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QUINTA: Reflexive Sensibility For Responsible AI Research and
Data-Driven Processes

Anonymous Author(s)
ABSTRACT
As the field of artificial intelligence (AI) and machine learning (ML)
continues to prioritize fairness and the concern for historically
marginalized communities, the importance of intersectionality in
AI research has gained significant recognition. However, few stud-
ies provide practical guidance on how researchers can effectively
incorporate intersectionality into critical praxis. In response, this
paper presents a comprehensive framework grounded in critical re-
flexivity as intersectional praxis. Operationalizing intersectionality
within the AI/DS (Artificial Intelligence/Data Science) pipeline, we
introduce Quantitative Intersectional Data (QUINTA), a method-
ological paradigm that challenges conventional and superficial re-
search habits, particularly in data-centric processes, to identify and
mitigate negative impacts such as the inadvertent marginalization
caused by these practices. Our framework centers researcher re-
flexivity to call attention to the AI researchers’ power in creating
and analyzing AI/DS artifacts through data-centric approaches. To
illustrate the effectiveness of QUINTA, we provide a reflexive AI/DS
researcher demonstration utilizing the #metoo movement as a case
study.

CCS CONCEPTS
• Human-centered computing→ Interaction design theory,
concepts and paradigms.

KEYWORDS
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Contentwarning: This paper discusses sexual assault and violence
and maybe triggering to readers.

1 INTRODUCTION
The genesis of Quantitative Intersectional Data (QUINTA) began
with the need to have an honest conversation on how we frame
narratives and data-centric processes, away from the dominant
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defaults [16]. The dominant defaults refer mainly and primarily to
white, male, able-bodied, Christian, western, cis-gendered, hetero-
sexual people. The dismantling of such dominant defaults neces-
sitates an identification of sites saturated with power differentials
that result in injustice (e.g. erasure of tradition from particular
communities). In doing so, the identification determines movement
towards recourse. For instance, in the #metoo movement, the dom-
inant defaults shifted slightly, from male to female via a shift in
narration alongside social media virality. However, even so, an
intersectional lens is required to shift narratives of power back
towards communities historically marginalized and most vulnera-
ble to erasure. Phipps [90] argued the wounds and tears of white
women are centered in social movements like #metoo, which leads
to the erasure of Black 1women.

“While white women may be positioned as victims
of violence, we are also positioned as its perpetra-
tors in relation to people of color; and that both acts
and allegations of sexual violence can be used to
uphold the intersecting systems of racial capitalism,
colonialism, and patriarchy.” [90][p. 49]

Regardless of the fact, the phrase ‘me too’ that turned hashtag was
the life work of Tarana Burke, a Black woman, for the prior ten
years (and ongoing) in harm’s way [19, 57]. This paper’s purpose is
not to rehash the #metoo movement’s ills; rather, it sets an example
at how reflexivity is absolutely necessary as a way to be mindful,
thoughtful in practice, and alleviate harms towards marginalized
communities.

Boyd [16] documented #metoo’s online viral genesis, noting
tremendous focus on establishing the legitimacy of intersection-
ality in the #metoo. Specifically, Boyd [16] grappled with how to
locate and amplify the voices of marginalized communities who
experienced sexual assault and violence using traditional AI/DS
techniques and processes. The disconnect between Burke’s ’me
too’ and viral hashtag #metoo motivated, inspired, and empowered
Boyd to operate differently in AI process. Therefore Boyd [16] op-
erationalizes intersectional data-centric research praxis within the
#metoo case study by critiquing the data science process. She did
this by interrogating how scholars reproduced the same dynamics
of the #metoo movement in their analyses of it, dynamics where
cis-gended white women overtook the hashtag at the expense of
sidelining those outside the white norm. Boyd [14, 16] stressed the
importance of incorporating a reflexive-intersectional approach
to empower researchers and inquiring who was included/excluded,
how algorithms embed bias, and what the researcher’s relationship
to the project is. Likewise, this work expands on this to center the
examination of the researcher’s relationship to both artifact cre-
ation from data centric processes and their corresponding analyses
more broadly.
1In this paper, we capitalize “Black” for similar reasons as expressed by the AP style
guide: https://apnews.com/article/entertainment-cultures-race-and-ethnicity-us-news-
ap-top- news-7e36c00c5af0436abc09e051261fff1f
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In tandem with [16], AI fairness community is determined to
make sense of, prevent, and alleviate existing techno-facilitated
harms onto communities. An AI researchers’ role and the decisions
they make in their research process is not independent from the
outcomes imposed onto hisotrically marginalized communities. Sev-
eral works have explored how power is concentrated by those who
create and design these models, yet leave the communities they
impact out of design discussions [8]. In this work, we unveil this
false sense of technoneutrality. It is through this unveiling of self -
via a reflexive process which investigates researcher assumptions
(i.e. via an examination of their social context, for instance) and em-
powers them to be methodologically vigilant - that enables change.
However, reflexivity is not thoroughly discussed; specifically – the
researchers’ privilege and how they get embedded into the AI and
data science pipeline [16, 87].

