁

, . . . ,
𝜆𝜋 (𝑛)
𝜆𝑁
).

Proof. We first show Conv(𝑎1, . . . , 𝑎𝑛) ⊆ 𝑋𝜋 . Consider arbitrary 𝑥 ∈ Conv(𝑎1, . . . , 𝑎𝑛). It is possible to write 𝑥 as a

convex combination 𝑥 =
∑
𝑖 𝑐𝑖𝑎𝑖 with

∑
𝑖 𝑐𝑖 = 1. We may interpret 𝑐𝑖 as the probability that the item is claimed/allocated

in period 𝑖 . This gives a sequence of 𝑛 equations

𝑐1 = 1 − exp(−𝜆𝜋 (1)𝑡1)

𝑐2 = (1 − 𝑐1) (1 − exp(−(𝜆𝜋 (1) + 𝜆𝜋 (2) )𝑡2))

𝑐3 = (1 − 𝑐1) (1 −
𝑐2

1 − 𝑐1

) [1 − exp(−
3∑︁
𝑗=1

𝜆𝜋 (𝑖 )𝑡3)] = (1 − 𝑐1 − 𝑐2) (1 − 𝜆𝜋 (𝑖 ) exp(−
3∑︁
𝑗=1

𝜆𝜋 (𝑖 )𝑡3))

.

.

.

𝑐𝑛 = (1 −
𝑛−1∑︁
𝑖=1

𝑐𝑖 ) (1 − exp(−𝜆𝑁 𝑡𝑛)) = 1 −
𝑛−1∑︁
𝑖=1

𝑐𝑖

with unknowns 𝑡1, . . . , 𝑡𝑛 . We can solve this system of equations to get 𝑡1 = (ln(1 − 𝑐1))/(−𝜆𝜋 (1) ) and, for 2 ≤ 𝑘 ≤ 𝑛,

𝑡𝑘 =
1

−∑𝑘
𝑗=1

𝜆𝜋 (𝑘 )
ln

[
1 − 𝑐𝑘

1 −∑𝑘−1

𝑗=1
𝑐 𝑗

]
=

1

−∑𝑘
𝑗=1

𝜆𝜋 (𝑘 )
ln

[
1 −∑𝑘

𝑗 𝑐 𝑗

1 −∑𝑘−1

𝑗=1
𝑐 𝑗

]
.

It remains to check that these times are valid for a priority list, in particular, that 𝑡𝑖 ≥ 0 for all 𝑖 ∈ [𝑛] . Clearly 𝑡1 ≥ 0,

since 0 < 1 − 𝑐1 < 1 so ln(1 − 𝑐1) < 0. Similarly, for 2 ≤ 𝑘 ≤ 𝑛, 1 −∑𝑘
𝑗 𝑐 𝑗 < 1 −∑𝑘−1

𝑗 𝑐 𝑗 , from which it follows that

𝑡𝑘 ≥ 0. We conclude that 𝑥 is achievable by a priority list on 𝜋 , and Conv(𝑎1, . . . , 𝑎𝑛) ⊆ 𝑋𝜋 .

It remains to show that 𝑋𝜋 ⊆ Conv(𝑎1, . . . , 𝑎𝑛). Consider arbitrary 𝑥 ∈ 𝑋𝜋
, achieved by priority list on 𝜋 with times

𝑡1, . . . , 𝑡𝑛 . Let 𝑐
′
𝑖
be the probability that this priority list allocates the item in period 𝑖 . Now we can write the probability

agent 𝜋 (1) receives the item as

(𝜋 ∗ 𝑥)1 = 𝑥𝜋 (1) = 𝑐′
1
+

𝜆𝜋 (1)
𝜆𝜋 (1) + 𝜆𝜋 (2)

