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A critical question in international development is whether donors
allocate aid based on stated program objectives such as poverty.
However, ground-truth poverty data is usually unavailable at a granu-
lar community level where aid interventions take place. This research
thus aims to compare granular, remote-sensing-based poverty esti-
mation methods and explores the extent to which poverty and other
development characteristics explain aid distribution across communi-
ties. This study draws from web-scraped, project-related information
on community-driven development projects; 31,300 daytime satellite
images; and geospatial attributes of 12,504 villages. First, we com-
pare the performance of four poverty estimation methods: i) spatial
interpolation of poverty, using Kriging, ii) nighttime luminosity (NTL),
iii) RGB channels, and iv) daytime satellite imagery features. Among
these, daytime features extracted by a convolutional neural network
outperform other measurements. Next, using the best poverty esti-
mates in the first step, we exploit machine learning (ML) algorithms
to predict aid amounts received per village. Our models intend to
capture the donor’s selection criteria based on need, village capac-
ity, types of projects, ethnicity/state, and accessibility of the village.
Overall, our best models explain about 70% of the variance in aid allo-
cation, which leaves major questions regarding what implicit factors
dictate the remaining variance in aid targeting. Poorer villages are
likely to receive more aid; however, wealth has small relative impor-
tance. Instead, village capacity and ethnicity/state better predict aid
amount.

community development | poverty | satellite images | aid evaluation |
Myanmar

1. INTRODUCTION

With the advent of the Millennium and Sustainable Develop-
ment Goals (1), poverty elimination has become the central ob-
jective of development aid. However, the existing aid-targeting
literature reflects that net international aid allocation does
not prioritize communities with the highest economic need
(2–5). Aid tends to flow to low-income countries but not nec-
essarily to poorer regions within those countries. Yet, the
lack of granular poverty and aid measures at a small unit of
intervention hampers the accurate assessment of sub-national
aid allocation.

A. Research Aim and Outline. This paper explores the question
of spatial aid distribution across communities by developing
granular poverty measures and machine learning (ML)-based
prediction in the context of Myanmar. This research aims
to understand which communities in Myanmar are likely to
receive more community development aid, given poverty and
other characteristics. To do so, it develops poverty measures
at the community level and then builds aid prediction models.

This paper uses one of Myanmar’s largest community develop-
ment programs, the World Bank’s (WB) National Community
Driven Development Program (NCDDP), to analyze aid alloca-
tion across the country. Myanmar is selected as an extremely
data-sparse country receiving a large amount of community
development assistance.

B. Motivation. One relevant aid modality in examining the
pro-poor nature of subnational aid targeting is community-
centered- or driven- development (CCD, CDD). It provides
communities with block grants or in-kind support to construct
local public goods, infrastructure, and services. CCD involves
intra-community level allocation based on village attributes.
Thus, it contrasts with other types of aid, such as cash transfers
that may only micro-target households regardless of locality.
In addition, the evaluation of the need-source match is more
relevant to the smaller spatial unit because communities are
more likely to have a homogeneous level of wealth than in
larger areas (6).

In the literature, the poverty orientation of community
development projects is neutral or weakly positive. The central
government’s allocation across communities is not related to
village attributes (7), and CCD does not always target the
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areas that are the poorest, but rather those that are lacking
infrastructure (8). Under some conditions, CCD projects are
mildly progressive in reaching marginalized localities when
poverty maps are drawn from census or survey data (9, 10)
or when electoral rewards are in place (11). A recent study
(12) highlights that the feasibility of pro-poor aid allocation
is hindered by the proximal closeness of communities with
differing economic needs as well as a lack of disaggregated
data.

We identify several gaps and challenges from the literature
in evaluating CCD targeting. While previous studies have
considered variance in georeferenced aid location, these studies
relied on large administrative units such as states, provinces
(3, 13), and districts (5, 14–16). Other sub-national studies
tap into already established grid-level data (4, 15, 17), but
the large grid size of 50 km by 50 km still misses the nuances
in community-level needs. The available data for geolocated
aid amounts is also limited. Previous studies (4, 18) have
only modeled the binary existence of aid projects (a binary
variable) or the number of projects (a count variable) which
loses important information in the variation of aid amount.

A significant obstacle in conducting granular analysis is the
limited availability of surveyed data on wealth, income, and
consumption in subnational regions. Recently, efforts have
been made to leverage satellite imagery to develop fine-grained
measures of socioeconomic development. Earlier studies esti-
mate regional wealth by the proportion of metal to thatched
roofs in satellite images (19). Studies have also found a strong
correlation between national-level luminosity and standard
measures of economic output such as gross state product (GSP)
(20), gross domestic product (GDP), and growth measures
(21). More recent work validates new measures of economic
outputs by combining multi-spectra imagery and deep learning
techniques to predict wealth scores from ground truth surveys
(22, 23). To mitigate the limitation in labeled data, previous
work transfers model weights trained on the ImageNet dataset
(24), a dataset used to classify objects imaged with handheld
cameras, to the task of estimating wealth from satellite im-
agery in Africa (22, 23, 25). We build on this literature with
customization to take the previous work to the context of
Myanmar.

C. Contribution. In this study, we analyze the distribution
of CCD in Myanmar, overcoming the previously discussed
challenges. We first gather a novel set of data related to aid,
poverty, and village characteristics and then apply ML models
to predict WB investment per village. Using villages for our
unit of analysis allows aid allocation to be evaluated with
more nuance and on its ability to address community-level,
sub-national needs. We also geolocate our outcome variable,
aid amount, to study aid allocation in great detail. To do
so, we retrieve geocoordinates from interactive project maps,
which allows the systematic collection of aid data at a high
level of spatial resolution. Using a continuous dollar amount
improves the variability and distribution of the outcome, which
has not been previously attempted.

To the best of our knowledge, this study is the first attempt
to leverage ML to predict sub-national transfer in Myanmar.
This allows us to study a large set of explanatory variables with
multicollinearity and work in high-dimensional spaces. Further,
we examine nonlinear modeling combined with explainability
techniques that allow policymakers to have a more precise yet

intuitive understanding of aid allocation decisions.
The paper proceeds as follows. The next section presents

our methodology and data sources. The third section shows
our results. The last section concludes and discusses the
implications of our work.