Answering this call for a reflexive intersectional approach in
data-centric processes, this work presents QUINTA. QUINTA is a
methodological framework used to interrogate quantitative data-
centric processes and their underlying structural and social in-
justices and oppressions [14]. In this work, we both propose the
QUINTA framework and apply it at each point of the AI/DS pipeline
to help illuminate how its three core tenets are operationalized. This
paper defines the process canonically as design, collection, cleaning,
data exploration, modeling, and interpretation. At each step, we
discuss how researchers can be more accountable with their biases
and assumptions. Overall, this paper draws from both Black Queer
Feminist and social science literature to establish reflexivity within
the QUINTA framework. Our contributions are as follows:

(1) We lay out and examine the foundations and discouse of
reflexivity from the social science literature, explaining its
benefits and critiques as it pertains to the researcher and
broader knowledge production. (Section 2)

(2) We propose the QUINTA framework as one way to opera-
tionalize intersectionality within the AI research and data
science (DS) community. (Section 3)

(3) We present an implementation of QUINTA via grounding
the framework in a case study of the #metoo movement.
(Section 4)

We highlight 3 core tenets to our QUINTA framework: (1) com-
munal vigilance, (2) methdological vigilance, and (3) positional
vigilance. We ground the these tenets in the AI pipeline: task de-
sign, data collection, data cleaning, data exploration, modeling, and
interpretation to explcitily demonstrate the exercising of reflexivity
on behalf of the AI researcher. With this, reflexivity then informs
gaps and makes room for conversation on how to address and
contest them.

1.0.1 Positionality Statement. All authors are people of color who
center an intersectional perspective in their social and professional
locations. All are formally trained primarily as computer scien-
tists. All authors have additional training in Black feminist, gender
theory, critical social theories, and criminology. All authors have
training in queer studies through activism and advocacy. As such,
our backgrounds influence this work’s posture. All authors are lo-
cated in the US but have diasporic links to other social contexts;
we do our best to position our work in a global context, though to
maintain scope, we primarily center around US #metoo movement.

We write this to empower individuals across the tech industry, ex-
isting, and upcoming technopolicy to critically flex technovigilance
via reflexive research praxis.

2 BACKGROUND AND RELATEDWORK
In the computer science literature, the term reflexivity has been used
in various areas, for instance, computer vision [79], cooperative
work [23, 88], data studies [20, 34], design [42, 60, 103], human-
computer interaction [43, 75, 93, 96], participatory design [42, 91],
and software engineering [83]. However, the concept has been used
in mixed ways and disconnected from social science literature. In
this following section , we explore definitions of reflexivity and
motivations for grounding oneself in a reflexive posture to more
deeply center minoritized voices within the data science process.