𝑐′
2
+ · · · +

𝜆𝜋 (1)∑𝑛
𝑖=1

𝜆𝜋 (𝑖 )
𝑐′𝑛 =

𝑛∑︁
𝑖=0

(𝜋 ∗ 𝑎𝑖 )1𝑐′𝑖

and similarly for any agent

𝑥𝜋 (𝑘 ) =
𝑛∑︁
𝑖=𝑘

𝜆𝜋 (𝑘 )∑𝑖
𝑗=1

𝜆𝜋 ( 𝑗 )
𝑐′𝑖 =

𝑛∑︁
𝑖=𝑘

(𝑎𝑖 )𝑘𝑐′𝑖 =
𝑛∑︁
𝑖=0

(𝜋 ∗ 𝑎𝑖 )𝑘𝑐′𝑖 ,
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where the final transition follows from (𝜋 ∗ 𝑎𝑖 )𝑘 = 0 for 𝑖 < 𝑘 . It follows that 𝑥 ∈ Conv(𝑎1, . . . , 𝑎𝑛), and 𝑋𝜋 ⊆
Conv(𝑎1, . . . , 𝑎𝑛) as required. □

Continuing with the recipients in Example 5, this result implies that 𝑋 123 = Conv{(1, 0, 0), ( 1
3
, 2

3
, 0), ( 1

6
, 2

6
, 3

6
)}.

Clearly 𝑥3 = 2

3
implies 𝑥 ∉ 𝑋 123 . On the other hand, for permutation 𝜋 = 132 which does not place 3 last in the ordering,

𝑋 132 = Conv{(1, 0, 0), ( 1
4
, 0, 3

4
), ( 1

6
, 2

6
, 3

6
)} so 𝑥3 = 2

3
is achievable. This example shows that both a recipient’s response

rate and the magnitude of their target allocation must be considered when choosing a priority list permutation.

Our main result in this section is that any target allocation 𝑥 is feasible for a priority list with permutation 𝜋 (𝑥, ®𝜆),
where 𝜋 ≜ 𝜋 (𝑥, ®𝜆) prioritizes recipients in decreasing order of

𝑥𝑖
𝜆𝑖
, i.e.

𝑥𝜋 (1)
𝜆𝜋 (1)

≥ 𝑥𝜋 (2)
𝜆𝜋 (2)

≥ · · · . Proposition 6 follows as a

direct corollary: when 𝑥 is uniform, recipients should be prioritized by decreasing 1/𝜆𝑖 , in other words, from slowest to

fastest. To ease notation we suppress the dependence on 𝜋 in the remainder of the section and instead relabel recipients

by priority in 𝜋 . So after relabelling recipient 𝜋 (1) becomes recipient 1, with target allocation 𝑥 = 𝜋 ∗ 𝑥 (so 𝑥𝑖 = 𝑥𝜋 (𝑖 ) ),

response rates
˜𝜆 = 𝜋 ∗ 𝜆, etc. After relabelling, �̃�1

˜𝜆1

≥ �̃�2

˜𝜆2

≥ · · · �̃�𝑛
˜𝜆𝑛
.

Theorem 8. Given target fractional allocation 𝑥 ∈ Δ𝑛 , relabel the instance so that 𝑥 = 𝜋 ∗ 𝑥 , ˜𝜆 = 𝜋 ∗ 𝜆 and
�̃�1

˜𝜆1

≥ �̃�2

˜𝜆2

≥ · · · �̃�𝑛
˜𝜆𝑛
. Then 𝑥 is feasible in the relabelled instance for the priority list (1, (𝑡1, . . . , 𝑡𝑛)), where 1 is the identity

permutation and

𝑡𝑘 =

− ln

(
1 − 𝑐𝑘(

1−∑𝑘−1

𝑗=1
𝑐 𝑗

) )∑𝑘
𝑗=1

˜𝜆𝑘

and 𝑐𝑘 =
©«

𝑘∑︁
𝑗=1

˜𝜆 𝑗
ª®¬
[
𝑥𝑘
˜𝜆𝑘

− 𝑥𝑘+1
˜𝜆𝑘+1

]
.

Proof. As before, let 𝑐𝑘 be the probability that the item is allocated during period 𝑘 . Let 𝑐𝑘,𝑖 , for 𝑖 ∈ N , be the

probability that the item is allocated to 𝑖 during period 𝑘 . Consider any period 𝑘 during which 𝑁𝑘 ⊆ N are aware of

the time. For any recipients 𝑖, 𝑗 ∈ 𝑁𝑘
,

𝑐𝑘,𝑖 =
˜𝜆𝑖

˜𝜆𝑁𝑘

𝑐𝑖 =
˜𝜆𝑖

˜𝜆 𝑗

˜𝜆 𝑗

˜𝜆𝑁𝑘

𝑐𝑖 =
˜𝜆𝑖

˜𝜆 𝑗
𝑐𝑘,𝑗 .