2. METHODS AND DATA

This section presents methodologies to measure poverty and
predict aid. Subsequently, main datasets for aid and village
characteristics are introduced.

A. Methods. Broadly, our approach employs two steps. We
first compare the performances of four poverty measures in
predicting survey wealth data: i) spatial interpolation, ii)
nighttime luminosity (NTL), iii) Red Green Blue (RGB) chan-
nels, and iv) Convolutional Neural Network (CNN) feature
extractors using daytime imagery.

Our next step is to examine whether poverty and other
factors are linked to the amount of aid that each village receives.
We include the best poverty estimate from the first step as
an input feature in the second step. To predict aid volume,
we employ regularized regressions, Support Vector Regression
(SVR), and XGBoost. We select various combinations of input
features based on aid allocation guidelines for NCDDP.

B. Data. Our sample consists of 12,504 villages participating
in the NCDDP between 2017-2018. Out of 12,504 villages,
approximately 54.0% of them (6,769 villages) have data on the
amount of aid received. The main outcome variable is the log
of aid per capita for which 4,630 villages had valid amounts.
The explanatory variables are remote-sensing-based or spatial
poverty measures. We use the Demographic and Health Survey
(DHS) as the ground truth wealth data to train these vari-
ables. Covariates are community and project characteristics
web scraped from the NDCCP management website and the
Myanmar Information Management Unit (MIMU). Data from
the United Nations Development Programme (UNDP) Myan-
mar county office is used to identify the history of funding in
a given village.

B.1. National Community Driven Development Program. The aid
dataset draws from the National Community Driven Devel-
opment Program (NCDDP), which has been supported by
the World Bank since 2012. Among the 12,504 villages par-
ticipating in the NCDDP between the years 2017-2018, we
used 5,650 village locations with block grant data. Aid is
actual aid disbursement in Myanmar kyat (MMK), not mere
commitments. We use automated web scraping processes to
collect project implementation data via the web portal inter-
face.∗ The extracted aid distribution data is similar to the
actual project map, validating our scraping algorithm, shown
in Figure 1.

B.2. Demographic and Health Surveys. We use the 2015-2016
Myanmar DHS data to provide the ground-truth poverty data
in our wealth prediction model. We aggregate a total of 13,260
household-level data to 441 village cluster-level data to use
georeferenced information associated with the centroids of
the survey clusters. For our analysis, we use the latitude,
longitude, and mean wealth data for each of the clusters.

∗ Interactive project maps provide key project monitoring and implementation data in the form of
project dashboards. However, some key information, such as the georeferenced locations of project
villages are only available as websites’ source codes.
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Fig. 1. NCDDP Year 5 Web Portal with village locations (left) and scraped participating
village location for NCDDP 2017-2018 or Year 5 (right)

B.3. Daytime Satellite Images. We use daytime satellite images as
a feature of wealth prediction, based on previous work in this
field (22). A total of about 31,300 images were downloaded
from Google Image API in a series of 400 by 400 pixel images
(about 1 square kilometer of land area) from the locations of
the DHS village clusters as well as the locations recorded as
the NCDDP villages. We focus on images in the areas that
showed wealth or aid data since these areas are most relevant
to our research. The publicly available daytime satellite images
used for this study were primarily collected from 2019, while
the training data, which is the DHS survey, was collected in
2015-2016.†

B.4. Nighttime Luminosity. We also estimate the annual aver-
age luminosity values at the center points of project villages.
Nightlight Version 1 Visible Infrared Imaging Radiometer Suite
(VIIRS) Day/Night Band provides sources for 2015 and 2016
nighttime raster data.‡ We capture nightlight features at dif-
ferent resolutions while considering any noise effects present in
the data (26, 27). We use three measures: high resolution at
5 km by 5 km, low resolution at 10 km by 10 km, and mixed
resolution at 2 km for urban and 10 km for rural areas.

B.5. Conflict Data Extrapolation. In order to quantify a conflict
measurement for each surveyed aid location, we abstract the
measurements of conflict to a single value from the Armed
Conflict Location and Event Data (ACLED) from 2015-2019
(Figure 2). The value represents the distance in meters from
the center of a village to the nearest area of violent conflict that
occurred during the year 2015. Distance has been shown to be
an important metric in a previous study where the further away
from conflict, the more likely a village is to receive NCDDP

†Due to data availability, the timing of data sources between satellite imagery and DHS survey does
not overlap in this study.

‡The measurement unit for luminosity is a composite cloud-free radiance value estimated in 15
arc-second (approximately 463 m) geographic grids with outliers removed and non-lights set to zero.
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Fig. 2. Map of all recorded conflict areas and aid-receiving villages

aid (18).§

B.6. Access to Infrastructure. Geospatial data from the Myan-
mar Information Management Unit (MIMU) provides spatial
context regarding logistical access to and within villages and
surrounding infrastructure. We estimate the nearest distance
from a village to roads, railroads, dams/lakes, seaports, air-
ports, and low-lying (below 5-meter elevation) areas. We also
collect data on hard-to-reach tracts and villages. ¶ NTL data
is used to approximate electricity-related infrastructure.

B.7. Other Aid Projects. To model an absence of external funding,
we use data shared by the UNDP Myanmar country office. We
count the number of aid projects that had been started before
2016 within each township boundary. The data includes aid
projects from the United Nations and other international orga-
nizations, international and national non-profit organizations
(NGOs), community-based organizations, and the Red Cross.

C. Descriptive Statistics. Table 1 displays the main outcome
variables and explanatory variables. On average, our sample
villages had wealth scores 0.65 below the average wealth of
the country’s villages (Mean centered wealth at the national

§We engineered several distance to conflict features using the ACLED-provided categorizations in
combination with several geospatial designations. These included looking at violent vs. nonviolent
conflicts as well as fatalities from village tract, township tract, and centroid designations. Distance
to violent conflicts was selected since it empirically contributed the most to the model and was
theoretically aligned with prior research (18).