2.1 Intersectionality’s Call for Reflexivity for
Change

Exercising intersectionality as critical praxis involves reflecting on
how researchers have the power to impart their own bias, values,
and social locations impact their research processes but also change
their operations in order to mitigate harmful impacts. Cole [24]
urges researchers to utilize intersectionality “with a new lens" of
operation that goes beyond simply naming/illuminating problems.
Rather, Cole pushes for the researcher to name their own biases
by conceptualizing how their social position influences how they
interpret their own research. As a result, engaging in a reflexive
way that centers an examination of the researcher themself is crit-
ical for the research process. Collins [27, 28] similarly calls for a
critical reflection while navigating the research process in order to
illuminate possible gaps and contentions in understanding within
themselves. To critically reflect on one’s own research practice,
this includes investigating all parts of the resaerch process such
as design, data collection, methodology, metrics, and modeling. In-
deed, in operationalizing intersectional research, it is critical to shift
research processes away from agnostic positivist grounding and
more towards socially, historically, situationally-informed praxis.

Researchers have discussed the intersections of intersectionality,
artificial intelligence, and machine learning workflows (or data-
centric processes), particularly critiquing how to be “fair" without
causing harm to marginalized communities throughout various
pipeline steps. For example, Ovalle et al. [87] challenged and ex-
plained how researchers and scientists need to operate more criti-
cally about how we do machine learning work, especially adopting
an intersectionality analytical framework. These identified gaps
reaffirm the need to conceptualtize what operationalizing intersec-
tionality thoroughly and holistically could look like.

2.2 Reflexivity
2.2.1 Definition. Reflexivity is an iterative, back-and-forth pro-
cess that signals people to remain engaged, dissuading passiv-
ity [44, 63, 77, 107]. Reflexivity has been used throughout the
humanities and qualitative disciplines, including but not limited
to sociology [3, 28, 29, 38], psychology [33, 47, 51, 53, 61], nurs-
ing [32, 95, 112], ethnography [44, 64, 71], and anthropology [101].
The literature has various definitions for reflexivity [32, 36]. Web-
ster [114] has contended that reflexivity has been poorly defined

2
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because of its complexity and fluidity of usage [68]. Nevertheless,
there are many useful descriptions of reflexivity, such as "a cease-
less process" [63], “bending back" [64], and a “painful process" [38].
Barrett and colleagues [3] describes it as a “continual process of
engaging with and articulating the place of the researcher and
the context of the research. It also involves challenging and ar-
ticulating social and cultural influences and dynamics that affect
that context." [3][p. 9] Jones [63] captures its internal tensions as
applied to research projects, stating: “It implicates you...is uncom-
fortable...[and] has got to hurt." [63][p. 124].

While formal definitions vary across scholarship, the consen-
sus is that reflexivity’s utility is to perform better research [101]
and increase accountability [21, 63]. Using reflexivity in research
involves interpretation and reflection [112] while being honest
and open [98]. The researcher must perform a self-examination
to understand themselves and their research [41], in a “dynamic
that influences knowledge production." [37][p. 96] When using re-
flexivity, there is an integration between the researcher’s personal
interpretation and the creation of empirical data [2, 37]. Hence,
Hand [55] urges researchers to use reflexivity at every stage of the
research process, where they can examine and explicitly explain
their decisions.

There is a close association between reflexivity and reflection, yet
the two concepts are quite different [3, 41, 63, 113, 114]. Reflexivity
is more complex than reflection due to the level of deep engagement
with one’s self [41]. Jones [63] compares the two concepts, argu-
ing reflection is momentary and visceral, whereas reflexivity cuts
deeper to the bone. Reflexivity involves an iterative engagement of
the researcher with the research process [63, 113]. Barrett and col-
leagues [3] thoughtfully summarizes reflexivity and reflection: that
even though people use both terms synonymously, the difference
is a level of engagement and accountability that a researcher must
take into account with their privilege.

Reflexivity synergizes with intersectionality through both crit-
ical inquiry and praxis. In this paper, we center reflexivity as an
exercising of a critical praxis through cognitive sensibility to study
how interlocking systems of oppression come to be at the resolu-
tion of the researcher and their research process. Using Cole (2009),
she created questions or guidelines to help psychologists to think
about what is missing when going through the research process.
We adapt her strategy for the data science process.

2.2.2 Benefits. The contributions of reflexivity aid in research’s
“authenticity by mindfully presenting the messiness of its relational
complexities." [61][p. 196] Reflexivity contains a duality which can
be used as a guide for navigating the research process and chal-
lenges the assumptions and biases of the researcher [28, 32].