We use this relationship between recipients 𝑘 and 𝑘 + 1 to obtain, for 1 ≤ 𝑘 < 𝑛,

𝑥𝑘 =
˜𝜆𝑘∑𝑘
𝑗=1

˜𝜆 𝑗
𝑐𝑘 +

˜𝜆𝑘
˜𝜆𝑘+1

𝑥𝑘+1 ⇒ 𝑐𝑘 =
©«

𝑘∑︁
𝑗=1

˜𝜆 𝑗
ª®¬
[
𝑥𝑘
˜𝜆𝑘

− 𝑥𝑘+1
˜𝜆𝑘+1

,

]
(1)

and, for recipient 𝑛, 𝑐𝑛 =
∑𝑛

𝑗=1

˜𝜆 𝑗
�̃�𝑛
˜𝜆𝑛
. Notice that, since recipients are ordered in decreasing order of

�̃�𝑘
˜𝜆𝑘
, 𝑐𝑘 ≥ 0 and

𝑐𝑘 = 0 only when
�̃�𝑘
˜𝜆𝑘

=
�̃�𝑘+1
˜𝜆𝑘+1

(implying that 𝑘 and 𝑘 + 1 should receive simultaneous access to the item) or 𝑥𝑘 = 0,

implying 𝑘 (and subsequent recipients) should not get access to the item. We can confirm that

∑𝑛
𝑗=1

𝑐 𝑗 = 1.

Given 𝑐𝑘 , we can compute 𝑡𝑘 . Write E𝑘 for the event that the item is allocated/claimed in period 𝑘 . Now

𝑐𝑘 = P [E𝑘 ] = P [E𝑘 and none of E1, . . . , E𝑘−1
happened]

= (1 −
𝑘−1∑︁
𝑗=1

P
[
E 𝑗

]
) · P [E𝑘 |none of E1, . . . , E𝑘−1

happened]

=
©«1 −

𝑘−1∑︁
𝑗=1

𝑐 𝑗
ª®¬ · P

[
𝜏 ∼ Exp

(
𝑘∑︁
𝑖=1

˜𝜆𝑖

)
≤ 𝑡𝑘

]
=

©«1 −
𝑘−1∑︁
𝑗=1

𝑐 𝑗
ª®¬ ©«1 − exp

©«−𝑡𝑘
𝑘∑︁
𝑗=1

˜𝜆 𝑗
ª®¬ª®¬ .
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Combining this with (1) yields

𝑡𝑘 =

− ln

(
1 − 𝑐𝑘(

1−∑𝑘−1

𝑗=1
𝑐 𝑗

) )∑𝑘
𝑗=1

˜𝜆𝑘

.

Notice 𝑡𝑘 > 0 when 𝑐𝑘 > 0, which happens whenever
�̃�𝑘
˜𝜆𝑘

>
�̃�𝑘+1
˜𝜆𝑘+1

. When
�̃�𝑘
˜𝜆𝑘

=
�̃�𝑘+1
˜𝜆𝑘+1

, 𝑡𝑘 = 0 so that 𝑘 and 𝑘 + 1 get

simultaneous access to the item. When 𝑥𝑘−1
> 0 and 𝑥𝑘 = 0, 𝑡𝑘 = ∞, from which we conclude that the item will never

be announced to 𝑘 (nor 𝑘 + 1, . . . , 𝑛). Finally, when both 𝑥𝑘−1
= 0 and 𝑥𝑘 = 0, 𝑡𝑘 = 0 by convention since there must be

some 𝑗 < 𝑘 − 1 for which 𝑡 𝑗 = ∞ and neither 𝑘 − 1 nor 𝑘 will get access to the item.

We conclude that these times are valid (𝑡 ≥ 0) and, together with 𝜋 , implement an 𝑛-stage priority list. □

Another way of stating this result it that, for any 𝑥 ∈ Δ𝑛 , there exists an 𝜋 such that 𝑥 ∈ 𝑋𝜋
, moreover, 𝜋 is easy to

find. As a result, we may solve max𝑥∈Δ𝑛
min𝑖∈N 𝑣𝑖 (𝑋, 𝑥) (for any 𝑣) directly ignoring the fact that we are constrained

to implementing a 𝑛-stage priority list, as we do in Algorithm 1.