¶To identify such villages, we create a binary variable that distinguishes NCDDP villages located
within hard-to-reach tracks, as defined by polygon boundaries. Alternatively, we calculate the
distance between NCDDP villages and the nearest hard-to-reach village as point data.
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Table 1. Village level participatory design aid distribution selected
summary statistics

Measure Observation Mean/Prop. Std Range

Aid per capita (in MMK) 4,634 25,656 41,971 (0, 2,100640)
Total Aid per Village 6,769 9,705,701 6,498,552 (0,168601000)
Log of aid capita 4,630 9.81 0.79 (4.51,14.56)
Mean-centered Wealth scores 8,096 -0.65 5.61 (-18.69,22.66)
Distance to violent conflict in metres 12,112 36,258 24,580 (2,117062)
Village populations 8,096 602 669 (0,8042)
No. of households 12,086 130 139 (0,2603)
% Social sector project 12,504 18
% of Burmese village 12,504 53
% of Chin village 12,504 4
No. of labour days 8,324 234 384 (0,11603)
Wages paid in MMK 7,014 1,586,691 1,841,155 (0,24460000)
No. of beneficiaries 12,504 592 676 (0,12328)
% of participation 8,843 67 19 (0,100)
No. of committee membership 12,504 14 5 (0,36)
% of female committee membership 8,887 45 13 (0,100)
Satisfaction rate % 274 59 14 (0,100)
No. of Grievances Submitted 12,504 1 2 (0,76)
% Grievances Resolved 12,504 16 36 (0,100)

Note: USD 1= Myanmar Kyat (MMK) 1550 in 2017-2018.
Std: Standard Deviation

level=0, SD=5.61).‖ Each village consists of 602 individuals
living in 130 households and receives a block grant of approxi-
mately 17 USD per person. A majority of community members
(67%) participated in the project, and a little less than half
of the project committee members (45%) were female. The
project has received a satisfactory rating from just over half
(59%) of the beneficiaries. In terms of complaints, each village
submitted one grievance on average, but only 16% of them
were successfully resolved. Out of all supported projects, social
sector projects make up 18%. Burmese ethnicity makes up
slightly more than half (53%) of the project villages.

3. RESULTS OF POVERTY PREDICTION

In the following sections, we report on the results of our study.
We begin by comparing the performance of various wealth
measures.

A. Wealth Measures. First, we experiment with a few ap-
proaches to predict unknown wealth measures for NCDDP
villages. Our main objective is to assess how well interpolated
values or satellite-extracted features can predict wealth factor
scores for DHS village clusters marked with yellow circles in
Figure 3. After comparing these models, we find that the CNN-
extracted satellite features perform the best. Consequently, we
rely on this poverty estimation approach to predict unknown
wealth values in blue NCDDP project villages in Figure 3.
Detailed results are further elaborated below.

A.1. Four Wealth Prediction Methods. As a baseline, we use Gaus-
sian process regression, also known as Kriging, to spatially
estimate DHS wealth factor scores. Second, we extract NTL
for DHS village clusters. Our model learned to predict the DHS
wealth factor score from NTL intensity. Third, we quantify
the intensity of the three color channels (RGB) for each of the
daytime images that corresponded to locations surveyed in the
DHS data. Utilizing color features is a common method used
in image retrieval applications (19, 28). Our model learned to
predict DHS wealth scores based on pixel intensity.

‖The wealth factor score was 0 on average, with a maximum of 22, a minimum of -18, and a standard
deviation of 5.
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Fig. 3. DHS village clusters and NCDDP projects

Our final method is a deep learning approach using a CNN
model. Following the literature, we pre-trained a CNN on
ImageNet to identify low-level image features, such as edges
and corners, that are common to many vision tasks. This
transfer learning approach addresses the limitation in labeled
data by transferring the weights of networks trained on Ima-
geNet to downstream tasks. Since our VGG 16 model accepts
224 × 224 pixel images, but our input images are 400 × 400
pixels, we performed data augmentation and normalization on
the training set. We then began fine-tuning the full network
using the Stochastic Gradient Descent (SGD) optimizer.∗∗As
the pre-trained CNN has learned a nonlinear mapping from
each input image to a feature vector representation, it ren-
ders 4,097 features from the satellite images. We then link
cluster-averaged wealth from the DHS survey data with the
corresponding image features extracted to several regression
models. We discovered early in our research that NTL data
does not provide a sufficiently accurate measurement of wealth
in Myanmar, unlike small African countries in the literature.††

Due to the lower correlation, we chose not to train the daytime
images to classify NTL intensity but to directly predict DHS
wealth scores.

A.2. Evaluation of Four Methods. The performance of poverty
prediction methods can be evaluated against their ability to
predict DHS wealth scores. For each of the four methods,
we apply the elastic net (ElNet) regression model with 10-
fold cross-validation on 80% of the observations (training set),

∗∗Most layers were frozen during tuning, and only the last block of fully convolutional layers was tuned.
A batch size of 8 was used and the maximum number of epochs was set to 6

††For instance, Myanmar’s R2 (0.18) is considerably lower than R2 of other developing countries
such as Rwanda (0.74).

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Jung et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT
Fig. 4. Regression of Log Aid Distribution against Daytime Satellite Predicted

Note: Regression of Log Aid Distribution against Daytime Satellite Predicted
Wealth shows a negative correlation, which is expected if aid goes to less
wealthy regions.

Table 2. Wealth Prediction Model Comparison

CNN with
Daytime
Image

RGB Avg
Pixel
Features

Geospatial
Interpolation
(Kriging)

Nighttime
Data

R2 0.477 0.388 0.210 0.180

and then we test its performance on the remaining 20% of
the sample (testing set). The CNN-trained daytime features
perform the best with R2 of 0.48, while simple RGB analysis
on daytime images score R2 of 0.39, and spatial interpolation
performed next best at R2 of 0.21. Nightlights explain 18%
of the variation in the wealth index. Figure 5 illustrates the
distribution of our best model’s wealth predictions in Myanmar
(CNN-trained daytime features).