A major benefit of reflexivity thus surrounds how researchers
hold themselves accountable by questioning and thus illuminat-
ing their biases within themselves. As Barrett and collegues [3]
argue, reflexivity is essential for the researcher given that their
“own position might not always be clear to us and because we
are sometimes unaware of our own prejudices and relationship
with our cultural contexts and settings." [3][p. 5] Researchers are
impacted and possess their own lived experiences (i.e., cultures,
privileges, social locations) and feelings, and their impacts on the
research process cannot be ignored [64]. Incorporating reflexivity

throughout the research process, as Mason [74] describes, allows
the researcher to constantly be mindful of their actions and roles,
and provides an additional layer of scrutiny for their research. Fur-
thermore, Mauthner and Doucet [77] suggested there will be an
increase in confidence in research when "more researchers can
be self-conscious about, and articulate, their role in the research
process and products." [77][p. 424]

Another benefit is disrupting habitual [69], repetitive, and per-
formative actions [89]. Reflexive researchers are more attuned to
themselves and to critiquing their techniques and decisions. Mac-
Beth [69] describes how reflexivity begins to dismantle the power,
position and privilege in the research and the researcher. This
dismantling illuminates power dynamics so that researchers can
see who is centered and decentered in their work [56, 89]. Hen-
wood [56] contends that reflexivity illuminates where marginalized
communities are located and portrayed in the data - or not. Further,
reflexivity provides accountability by revealing power and knowl-
edge production, which are interwoven dynamics. The researcher
and researched have an unequal relationship where the researcher
has all the power. Therefore, reflexivity allows for the dismantling
of this power dynamic.

Finally, when researchers participate in conversations with priv-
ilege, it allows them to contend with power implications. Chap-
man [21] borrows from Foucault describing how power is linked
between individuals’ impacts on society. “Power relations permeate
our lives, and simultaneously power passes through individuals to
renegotiate or perpetuate social structures.” [21][p. 725] Therefore,
this establishes the need for a reflexive posture on how we per-
petuate biases in data analysis and the tools we utilize to perform
it.

Chapman [21] further points out, “often people from dominant
groups occupy these institutionally sanctioned positions of domi-
nance, to a degree that is statistically not representative of a pop-
ulation as a whole." [21][p. 725] Although Chapman comes from
a sociological lens, their points still apply to other domains and
disciplines, including computer science, where reflexivity allows
us to understand how power flows through the tools and tech-
nology we use to analyze data, and to reconceptualize “how to
resist or navigate out our own involvement in the systemic oppres-
sion." [21][p. 725].

As it pertains to AI/DS processes, as ubiqutous adoption of data-
driven tchnologies continue, a growing call for ways to grapple
with critical inquiry and critical praxis that attends to social justice
and reducing algorithmic harms is ever present. As such, reflexivity
finds itself well situated as a form of expanding algorithmic fairness
towards more holistic critical praxis.

2.2.3 Critiques of Reflexivity. While reflexivity offers these bene-
fits, it comes with several criticisms. One disadvantage is that it is
not a straightforward process [36]; depending on the constraints of
a project, it might be too time consuming to faithfully implement.
Reflexivity may reveal various nuances and roadblocks that were
not originally accounted for, such that researchers might not have
the flexibility to complete the reflexive process. Researchers have
proposed guides and documentation to alleviate implementation
burdens, and recommended transparency about any obstructions
to reflexive engagement, if it cannot be completely implemented.

3
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Another critique when using reflexivity are the dangers of narcis-
sism, self-righteousness, and nihilism [113]. Reflexive researchers
can develop savior complexes, and the process can become a ve-
hicle for excessive confessionalism [41], which can deviate from
a project’s core goals. Webster [114] argues researchers should be
explicit why they are using reflexivity, and not use it to center
themselves. Being explicit allows researchers to pre-set boundaries,
so they will not become blurred later on [107].

When scholars have employed reflexivity, they expressed the
challenges of engaging with the concept, mainly calling attention
to their power and privilege. For example, Jones [63] discussed
his rumination for putting reflexivity into practice while embat-
tled by white privilege even though being a member of the queer
community.