4 BINARY PRIORITY LISTS

Recall that a 2-stage or binary priority list is defined by a set of recipients 𝐿 and a time 𝑡 . The new item is first announced

to recipients in 𝐿, if it remains unclaimed by time 𝑡 it is announced to the remainder of the recipients. Claims are FCFS,

whoever responds first gets the item. In contrast to 𝑛-stage priority lists we immediately observe that binary priority

lists do limit the space of feasible target allocations.

Example 9. Consider the instance of Example 5 with binary priority lists. Recall there are three recipients with response

rates 𝜆𝑖 = 𝑖, for 𝑖 = 1, 2, 3 and the target allocation is 𝑥 = ( 1
3
, 1

3
, 1

3
).

The only hope of equalizing the allocation is to announce it first to the slowest agent, 1, so we may assume 1 ∈ 𝑆 . Suppose
𝑆 = {1}, this implies the item is simultaneously announced to 2 and 3, since 3 has a faster response rate it is impossible for

their allocation to be equal. If, instead, at least one of 2 and 3 are included in 𝑆 , then we can argue similarly that they will

have a larger fractional allocation than 1. We conclude that 𝑥 = ( 1
3
, 1

3
, 1

3
) is not feasible with priority lists.

This creates a dilemma, we can find the optimal fractional allocation 𝑥∗ with Algorithm 1, but there may not be a

binary priority list that achieves it. And even if we could find the binary priority list with fractional allocation closest to

𝑥∗ (say, by some norm), there is no guarantee this is the binary priority list which maxmimizes

𝑧∗
BPL

= max

𝐿,𝑡
min

𝑖∈N
𝑣𝑖 (𝑋, 𝑥𝐵𝑃𝐿 (𝐿,𝑡 ) ) .

As a result, we may be forced to search over the space of all possible 2-stage priority lists including the exponentially

many subsets of recipients.

Our main result in this section is that this is not necessary: Every possible value of 𝑧∗
BPL

is achieved by one of 𝑛

binary priority lists. This means that we can find the optimal binary priority list by binary search on 𝑧∗
BPL

(with initial

lower bound equal to the current value and upper bound equal to 𝑧∗).

Let 𝑥
𝐵𝑃𝐿 (𝐿,𝑡 )
𝑖

= P [𝑖 claims the item first, given 2-stage PL (𝐿, 𝑡)]. Now 𝑥𝐵𝑃𝐿 (𝐿,𝑡 ) is the fractional allocation that

results from (𝐿, 𝑡). When the priority list is clear form the context we write simply 𝑥 instead of 𝑥𝐵𝑃𝐿 (𝐿,𝑡 ) .

For any set of valuation functions 𝑣𝑖 , . . . , 𝑣𝑛 , each 𝑣𝑖 strictly increasing in 𝑥𝑖 , existing allocation 𝑋 and objective

function value 𝑧, let 𝑥𝑧 = (𝑥𝑧
1
, . . . , 𝑥𝑧𝑛) be the minimal allocation for which 𝑣𝑖 (𝑋, 𝑥𝑧𝑖 ) = 𝑧 for all 𝑖 ∈ [𝑛]. In other words,
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12 Benadè and Alptekinoglu

𝑥𝑧
𝑖
is the fraction of the new item 𝑖 needs to receive to attain valuation function value 𝑧, and globally 𝑥𝑧 is the target

allocation to reach 𝑧.

Theorem 10. Given current allocation 𝑋 and any set of valuation functions 𝑣𝑖 , . . . , 𝑣𝑛 , each 𝑣𝑖 strictly increasing in

𝑥𝑖 . For any optimal objective function value 𝑧 = max(𝐿,𝑡 ) min𝑖 𝑣𝑖 (𝑋, 𝑥𝐵𝑃𝐿 (𝐿,𝑡 )𝑖
), find the permutation 𝜋 which prioritizes

recipients in decreasing order of 𝑥𝑧/𝜆, so that
𝑥𝑧
𝜋 (1)

𝜆𝜋 (1)
≥

𝑥𝑧
𝜋 (2)

𝜆𝜋 (2)
≥ · · · .