A.3. Poverty Prediction. By fitting DHS wealth to CNN-extracted
features, we can use this model to input CNN-extracted fea-
tures of NCDDP villages and predict their wealth. This allows
estimation of the wealth of NCDDP villages that have not
been surveyed and lack ground truth wealth.

4. RESULTS OF AID PREDICTION

In this section, we examine the variance in aid volumes across
different village characteristics, utilizing wealth prediction and
other village traits as input features.

A. Aid Allocation Models. We expect that CCD distribution
would follow program eligibility criteria to achieve program
objectives. The 2015 operational manuals (29, 30) denote that
poverty rates are the primary criterion for selecting townships.
Additional criteria include the absence of external funding, the
capacity of the township, peace and stability, and logistical
access. Our prediction models are built based on the NCDDP
selection criteria.

• Model 0 (M0) captures the bivariate relationship between
poverty and aid allocation.

Fig. 5. CNN-based predictions of wealth in areas surveyed in Myanmar

• Model 1 (M1) captures NCDPP program criteria of need
such as poverty, the absence of external funding, conflict,
and logistical access. Poor villages with some level of
peace and stability and lack of aid from other sources are
likely to receive more per capita aid (29, 30).

• Model 2 (M2) captures the capacity of communities and
local authorities. This is a more qualitative measure.
CCD requires the ability to apply for, plan, and manage
block grants from both communities and local govern-
ments. Communities with a high level of participation
(e.g., % of female committee membership, % of grievances
reported and addressed) and a solid structure (e.g., vil-
lage/village tract project support committees) are likely
to receive more aid.

• Model 3 (M3) captures the types of aid projects funded.
Depending on the project sector, aid volume would change.
It accounts for the fact that investment amounts may
vary with types of infrastructure projects (e.g., building
community centers vs. roads).

• Model 4 (M4) captures states and ethnicity. Given that
NCDDP emphasizes the inclusion of minorities, ethnic
minorities and struggling states might be encouraged to
participate in CCD. Ethnic minority features are also
correlated with living on the border states or in conflict
areas.

• Model 5 (M5) captures needs relating to logistical acces-
sibility and infrastructure. Additionally, we introduce
spatial distance and access variables. NCDDP can add
more value if it supports infrastructure in remote villages.

Models 1-3 reflect explicit program criteria. Model 4 is
based on the emphasis on inclusion and diversity in NCDDP’s
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language. Model 5 incorporates operational considerations.

B. Choice of Machine Learning (ML) Algorithms. We employ
prediction models including ElNet regression, support vector
machine regression (SVR), and extreme gradient boosting
(XGBoost). ElNet regression offers a balanced approach, strik-
ing a harmony between solution sparsity and the prevention
of overfitting.

On the other hand, SVR is a variant of support vector
machines (SVM) that is used for regression tasks. While
SVM is primarily designed for classification, SVR extends
the concept to handle continuous target variables. Unlike
traditional regression models that aim to minimize the error
between predictions and actual values, SVR focuses on limiting
the deviations of predictions from a specific margin.

XGBoost is a also powerful distributed gradient boosting
approach that builds upon the foundation of the gradient
boosting framework and incorporates state-of-the-art ML algo-
rithms. It leverages the Newton-Raphson method by utilizing
a second-order Taylor approximation of the loss function which
enhances the algorithm’s functionality and efficiency.

C. Building and Comparing ML Models. We began by fine-
tuning the hyperparameters of various ML algorithms. For
ElNet regression, there are two hyperparameters, namely α
and λ, which control the coefficients of l1 and l2 norm squared
regularization terms. In particular, the former is set to αλ
while the latter is set to 0.5α(1 − λ). We initially tested
extreme values (e.g., very high or low α) using a course grid.
We then narrowed down the range of values and used a fine
grid.

In the case of XGBoost, we defined a hyperparameter
space and used Bayesian optimization with the Expected
Improvement acquisition function. The hyperparameter γ in
this method determines the minimum loss reduction required
to make a further partition on a leaf node of the tree.

Similarly, a grid search was used for SVR to iterate through
the best combinations of parameters and kernels. The hyper-
parameter C in this method is used to avoid overfitting. It is
a positive number that controls the penalty imposed on obser-
vations that lie outside the margin determined by the other
hyperparameter ϵ (see Appendix A for the hyperparameters
of the best model across algorithms).

We also employed a cross-validation method to train, vali-
date, and test the models. The data was split into two sets,
80% for training and validation and the remaining 20% for
testing. The test set remained the same for all algorithms
to ensure a fair comparison. We then compared their perfor-
mances using error metrics, such as mean squared error (MSE)
for test sets as well as goodness-of-fit measures, such as R2.

D. Performance of Regularized Regression ML Models. We
start with regression results and then cover other algorithms
because regression is the most intuitive method that shows
directions and magnitudes of coefficients.

D.1. Performance of Non-Nested ML Models. In this section, we
report the results of the non-nested regression models.

M0: Ordinary least squares (OLS) bivariate regression
using Wealth (β=-0.184) only explained 6.6% (R2 =0.066) of
the total variance in logged aid allocation. Log aid per capita
is larger as villages become less wealthy.

Table 3. Performance of Log Aid per Capita Non-Nested Models

Model R2 Adj. R2 Val. MSE Test MSE

M0 OLS Bivariate 0.066 0.065 0.572 0.617
M1 ElNet α=16, λ=0.0 0.417 0.416 0.622 0.578
M2 ElNet α=0.058, λ=0.1 0.187 0.185 0.756 0.805
M3 ElNet α=0.040, λ=0.1 0.045 0.040 0.963 0.946
M4 ElNet α=0.007, λ=1.0 0.157 0.137 0.870 0.836
M5 ElNet α=0.031, λ=0.0 0.124 0.122 0.903 0.868

M1: NCDDP program criteria of need only explains 41.7%
(ElNet; R2 = 0.417) of the total variance. Log aid per capita is
larger for villages that are closer to hard-to-reach towns (β=-
0.138), less wealthy (based on CNN-extracted satellite features;
β=-0.076), further from violent conflict (β=0.044), and have
less number of aid projects per township (β=-0.009). Villages
with smaller populations (β=-0.569) are also associated with
larger aid per capita. However, the strong negative relationship
with the population is not surprising given the NCDDP’s block
grant allocation method, which establishes the floor and ceiling
on aid amounts based on population (29, 30). The increases in
aid amount are disproportional to the increases in population
size and are ordinal by nature (e.g., a population size of
3,001=55-75 million Kyat vs. 6,002=80-90 million Kyat).