“Reflexivity has got to hurt. Reflexivity is laborious.
But while it may be laborious for me to go out of
my way to intervene and how I perform privilege,
I must also recognize that it is a privilege to not
have my performance always already marked as
marginal." [63][p. 124]

Jones’s description of engaging with reflexivity in his work draws
attention to three things: pain, difficulty, and the constant reminder
of his privilege while doing so. When reflexivity is implemented,
it will not feel good. Jones [63] describes reflexivity cutting to the
bone, where there is a consequence of implicating the researcher’s
involvement in power and privilege [63]. It is difficult to not give
up from the pain and fall into the habitual habits because it would
be easier. Although exhausting, this work is necessary to be consci-
entious of impacts on vulnerable populations.

Finally, a criticism of reflexive research stems on whether it can
be applied in the quantitative domain. Reliability, rigor, and va-
lidity are concerns when researchers use reflexivity [105], though
scholars still encourage its use [52]. Prior to 2016, reflexivity was
less common in quantitative research [37]. Some were hesitant due
to concerns about the validity of control measures [92, 113]. Oth-
ers [32, 53] have since pushed back on this notion, arguing that
quantitative research is not devoid of personal values and biases,
which have implications on data collection, measures, techniques,
and interpretation [112]. Furthermore, Darawsheh [32] argues that
reflexivity should absolutely be used, especially interrogating mea-
sures used to influence howwe think about people and things. Schol-
ars have criticized quantitative research for minimal acknowledg-
ment of the researchers’ positions and hidden assumptions [78, 99].
Ryan and Golden [99] argued that a “reflexive approach would
not undermine the value of the research study but would add a
depth of understanding about how, where, when and by whom data
were collected." [99][p. 1198] Reflexivity brings transparency and
provides “information about the positionality and personal values
of the research" [112][p. 38], facts that have real implications for
the quality of quantitative research. Guillemin [53] contends “The
goal of being reflexive in this sense has to do with improving the
quality and validity of the research and recognizing the limitations
of the knowledge that is produced, thus leading to more rigorous
research.” [53][p. 275]

Our work attends to these critiques by creating a reflexive frame-
work that abides by a quantitative space and allows for researchers

to ask questions throughout their quantitative methodologies. They
are able to explore new forms of transparency and positionality so
that the quality of work, especially as it pertains to data-centric
processes, is both improved and recenterd towards marginalized
voices.

2.3 Existing AI Fairness Reflexivity
Frameworks

A few scholars have encouraged the use of reflexivity for researchers
to attend to power and accountability through specific steps of
the data science process, such as documentation [79] and data
creation [34]. Within the AI fairness community, reflexivity has
been discussed in documenting computer vision datasets [79] and
assessing the gaps and contributions in the FAccT community [66].
However, in this paper we focus on providing a framework (1)
grounded in reflexivity through intersecitonality and (2) ground in
a case study with respect to the metoo movement.

Importantly, transparency is key to engaging reflexively but it
does not entail it. Scholarly works pertaining to transparency are
necessary to operationalize just AI at various parts of the AI pipeline.
However, copious literature only seems to focus on transparency
and scrutiny on the particular outcomes themselves, rather than a
procedural reflexive analysis throughout. Importantly, [46] and [80]
center the examination of ML artifacts. However our work differs in
that our framework directly shifts the research gaze towards that of
marginalized identities through the examination of the researcher
themself.

With respect to more socio-centric analyses, [9] critiques exist-
ing participatory approaches in ML processes, which is absolutely
needed as technologies seek to understand their needs more. [108]
also explores centering communities and what the researcher to
stay mindful of throughout ML design. However, both do not does
not go into depth about reflexivity. For example, [8] centers partici-
patory research, rather than the researcher themself. In this work,
QUINTA proceeds with centering an examination of the normative
reasoning behind research approaches in AI/DS pipelines. QUINTA
empowers the researcher to be be reflexive. A research team may
not have the necessary resources to include and incorporate partic-
ipants in the AI/DS lifecycle. QUINTA contributes to this space by
providing a reflexive guide for researchers (or a team of researchers)
to navigate the AI/DS processes from beginning to end. We are us-
ing reflexivity similarly in that both of our questions are meant to
serve as a guide, not an exhaustive checklist, rather as a tool to
help guide them through a reflexive exercise. QUINTA focuses on
the researcher, not the participation of others (i.e., the community);
the situatedness of the researcher is different. QUINTA is a solo
or group effort not involving the community. If it does involve the
community, then refer to this paper. In the end, we all need all the
guides to help navigate ML processes.