There exists an optimal priority list (𝐿, 𝑡) in which 𝐿 = {𝜋 (1), . . . , 𝜋 (𝑘)} for some 𝑘 ∈ [𝑛].

We interpret this as evidence that binary priority lists are closely related to 𝑛-stage priority lists. Specifically, given

an objective function value 𝑧 you can find binary priority list that achieves it (or prove one doesn’t exist) by taking the

permutation 𝜋 of an 𝑛-stage priority list with target allocation 𝑥𝑧 and including recipients, one at a time in order of

priority in 𝜋 , in 𝐿. If none of these binary priority lists achieve 𝑧, then 𝑧 is not feasible for binary priority lists.

Proof. Let 𝑧 = max(𝐿,𝑡 ) min𝑖 𝑣𝑖 (𝑋, 𝑥𝐵𝑃𝐿 (𝐿,𝑡 )𝑖
) and compute the fractional allocation allocation 𝑥𝑧 . As before, relabel

recipients (and the remainder of the instance) so that

𝑥𝑧
1

𝜆1

≥ 𝑥𝑧
2

𝜆2

≥ · · · . After relabelling the theorem statement is that

𝐿 = [𝑘] for some 𝑘 ∈ [𝑛]. For any binary priority list (𝐿, 𝑡), let 𝑉(𝐿,𝑡 ) = {(𝑖, 𝑗) ∈ [𝑛]2 : 𝑖 ∈ 𝐿, 𝑗 ∈ 𝐿, 𝑖 > 𝑗} count the
number of pairwise violations of the condition above. Note that |𝑉(𝐿,𝑡 ) | = 0 when 𝐿 = [𝑘] for some 𝑘 ∈ N. Suppose for
contradiction that no such solution exists.

Let (𝐿, 𝑡𝐿) be an optimal solution to max(𝐿,𝑡 ) min𝑖 𝑣𝑖 (𝑋, 𝑥𝐵𝑃𝐿 (𝐿,𝑡 )𝑖
) with smallest |𝑉(𝐿,𝑡𝐿 ) | > 0. Without loss of

generality we may assume that 𝐿 ⊂ N and 𝑡 > 0. Let ℓ = max{𝑖 ∈ 𝐿} and 𝑘 = min{𝑖 ∈ 𝐿} and observe that

(ℓ, 𝑘) ∈ 𝑉(𝐿,𝑡𝐿 ) , otherwise 𝐿 = [𝑘] for some 𝑘 ∈ Z.
Given solution (𝐿, 𝑡𝐿), we can compute the probability that each agent receives the current item, which we denote

with 𝑥 ≜ 𝑥𝐵𝑃𝐿 (𝐿,𝑡𝑘 ) . Denote with 𝐹𝐿 (𝑡𝐿) = P [𝜏 ∼ Exp(𝜆𝐿) ≤ 𝑡𝐿] the probability that the item is allocated before

time 𝑡𝐿 . If 𝑖 ∉ 𝐿 then, conditioned on the item being available at time 𝑡𝐿 , 𝑖 receives it with probability
𝜆𝑖
𝜆N

. When

𝑖 ∈ 𝐿, 𝑖 receives the item with probability
𝜆𝑖
𝜆𝐿

if it is allocated by time 𝑡𝐿 , otherwise 𝑖 receives it with probability
𝜆𝑖
𝜆N

.

Summarizing,

𝑥𝑖 =


𝜆𝑖

[
𝐹𝐿 (𝑡𝐿 )
𝜆𝐿
+ 1−𝐹𝐿 (𝑡𝐿 )

𝜆N

]
, 𝑖 ∈ 𝐿

𝜆𝑖 · 1−𝐹𝐿 (𝑡𝐿 )
𝜆N

, 𝑖 ∈ 𝐿.

Notice that
𝑥𝑖
𝜆𝑖

=
𝑥 𝑗

𝜆 𝑗
for all 𝑖, 𝑗 ∈ 𝐿, and similarly for all 𝑖, 𝑗 ∈ 𝐿. Additionally, 𝑥 ≥ 𝑥𝑧 .

Define 𝐴 = {𝑖 ∈ N : 𝑣𝑖 (𝑋, 𝑥𝑖 ) = 𝑧} to be the set of active agents — those who determine the objective function value.