M2: Village capacity-related features explain 18.7% (El-
Net; R2 = 0.187) of the variation in the outcome variable.
Log aid per capita is larger for villages with more participa-
tion (β=0.397), a fewer number of committee memberships
(β=-0.176), and higher wages (β=0.093). All other features
minimally impact prediction.

M3: Economic and social sector projects explain 4.5%
(ElNet; R2 = 0.045) of the variance. Only community cen-
ter projects had a coefficient with a magnitude greater than
or equal to 0.100 (β=0.137). Having fewer economic sector
projects (β=-0.021) is related to a larger logged aid allocation
while having more social sector projects (β=0.014) is related
to a larger logged aid allocation.

M4: Ethnic groups and states/regions/territories explain
15.7% (ElNet; R2 = 0.157) of the variation in the outcome
variable. Log aid per capita is larger for villages in the north-
eastern states of Chin (β=0.140) and Magway (β=0.103), and
lower for those in the well-to-do states of Mandalay (β=-0.112)
and Nay Pyi Taw (β=-0.105). Additionally, aid size was larger
for those who belonged to the Chin ethnic group (β=0.064)
and smaller for those in the Burmese ethnic group (β=-0.087).
Overall, states/regions/territories appear to be more impor-
tant in regularized regression prediction when compared to
ethnicity (the largest weighted ethnicity, Burmese, is the 5th
largest by magnitude).

M5: Finally, geographic and NTL features explain 12.4%
(ElNet; R2 = 0.124) of the variation in log aid volume per
capita. Log aid per capita is larger for villages further from
a seaport (β=0.357), closer to a low-lying area (β=-0.321),
are considered hard-to-reach (β=0.259), and are further from
mining areas (β=0.095). It is important to note that long
distances to the seaport and short distances to low-altitude
areas are both associated with larger log aid per capita.

D.2. Performance of Nested ML Models. In terms of variable selec-
tion, we compared results from several nested models using
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Table 4. Coefficients for Selected Features in Best Performing Log
Aid per Capita Regression Models

Coefficient ElNet M9 ElNet M8.1

Wealth -0.046 -0.043
% of Participation 0.223 0.225
Population -0.492 -0.511
Wages 0.190 0.201
Dist. to Violent Conflicts (m) 0.061 0.061
R2 0.509 0.508
adj. R2 0.496 0.496

Table 5. Nested Model Description

Model Description Name
M6 M1+M2 Need+Capacity
M7 M1+M2+M3 M6+Sector Projects
M8.1 M1+M2+M3+M4-10 M7+Ethnicities (10+ obs)
M8.2 M1+M2+M3+M4-50 M7+Ethnicities (50+ obs)
M9 M1+M2+M3+M4-10+M5 M8.1+Infrastructure
M10 M1+M2+M3+M4-50+M5 M8.2+Infrastructure

various combinations of the 5 non-nested models (see Table 5
for different model combinations). M6 combines the features
of M1 and M2. M7 combines the features of M1, M2, and
M3. We then create several variations of M8 which combines
the first four non-nested models (M1+M2+M3+M4). Once
we transformed Ethnic groups into binary variables, we aggre-
gated groups by observations into an "other" category using
several thresholds. M8.1 uses a threshold of 10 and M8.2 uses
a threshold of 50‡‡. M9 adds M5 to M8.1 and M10 adds M5
to M8.2.

The best model (M9) explains just over half of the variance
50.9% (R2 = 0.509). Table 4 shows the coefficients of the
key features. The percentage of participation (β=0.223) and
wages (β=0.190) are related to larger aid sizes. Population
(β=-0.492) is associated with smaller aid sizes.

E. Comparison of Prediction Performance Across ML Algo-
rithms. Our results indicate that the XGBoost algorithm con-
sistently outperforms all other algorithms. The best XGBoost
model with the most comprehensive features (M10) shows the
highest performance (R2 = 0.713) compared to the best SVR
(M7, R2=0.613), and best ElNet model (M9, R2=0.509) (Table
6). Even when compared to the best SVR and ElNet models,
the XGBoost algorithm outperforms them (see Appendix B
for detailed comparisons). Overall, full nested models that
incorporate program criteria of need (M1), village capacity
(M2), sector projects (M3), ethnic groups and states (M4), and
geographic features (M5) perform better than partial models.

E.1. Important Features Across Algorithms. We compare and ana-
lyze how the different algorithms utilize the various features.

‡‡Although we recognize the issues of aggregating less represented groups(31, 32), small sample
sizes reduce the chances of balanced representation during cross-validation procedures. Therefore,
we experiment with several thresholds.

Table 6. Performance Metrics of Best ML Models

Model R2 adj_R2 mean val MSE test MSE
XGBoost M10 0.713 0.706 0.017 0.285
SVR M7 0.613 0.610 0.403 0.383
ElNet M9 0.509 0.496 0.500 0.486

To do so, we consider the best-performing model of each al-
gorithm. ElNet and XGboost algorithms produce coefficient
weights and feature importance scores, respectively. ElNet
coefficient weights are represented by β while XGBoost uses
gain, frequency, or weight to produce its feature importance
score. We use gain in this study since it is considered to
have more importance for generating predictions (33). Gain
scores show the improvement in the model due to the feature
(34). For the SVR algorithm, we utilize the Shapley Additive
exPlanations (SHAP) method (35) which uses Shapley value
concepts (36) from game theory (37).§§

Of particular interest is how wealth impacts prediction. In
all models, wealth had minimal impact compared to other
features. In terms of direction, less wealth is associated with
more log aid per capita. The utility of wealth in SVR aid
prediction is more driven by avoiding wealthy areas rather
than targeting poorer areas.