3 REFLEXIVITY FOR SOCIAL JUSTICE
The inspiration to use reflexivity in QUINTA stems from two places:
(1) the benefits discussed earlier, and (2) how scholars have used this
concept jointly with intersectionality. When reflexivity and inter-
sectionality are used intentionally, there are three themes that arise.
One, there are conversations surrounding themes of power. Two,
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the researcher and research process are repositioned towards the
margins. Three, social justice 2 becomes a part of the conversation.

Collins [28] contends that reflexivity is already integral to inter-
sectionality: “Intersectionality already has within its theory and
practice an expansive set of ideas and practices that enable it to be
self-reflexive and accountable." [28][p. 64] Yet, Collins goes on to
express concern: “How self-reflexive are intersectionality’s prac-
titioners about their own inquiry and praxis?" [28][p. 64] The ac-
countability gap is made explicit in the QUINTA framework in
order to reckon with researchers not intentionally critiquing their
power and its implications on praxis. Moreover, intersectionality is
not an “a la carte” paradigm; it is weakened and destabilized when
not used in its totality. Therefore, with the QUINTA paradigm
reflexivity and intersectionality are used together, which further,
explicitly calls out reflexivity to promote the critical assessment
of the researcher’s privileged position in the research process, as
its generator or creator. QUINTA is intended to implement Bow-
leg [10, 12] and Salem [100]’s precautions for being mindful of how
intersectionality is used, and for avoiding corrupting the methodol-
ogy from its roots in Black Queer Feminism.

4 WHAT IS QUINTA?
QUINTA is a methodological framework that emphasizes intersec-
tionality and reflexivity as foundational concepts for supporting
research scientists’ ability to evaluate their data and techniques for
representation and potential bias while engaging in critical reflec-
tion on their practices. Figure ?? illustrates how reflexivity, inter-
sectionality, and the data science process interact to form QUINTA.
The illustration’s spiral representation was chosen because it em-
bodies reflexivity as an iterative and ceaseless process, looping
back on itself at each step. Intersectionality, for its part, is the mi-
lieu within which reflexivity operates; like a jellyfish and water,
reflexivity loses its coherent structure without intersectionality.

Reflexivity and intersectionality thus work together within the
QUINTA framework, and the approach is integral to its applica-
tion. Researchers interrogate each methodological choice from a
reflexive-intersectional perspective at each stage of the process.
QUINTA is applied by iterating a set of questions over the data
science process until one arrives at a suitable methodology. The
questions are formulated to guide and reveal who is being centered
and who is being marginalized or erased. They provide an iterative
vehicle for illuminating whether the researcher inclusively meets
the goals and whether those choices or decisions are inclusive.

Through this application, QUINTA can reveal and contextualize
biases that would otherwise go unremarked, or worse, be presented
2Scholars argue that justice is an essential attribute of intersectionality which should
not be omitted from the discussion [12, 28, 94]. Collins [28] calls out, today’s intersec-
tional projects frequently “do not deal with social justice in a substantive fashion, yet
the arguments that each discourse makes and the praxis that it pursues have important
ethical implications for equity and fairness" [28][p. 47]. Historically, justice was such
an outwardly centralized part of intersectionality that there was little need to “examine
it or invoke it" [28][p. 47]. This illuminates a disconnect between intersectionality and
how the theory is used in varying venues. By contrast, other scholars [1, 63] have made
connections between intersectionality and justice to challenge their own privileged
positions of power in their work, calling for justice as an explicit component for doing
so. In particular, Adams [1] argues for justice when using intersectionality, on the
basis of its roots therein. Moreover, scholars trace their intersectionality to its Black
Feminist Queer roots when positioning it with reflexivity and justice. Per Bowleg [12],
when authors cite “the trinity” (Crenshaw [30, 31], Combahee River Collective [25],
Collins [26–29]), this authentically captures its origins in lived experiences.

in a “view from nowhere" manner that mistakes a lack of obvious
or intentional bias for proof against the possibility of bias. QUINTA
does not itself guarantee that any result will be inherently unbiased;
rather, it is the exercise of contextualizing and highlighting bias,
which allows researchers to address it. As Boyd [16] outlines, this
approach is incorporated as three broadly defined questions about
the power relations at each step of the data science process, seen
in Table 1.