We proceed as follows: First we show that some agent in 𝐿 must be active, in fact, 𝑘 is active. We then construct an

alternative solution in which ℓ is removed from the priority list and show that it has objective function value at least as

large as (𝐿, 𝑡𝐿), and fewer violating pairs, a contradiction.

Suppose 𝐿 ∩𝐴 = ∅, so no agent in 𝐿 is active. Then there exists some 𝜖 > 0 so that 𝑣𝑖 (𝑋, 𝑝𝑖 − 𝜖) > 𝑧 for all 𝑖 ∈ 𝐿. But
now we can find 𝛿 > 0 so that the priority list (𝐿, 𝑡𝐿 + 𝛿) is feasible and improves over 𝑧, contradicting that (𝐿, 𝑡𝐿) is
optimal. We conclude that 𝐿 ∩𝐴 ≠ ∅.

Let 𝑘′ = min{𝑖 : 𝑖 ∈ 𝐿 ∩𝐴} and suppose for contradiction that 𝑘′ > 𝑘 . Then

𝑥𝑘

𝜆𝑘
>

𝑥𝑧
𝑘

𝜆𝑘
≥

𝑥𝑧
𝑘 ′

𝜆𝑘 ′
=
𝑥𝑘 ′

𝜆𝑘 ′
,

where the first inequality follows from 𝑘 not being active, the second from 𝑘 < 𝑘′, and finally 𝑥𝑧
𝑘 ′

= 𝑥𝑘 ′ from 𝑘′ ∈ 𝐴.
But this contradicts the fact that

𝑥𝑎
𝜆𝑎

=
𝑥𝑏
𝜆𝑏

for all 𝑎, 𝑏 ∈ 𝐿.
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Consider the solution (𝐿′, 𝑡 ′) with 𝐿′ = 𝐿 \ {ℓ} and 𝑡 ′ chosen so that 𝐹𝐿′ (𝑡 ′) = 𝐹𝐿 (𝑡𝐿) . Let 𝑥 ′ be the resulting

allocation probabilities. By the same reasoning as before

𝑥 ′𝑖 =


𝜆𝑖

[
𝐹𝐿′ (𝑡 ′ )
𝜆𝐿′

+ 1−𝐹𝐿′ (𝑡 ′ )
𝜆N

]
= 𝜆𝑖

[
𝐹𝐿 (𝑡𝐿 )
𝜆𝐿′

+ 1−𝐹𝐿 (𝑡𝐿 )
𝜆N

]
, 𝑖 ∈ 𝐿′

𝜆𝑖 · 1−𝐹𝐿′ (𝑡 ′ )
𝜆N

= 𝜆𝑖 · 1−𝐹𝐿 (𝑡𝐿 )
𝜆N

𝑖 ∈ ¯𝐿′ .
.

We show this solution has objective function value at least as good as (𝐿, 𝑡𝐿).

(1) For 𝑖 ∈ 𝐿′, 𝑥 ′
𝑖
> 𝑥𝑖 , since 𝜆𝐿′ < 𝜆𝐿 . All 𝑣𝑖 are increasing in the allocation probabilities, so 𝑣𝑖 (𝑋, 𝑥 ′𝑖 ) > 𝑣𝑖 (𝑋, 𝑥𝑖 ) ≥ 𝑧.

(2) For 𝑖 ∈ ¯𝐿′ ∩ 𝐿, 𝑥 ′
𝑖
= 𝜆𝑖 · 1−𝐹𝐿′ (𝑡 ′ )

𝜆N
= 𝜆𝑖 · 1−𝐹𝐿 (𝑡𝐿 )

𝜆N
= 𝑥𝑖 by construction. It follows that 𝑣𝑖 (𝑋, 𝑥 ′𝑖 ) = 𝑣𝑖 (𝑋, 𝑥𝑖 ) ≥ 𝑧.

(3) For 𝑖 = ℓ , 𝑥 ′
ℓ
< 𝑥ℓ . However,

𝑥 ′
ℓ

𝜆ℓ
=
𝑥 ′
𝑘

𝜆𝑘
=
𝑥𝑧
𝑘

𝜆𝑘
≥

𝑥𝑧
ℓ

𝜆ℓ
,

since ℓ, 𝑘 are both in
¯𝐿′, 𝑥 ′

𝑘
= 𝑥𝑘 = 𝑥𝑧

𝑘
, and ℓ > 𝑘 . As a result, 𝑥 ′

ℓ
≥ 𝑥𝑧

ℓ
and 𝑣ℓ (𝑋, 𝑥 ′ℓ ) ≥ 𝑧.