Next, we analyze which of the non-nested models have the
highest predictive power for aid allocation. Overall, when
compared to the program criteria of need (M1) features, vil-
lage capacity (M2) features are consistently more important
across algorithms. In particular, participation and wages are
consistently more important than M1 features. In addition,
XGBoost M10 uses the number of grievances submitted as
an important feature, while SVR identifies the number of
committee members as an important feature. Of the five pro-
gram criteria of need features (M1), aid projects per township
(XGBoost, SVR) and population (ElNet, SVR) stood out as
important features. As previously discussed, the importance
of population is not surprising; however, it is notable that pop-
ulation is the 33rd most important in XGBoost (gain=1.004)
and has a gain score below the average of all features (mean
gain=1.391) in the best model.

Finally, we explore the important features of our best overall
model, which is XGBoost with comprehensive features (M10).
In this model, ethnic group and state features are used the
most in the overall prediction (5 out of the top 6). After aid per
township (gain=10.753), the states of Magway (gain=6.202),
Thaninthayi (gain=3.717), Yangon (gain=3.301), and Kayin
(gain=3.221), and the Dai (Yindu) ethnic group (gain=3.127)
make up the top features (Figure 6). For a more detailed anal-
ysis of important features across algorithms, see Appendix C.

F. Selection Bias. Our analysis is limited to villages with grant
data. Villages with grant data are different from villages with-
out grant data. We ran a t-test for a range of covariates to
find nonrandom differences between villages with and with-
out grant data. The analyzed villages were wealthier, more
densely populated, and had more participatory practices as
shown by the greater percentage/number of committee mem-
bership, female committee membership, grievances submitted
and resolved, and use of community labor. However, villages
with data and those without data are not statistically differ-
ent with regard to the intensity of conflict, composition of
Burmese ethnicity, project satisfaction rate, and percentage of
community participation.

G. Robustness Check. In our robustness check, we consider
different variations of our target variable as well as the impact

§§ It is an extension of Local Interpretable Model-agnostic Explanations approach to black-box ML
models (LIME) (38). An added benefit of SHAP values is that we are able to observe how feature
values impact the prediction by computing their contribution to the prediction.
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of dimensionality reduction.

G.1. Different Target Variations. In addition to logged aid per
capita, we predict aid per capita and total aid per village.
Both aid per capita and total aid per village perform worse
than logged aid per capita. Between the two, total aid per
village performs better and explains 30.3% (ElNet; R2 = 0.303)
of variance. Similar to the main results, the total aid per village
is larger for villages with higher wages (β=0.235). Population
(β=0.334) has a positive relationship when using the total aid
per village since the floors and ceilings of aid amount increase
as the population size increases (29, 30). Detailed results can
be seen in Appendix D.

G.2. Dimensionality Reduction. In our PCA-based dimensionality
reduction, we explore several feature sets using loading thresh-
olds of 0.300 and 0.250 as well as the top 5 of each principal
component (PC; see Appendix E for detailed methods and re-
sults). Overall, the PCA-based models support that XGBoost
M10 is the best-performing model as well as the importance
of incorporating features beyond the program criteria of need
(M1) (i.e., village capacity, sector projects, ethnic groups and
states, and geographic features).

As an additional check, we utilize the L1 penalty term
within the ElNet regression, to guide feature selection. We
remove any features that were shrunk to zero. However, there
are no notable improvements after doing so (see Appendix F
for full results). Overall, L1 penality dimensionality reduction
also supports our main findings: that XGBoost M10 is the best-
performing model, as well as the importance of incorporating

features beyond the program criteria of need (M1). The details
can be found in the Appendix.

5. CONCLUSION AND DISCUSSION

In this section, we present conclusions from our study and
discuss important implications for both policy and future
research.

A. Conclusion. We find that using features extracted from day-
time satellite imagery by the CNN was an improvement over
spatial interpolation and RGB or nightlights-based measures.
Our findings suggest that daytime satellites, as a far-sensing
measurement of wealth, are an effective means of predicting aid
distribution with high performance. This remote-sensing-based
wealth tends to produce stronger signals than survey-based
wealth.

More aid flows to poorer areas as predicted wealth is neg-
atively associated with aid volumes across all models and
target outcomes.¶¶ With better wealth prediction, the associ-
ation between wealth and aid amount becomes more consistent
compared to the previous study (18). However, the mean co-
efficient of wealth is marginal (β=-0.054). It should be noted
that the explanatory power of wealth is weak even if poverty
is the most important selection criterion of the NCDDP.

More significant features in regression models are village
capacity-related features, such as participation and wage.
More participation is associated with larger aid allocation
since it may be related to a village’s capacity to apply for and
manage such aid. Presumably, larger wages are associated
with larger aid allocations since more funding would be re-
quired to accommodate for the higher cost of labor in that area.
When implementing best-performing XGBoost algorithms, the
number of aid projects per township is identified as the most
important feature, along with states, ethnicity of Dai (Yindu),
and village capacity.

In addition, the effect of population size is significant even
after normalizing aid by capita; the disbursed amount per
person is larger for less populated communities. This is consis-
tent with the cross-country studies, in which population size
has a negative relationship and is one of the top predictors
of average aid per capita (39) and reflects the block grant
allocation method by population size used by the NCDDP
(29, 30).

Overall, our results indicate that the prediction of aid size
using various implicit and explicit features and algorithms can
only be achieved 71.3% of the time (XGBoost M10). Given
that we used program selection criteria and reasonable sets of
variables that might be related to aid investment at the village
level, the finding implies the need to better model qualitative
criteria (e.g., willingness or capacity of local authorities) and
other unknown but influential factors. For instance, areas
known to be more politically active may be more likely to
receive aid, as political parties may be inclined to encourage
those who are more likely to vote for them. In terms of the
aid prediction model, more data for governance and political
dimensions, such as election data, can be considered.