Referring to Cole (2009), her grounding was using intersection-
ality to develop these questions. She did not explicitly use the term
"reflexivity" but what she was doing was being reflexive in this pro-
cess. The first question addresses who is included and/or excluded
from the data. This question can lead us to look deeper into where
and how this data was collected, from which sources our data’s
biases might originate, and its harmful impacts of various tech-
nologies, tools, and techniques on communities and groups. These
impacts can maintain and perpetuate stigmas, and reinforce and
create new biases, so it’s important to find them. Finally, the third
question engages with the conceptualization of reflexivity. These
questions will be explored through the next three subsections.

4.1 Communal Vigilance
Who is included in the data?At the most basic level, researchers
should consider who is included in the data they collect, and this
question draws attention to that.. Because certain groups or com-
munities have historically been excluded or alternatively hyper-
focalized, there is a tendency to extend generalizations without
considering whether they are applicable to other populations, nor
whether those populations are even present. Therefore, it is essen-
tial to interrogate the source of the data and what people it focuses
on in particular.

This question also illuminates who is being overlooked and who
is privileged. The need for data representation was well-illustrated
by early work showing that a single-axis framework privileges
some, whereas it creates erasures for other groups [24]. As Cole [24]
discusses inclusion, it "transcends representation, offering the possi-
bility to repair misconceptions engendered by the erasure of minor-
ity groups and marginalized populations." [24][p. 172] By starting
our analyses on the margins, we encompass the understanding of
experiences on the fringes, rather than encoding dominant, implic-
itly assumed perspectives into our datasets. The goal is to disrupt
these assumptions by includingmultiple identities. Such attention is
critical, because failure to include these identities reinforces biases
and perpetuates stigmas. In addition, the act of inclusion itself helps
scientists to ask further questions about how the data is collected,
and how to maintain that inclusivity [40].

4.2 Methodological Vigilance
What role/How does ML/AI/statistics embed and amplify in-
equality?A key lesson of intersectionality is that statistical meth-
ods cannot simply produce neutral, unbiased results by quantifying
and subtracting bias [11, 40]. All numerical methods inherently en-
code historical and continued relations of the political and material,
of social inequality and stigma [104]. Understanding these short-
comings, QUINTA can critique and interrogate algorithms, tools,
and techniques. ML and AI are typically represented as embodying
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Figure 1: QUINTA Diagram.

Phase Who is included in the data? What role/How does
ML/AI/statistics embed &
amplify inequality?

What is your position in rela-
tionship to the data?

Design Is the workflow attuned to diversity
and inclusion? Did the literature re-
view attend to the social and his-
torical contexts of inequality of the
social issue(s)?

Did the literature review attend to
the social and historical contexts
of inequality of the proposed tech-
niques?

Why are you doing this research?
What is the personal benefit for
you? Are you causing harm and era-
sure? What story are you trying to
tell?

Collection Have you thought about neglected
groups? Who are you centering and
who are you marginalizing?

Do the data sources used exacerbate
unequal visibility and further en-
hance structural inequality?

Who is included or excluded from
the collection? Why and how are
you silencing or amplifying them?

Cleaning Are normalizing and cleaning tech-
niques reinforcing a dominant re-
framing or are they promoting in-
clusivity?

Do the techniques used exaggerate
unequal visibility and further en-
hance structural inequality?

Who are you silencing/amplifying
by cleaning the data? Why is that
happening and how can you fix it?

Explore Are you developing and investigat-
ing adequate measures for using the
data?

Are differences conceptualized as
stemming from structural inequali-
ties produced from the techniques?

Who are you silencing/amplifying
in the models you are exploring?
Why is that happening and how can
you fix it?