We conclude that (𝐿′, 𝑡 ′) with resulting allocation 𝑥 ′ has objective function value at least 𝑧. Finally, we compare |𝑉(𝐿,𝑡𝐿 ) |
and |𝑉(𝐿′,𝑡 ′ ) |: Since ℓ was the largest indexed agent in 𝐿, removing ℓ from the priority list can not introduce new

violating pairs, so 𝑉(𝐿,𝑡𝐿 ) ⊆ 𝑉(𝐿′,𝑡 ′ ) . We also know that (ℓ, 𝑘) ∈ 𝑉(𝐿,𝑡𝐿 ) and (ℓ, 𝑘) ∉ 𝑉(𝐿′,𝑡 ′ ) , so 𝑉(𝐿,𝑡𝐿 ) ⊂ 𝑉(𝐿′,𝑡 ′ ) and

|𝑉(𝐿,𝑡𝐿 ) | > |𝑉(𝐿′,𝑡 ′ ) |. This contradicts the fact that (𝐿, 𝑡𝐿) was the optimal solution with the fewest violations. □

Theorem 10 applies to fairly general valuation functions, or even a situation where different recipients have (struc-

turally) different valuation functions, the only requirement is that 𝑣𝑖 (𝑋, 𝑥) depends only on 𝑋𝑖 and 𝑥𝑖 and is strictly

increasing in 𝑥𝑖 . Theorem 10 does not say anything about how long those on the priority list should receive priority.

Fortunately, given a target allocation 𝑥𝑧 and a priority list 𝐿, finding a time 𝑡 so that 𝑥
𝐵𝑃𝐿 (𝐿,𝑡 )
𝑖

≥ 𝑥𝑧 can be done with a

simple linear program.

Let 0 ≤ 𝐹𝐿 (𝑡) ≤ 1 be a continuous variable representing the probability that the item is claimed before it is announced

to all recipients. Consider the linear program

max 𝐹𝐿 (𝑡)

𝑠 .𝑡 . 𝑥𝑧𝑖 ≤ 𝜆𝑖

[
𝐹𝐿 (𝑡𝐿)
𝜆𝐿

+ 1 − 𝐹𝐿 (𝑡𝐿)
𝜆N

]
, ∀𝑖 ∈ 𝐿 (Time-LP(L))

𝑥𝑧𝑖 ≤ 𝜆𝑖 ·
1 − 𝐹𝐿 (𝑡𝐿)

𝜆N
, ∀𝑖 ∈ N \ 𝐿

0 ≤ 𝐹𝐿 (𝑡) ≤ 1.

If Time-LP(L) is feasible with 𝐹𝐿 (𝑡) = 𝛾 , then it means that objective function value 𝑧 is achievable with (𝐿, 𝑡), where
𝐹𝐿 (𝑡) = 1 − exp(−𝜆𝐿𝑡) = 𝛾 . Linear programs are solvable in polynomial time.

Putting it all together, we are able to find the optimal 2-stage priority list.

Theorem 11. Suppose solving Time-LP(L) takes time 𝐿𝑃 ∈ 𝑂 (𝑝𝑜𝑙𝑦 (𝑛)). We can find the optimal 2-stage priority list

by performing binary search on the objective function value, where checking the feasibility of an objective function in an

iteration of the binary search takes time 𝑂 (𝑛 · 𝐿𝑃).

The initial lower bound can be set to min𝑖∈N 𝑣𝑖 (𝑋 ) and the upper bound to max𝑥∈Δ𝑛
min𝑖∈N 𝑣𝑖 (𝑋, 𝑥) . Every iteration

of the binary search procedure requires finding 𝑥𝑧 and solving Time-LP(L) for each of the 𝑛 prefixes of the permutation

which orders recipients in decreasing order of 𝑥𝑧/𝜆.
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Fig. 1. Priority lists lead to more equitable allocations in terms of the fraction of recipients receiving no donations (left) and the
fraction of donations that go to the worst-off 20% (center) and 80% (right) of recipients.