B. Discussion. On the policy front, our findings suggest gaps
between the explicitly stated aid selection policy and actual
implementation. Although the top stated selection criterion is

¶¶One exception is for M1 using total aid per village but it is very small (0.005).
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poverty, participatory components of the project and village
capacity seem to matter more than poverty. Interestingly,
the SHAP values for our best SVR model suggest that aid
selection is driven more by an effort to avoid wealthy areas
but is not utilized to target areas of poverty.

Our results also highlight the need for more transparent
aid allocation rules. Specifically, program criteria of need
alone do not provide a comprehensive picture of aid allocation.
Moreover, while other implicit variables can better explain
aid distribution, about a third of the variance still remains
unknown. Given the sizeable, unexplained portion of aid
distribution by proclaimed, operational, and normative an-
gles, decisions on investment size per village should be more
clearly stated in the operation document. They should also
be included in the monitoring and evaluation document.

This may also reflect a lack of reliable data at the time of
the 2017-2018 project and, at the same time, the necessity of
developing complementary poverty measures for small areas.
The further development of small-area poverty measures may
make it more feasible to actually target poverty as current
poverty measures may inherently lack variance in poorer areas.
For example, asset-based metrics will naturally have more
varied profiles for wealthier units of analysis, while poorer
ones will become more homogeneous despite having varied
experience.

Poverty prediction using remote sensing in Myanmar yields
modest prediction compared to African countries with multiple
sources of georeferenced poverty data over time. It is a large
and topologically and geographically diverse country with
relatively small and static wealth data.∗∗∗ Historic commercial
imagery with a zoom level over 18 would provide a vivid,
intuitive, and time-relevant picture of the region’s wealth and
poverty, bearing in mind the trade-off between accuracy and
replicability.

This study promotes evidence-based aid allocation by dis-
cussing potential mechanisms behind aid variation for area-
based interventions. We show that far-sensing tools, such as
daytime satellite imagery combined with ML algorithms, can
predict the geospatial distribution of community development
projects in a data-sparse country. Similar analyses can be
conducted to link nationwide CCD distribution with poverty
in other conflict-prone states.

∗∗∗(441 georeferenced DHS entries
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6. Appendices

In this section, we present more numerical experiment results.

A. Hyperparameter Turning. The hyperparameters obtained
through tuning for the best model across algorithms are pre-
sented.

Table 7. Hyperparameters of M10 Across Algorithms

Algorithm Hyperparameters Value
XGBoost Boosts 556

Subsample 0.5
Min child weight 1
Max depth 5
Learning rate 0.046
γ 0.071
Colsample by tree 0.7

SVR C 10
ϵ 0.1
Kernel rbf

ElNet α 0.008
λ 0.4

B. Comparison of Best Models. A comparison of algorithms
across each best model is presented below.

Table 8. Best XGBoost: M10 (M1+M2+M3+M4_50+M5) Comparison

Model R2 adj_R2 mean val MSE test MSE
XGBoost 0.713 0.706 0.017 0.285
SVR RBF 0.604 0.595 0.435 0.392
ElNet 0.507 0.496 0.504 0.489

Table 9. Best SVR: M7 (M1+M2+M3) Comparison

Model R2 adj_R2 mean val MSE test MSE
XGBoost 0.692 0.689 0.340 0.305
SVR RBF 0.613 0.610 0.403 0.383
ElNet 0.488 0.484 0.520 0.507

Table 10. Best ElNet: M9 (M1+M2+M3+M4-10+M5) Comparison

Model R2 adj_R2 mean val MSE test MSE
XGBoost 0.703 0.695 0.340 0.294
SVR RBF 0.600 0.589 0.432 0.396
ElNet 0.509 0.496 0.500 0.486

C. Supplementary: Important Features Across Models. This
section presented further details regarding the features of the
best models.

C.1. Wealth. Between XGBoost, SVR, and ElNet, wealth had
minimal impact. In XGBoost M10, wealth is the 52nd most
important feature out of 67 (importance score=0.708; Figure 7).
By comparison, the average importance score is 1.391 (range:
0.189-10.753). In SVR M7, wealth is the 14th most important
feature out of 27, and less wealth is associated with more log
aid per capita (Figure 8). High wealth values consistently
have larger negative SHAP values, while low wealth values
have consistently smaller positive SHAP values. Therefore,

the utility of wealth in SVR aid prediction is more driven
by avoiding wealthy areas rather than targeting poorer areas.
Finally, ElNet M9 produced a small coefficient weight (-0.046)
for wealth and indicated that less wealth is associated with
more log aid per capita.

Fig. 7. All XGBoost M10 Feature Importance (SSP=Social Sector Projects)
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Fig. 8. Shapley Summary plot for the best Model 7

C.2. Predictive Power of Non-Nested Models. The percentage of
participation has the 2nd largest magnitude (β=0.223) in
ElNet M9, the 3rd most important in SVR M7, and the 10th
most important in XGBoost M10. ElNet and SVR indicate
that relatively high participation is associated with larger aid
predictions in both models. SVR SHAP values indicate that
both high and low percentages of participation have similar
impacts by magnitude on the prediction. Wage is the 2nd
most important in SVR M7 and the 3rd largest weight by
magnitude (β=0.190) in ElNet M9. In XGBoost M10, wages
are the 14th most important (gain=1.650), and of the program
criteria of need (M1) features, only aid projects per township
are more important. Both SVR and ElNet indicate that larger
wages are associated with more aid.

In addition, the algorithms identify several other important
village-capacity features. XGBoost M10 uses the number of
grievances submitted as the 7th most important (gain=2.345).
SVR identifies the number of committee members as the 4th
most important feature. The number of committee members
had an interesting behavior; relatively lower membership num-
bers mostly lead to larger aid predictions, but can sometimes
lead to smaller aid predictions. Relatively higher membership
numbers typically have no impact or have a marginal impact
on the model prediction.