5 COMPUTATIONAL STUDY

We conduct simulations to compare the proposed priority lists to the existing FCFS claims system. We calibrate the

model with a sample of data provided by FRP. The sample contains details on roughly 400 items, including a description

and weight (in lbs), allocated to a total of 81 recipients in Florida.

We simulate 80 recipients, indexed with set 𝑁 , and 400 items. The response time of agent 𝑖 is distributed exponentially

with rate
ˆ𝜆𝑖 = �̂�𝑖/

∑
𝑖∈𝑁 �̂�𝑖 , where �̂�𝑖 is the total number of donations received by recipient 𝑖 in the data.

4
Notice that∑

𝑖∈𝑁 ˆ𝜆𝑖 = 1, so the expected time until an item is claimed is 1 unit. The weight (in lbs) of each item 𝑗 , 𝑤 𝑗 , is drawn

uniformly with replacement from the empirical distribution of weights. Results are averaged over 10 runs.

We compare the current system and several binary priority lists.

(1) The current system (FCFS) which announces each item to all recipients and allocates to the first responder;

(2) Two simple priority lists, which give priority to the 10% recipients with lowest value for 5 and 30 units of time,

respectively. Denoted BPL_10_5, BPL_10_30. Both the duration and number of recipients on the priority list

remains constant for all iterations.

(3) The binary priority list which maximizes the minimum value, as described in Section 4, denoted BPL_opt. Both

the number of agents on the priority list and its duration depends on the item and current allocation.

We report several aggregated metrics. First, the fraction of recipients receiving no items. Second, the fraction of

items allocated to the 20% (80%) of recipients with lowest value (perfectly uniform distribution would give 𝑥% of items

to the bottom 𝑥% of recipients). Finally, the time until each item is claimed.

In terms of equitability, we find that all the priority lists we test yield significant improvements over FCFS (Figure 1).

The current FCFS system leads to roughly 20% of recipients receiving none of the first 400 donations and allocates

only roughly 25% of the donations to the 80% worst-off recipients (or inversely, it allocates 75% of donations to only

20% of recipients). Both simple priority lists improve over this, leading to almost every recipient receiving at least one

donation, 5-13% of donations going to the worst-off 20% and 30-60% going to the worst-off 80%. The optimal binary

priority list from Section 4 performs even better, giving 15-17% of items to the bottom 20% of recipients and nearly 70%

of donations to the bottom 80% (inversely, the top 20% of recipients get only 30% of items).

Figure 2 plots the time until donation. Unsurprisingly, delays in announcing the item to especially the those recipients

with faster response rates increases the time before an item is claimed. This slowdown is fairly

4
This makes several simplifying assumptions, including that all recipients were registered in the system for the entire period and equally interested in

every donation. Reality is more complicated.
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Fig. 2. Time until each item is allocated.

consistent for the two simple binary priority lists. Curiously, a small

number of the items takes a very long time to be allocated under the

optimal priority list. Closer inspection reveals that for those items the

priority list consisted of only a very small fraction of the slowest recip-

ients (1-3), and the system essentially waits however long it takes these

slow recipients to respond. On average, BPL_opt allocated items roughly

20% faster than BPL_10_30, but care must be taken to avoid delaying

allocation unnecessarily.

6 DISCUSSION AND CONCLUSION

We show theoretically that optimizing over priority lists is tractable, and via simulations that they lead to significantly

more equitable outcomes than the existing FCFS allocation system. We leave open (for now) several interesting avenues

of research. First, the computational results show that priority can lead to donations being allocated significantly

slower, because there is a period when only the inactive or very slow recipients are aware of the item. When donations

are perishable or pickup times from donors are heavily constrained this may be disastrous. Further investigation is

required to come up with policies that respect item expiration dates. Second, the current model assumes every recipient

is equally interested in every item which is unlikely to be the case. Richer preferences immediately lead to several

questions, including how preferences are structured, whether they are Bayesian or adversarial, etc. There may also be

other objectives, including weighted fairness notions, that make sense in this context.

Finally, data-sharing between food rescue platform’s and recipients would enable the allocation of resources based

on real-time demand, rather than proxies like average demand or organization size. This may be a bridge too far at this

time, however, expanding the food rescue platform’s logistical capabilities to include delivery and the splitting of large

donations would likely go a long way towards more equitable outcomes.
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