Of the five M1 features, population and aid projects per
township stood out as important features. The population is
the most important feature in SVR M7 and has the largest
feature magnitude in the ElNEt M9 (β=-0.492). Larger vil-

Table 11. M1 and Best Regression Performance for all Targets

Target R2 Adj. R2 mean val
MSE

test MSE

AidCapita, M1+ElNet α=0.058, λ=0.2 0.197 0.196 1.084 0.285
AidCapita, M7+ElNet α=0.030, λ=0.1 0.288 0.282 1.073 0.252
logAidCapita, M1+ElNet α=16, λ=0.0 0.417 0.416 0.622 0.578
logAidCapita, M9+ElNet α=0.030, λ=0.1 0.509 0.496 0.500 0.486
SingleCost, M1+ElNet α=0.023, λ=0.1 0.186 0.185 0.740 0.914
SingleCost, M9+ElNet α=0.046, λ=0.1 0.303 0.283 0.632 0.783

lage populations are associated with smaller aid predictions.
However, this is expected due to the NCDDP’s block grant
allocation formula that sets aid amount ranges based on pop-
ulation size (29, 30). The use of capita to normalize aid leads
to a negative relationship. Interestingly, XGBoost used popu-
lation as the 33rd most important feature (gain=1.004). Aid
projects per township are shared by XGBoost M10 and SVR
M7. It is the most important in XGBoost M10 (gain=10.753)
and the 7th most important in SVR M7. ElNet does not
produce a substantial weight (β=0.038) for it.

D. Different Target Variations. For the total aid per village
target variable, the largest nested model (M9) gives the best
performance explaining 30.3% (ElNet; R2 = 0.303). For the
features that had a coefficient magnitude greater than or equal
to 0.100, the total aid per village is larger for villages with a
larger population and higher wages. Additionally, we explore
which model explains the most variation. For aid per capita,
Model M7 explains 28.8% (ElNet; R2 = 0.288). Aid per capita
is larger for villages with smaller populations (β=-0.212).

E. Principal Component Analysis-Based Dimensionality Re-
duction. We use principal component analysis (PCA), which
transforms a dataset of possibly correlated features into a new
set of uncorrelated features called principal components (PC).
These PCs are linear combinations of the original features and
are ordered in such a way that the first PC captures the maxi-
mum amount of variance in the data, the second PC captures
the second highest amount of variance, and so on. 57 principal
components were identified in the most comprehensive PCA.
The number of PCs was selected using the explained variance
ratio function to retain at least 80% of the variance. We fol-
low a scree plot with the proportion of variance explained to
determine a final set of PCs. We then compare several feature
sets using a factor loading threshold of 0.300 and 0.250 as well
as the top 5 features of each component retaining each unique
feature once. Below are the results of the best PCA-based
regression and XGBoost results of each of the three feature
sets.

Table 12. PCA-Based ElNet Comparison

Selection
Method

# of
Features

R2 Adj. R2 mean val
MSE

test MSE

Top 5 95 0.486 0.471 0.539 0.509
0.250 Cutoff 89 0.484 0.470 0.548 0.511
0.300 Cutoff 66 0.166 0.149 0.863 0.827

F. L1 Penalty Dimensionality Reduction. This section presents
the results of L1-based dimension reduction models using
XGBoost, SVR, and the best regularized regressions (ElNet).
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Table 13. PCA-Based XGBoost Comparison

Selection
Method

# of
Features

R2 Adj R2 mean val
MSE

test MSE

Top 5 70 0.710 0.701 0.331 0.287
0.250 Cutoff 61 0.700 0.691 0.341 0.298
0.300 Cutoff 48 0.176 0.160 0.833 0.816

F.1. XGBoost Model Results. XGBoost model results after remov-
ing features that were shrunk to zero via L1 penalty.

Table 14. Myanmar XGboost Statistics for target variable ln_aid_capita
with Dimensionality Reduction

name R2 Adj. R2 mean val
MSE

test
MSE

test
MAE

M1 0.594 0.593 0.412 0.403 0.495
M2 0.135 0.133 0.775 0.858 0.739
M3 0.016 0.020 0.989 1.007 0.806
M4 0.067 0.051 0.905 0.925 0.774
M5 0.079 0.077 0.885 0.913 0.770
M6 0.472 0.470 0.384 0.523 0.574
M7 0.457 0.453 0.378 0.539 0.583
M8.1 0.472 0.462 0.372 0.523 0.574
M8.2 0.461 0.453 0.374 0.534 0.579
M9 0.664 0.656 0.326 0.333 0.448
M10 0.688 0.680 0.367 0.309 0.430

F.2. SVR Model Results. SVR model results after removing fea-
tures that were shrunk to zero via L1 penalty.

Table 15. Myanmar SVR Statistics for target variable ln_aid_capita
with Dimensionality Reduction

name R2 Adj. R2 mean val
MSE

test
MSE

test
MAE

M1 0.568 0.567 0.432 0.428 0.507
M2 0.211 0.209 0.725 0.782 0.694
M3 0.036 0.032 0.960 0.955 0.778
M4 0.151 0.137 0.871 0.841 0.722
M5 0.150 0.148 0.856 0.842 0.732
M6 0.597 0.595 0.407 0.400 0.494
M7 0.608 0.605 0.414 0.389 0.482
M8.1 0.620 0.613 0.418 0.377 0.466
M8.2 0.614 0.608 0.413 0.382 0.468
M9 0.613 0.604 0.432 0.384 0.468
M10 0.597 0.588 0.428 0.400 0.479

F.3. Regression Model Results. Regression model results after
removing features that were shrunk to zero via L1 penalty.

Table 16. Myanmar Regression Model Statistics for target variable ln
aid per capita with Dimensionality Reduction

name R2 Adj. R2 mean val
MSE

test
MSE

test
MAE

M1 0.415 0.414 0.621 0.580 0.605
M2 0.461 0.460 0.533 0.534 0.578
M3 0.045 0.040 0.958 0.947 0.772
M4 0.156 0.136 0.866 0.836 0.725
M5 0.123 0.121 0.902 0.869 0.735
M6 0.476 0.474 0.529 0.519 0.573
M7 0.488 0.483 0.519 0.508 0.565
M8.1 0.508 0.496 0.500 0.488 0.551
M8.2 0.505 0.495 0.500 0.491 0.552
M9 0.510 0.496 0.500 0.486 0.551
M10 0.505 0.494 0.506 0.490 0.554
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