Model Does your evaluation attend to di-
versity and inclusion in the data and
outcomes?

Are you testing for both similarities
and differences in outcomes for dif-
ferent groups (e.g., implicit bias)?

Who are you silencing/amplifying
in your model selection (e.g., rep-
resentation)? Why is this the best
model and if it is not how can you
fix it?

Interpret Are findings being interpreted to
represent a universal or normative
experience?

Are you considering how similari-
ties and differences in outcomes are
interpreted and how the structural
inequalities are enhanced by the al-
gorithms and statistics?

Who are you silencing/amplifying
in the interpretation of your model
outcomes (e.g., sensitivity to nu-
anced variations in the data)?

Table 1: The overarching and phase-specific questions driving reflexivity intersectional at the foundation of QUINTA [14].

unbiased normative ideals, but several scholars [65, 85] have argued
that these tools and techniques cause harm to marginalized and
vulnerable communities. Proposals for mitigating these harms have
ranged from FAIR and FATE 3, to outright abolishing these tools.
While FAIR and FATE [6, 45, 62, 82, 102] superficially appear pro-
gressive by enacting "safeguards" to hold algorithms accountable,
the problem is that these concepts are centered from a dominant
positionality [45? ].

Recent work around fairness, ethics, and accountability has
called attention to various inequalities (i.e., health care, finances,
3“fairness, accountability, transparency, and ethics”

loans, etc.), but only does so temporarily. These ideas fall short
because they are centered on and around dominant positions, not
addressing the inequities of those on the margins. The real ques-
tion is, how can we become intentionally inclusive and promote
equity when we continue to use tools and techniques steeped in
the marginalization of communities? Scholars have highlighted
concrete examples of data science tools harming queer, non-able,
and neuro-diverse communities [54, 65, 97]. By asking how our
tools embed inequality, we can choose techniques and tools that
consider multi-dimensional and overlapping social identities, and
how systems and structures of oppression impact them.
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4.3 Positional Vigilance
What is your position in relationship to the data? The concept
of reflexivity is integral to this third question. By being engaged and
conscientious at each stage of the data science process, researchers
can critique and question their decisions and results. This question
thus spurs the iterative reflexive process, encouraging practitioners
to embrace discomfort and evaluate their own position in relation
to the data. This adds a critical layer of accountability to research.

5 CASE STUDY: #METOO
For this section, wewill take each prompt fromQUINTA (see table 1)
and apply it to the work that Boyd [16] did.

After discovering Tarana Burke’s work a decade ago, it became
apparent that we needed to locate these communities. Are they
on Twitter? The objective was to identify marginalized commu-
nities who have experienced sexual violence. Thus, we initiated
data collection from two points of reference: Alyssa Milano, who
popularized the movement, and Tarana Burke, who did not ac-
tively engage on social media due to the nature of the conversation,
resulting in a lack of previous dialogue on the platform.

Gaining insights from Tarana Burke’s knowledge, our intention
was to assess how people discuss the #metoo movement from both
ends. Sexual assault and violence is not a singular issue, but the mis-
conception was that it was solely a concern for white individuals.
However, it is not limited to white communities. The movement
provides communities with power, amplifying their voices and of-
fering hope, resistance, and a sense of existence. It aims to resist
and change the prevailing narrative, striving to be seen, heard,
and believed. Historically, these populations have been overlooked,
silenced, and disbelieved. Tarana Burke provided them with a plat-
form to openly discuss their experiences, aiming not to portray
them as victims but as survivors. It created a safe space for open
dialogue and facilitated a healing process described as “empower-
ment through radical healing” This perspective diverges from the
dominant media narrative, shedding light on the voices that often
remain unheard. Healing emerges through accountability and visi-
bility, healing in community, and empowerment achieved through
stepping outside the confines of relying on a dominant group for
validation. How individuals navigate healing and hope on their
own terms becomes a central question.

5.1 Task Design
Is the workflow attuned to diversity and inclusion? Did the
literature review attend to the social and historical contexts
of inequality of the social issue(s)? To uncover underrepresented
voices, we initiated the process by collecting data on the conver-
sations surrounding Milano and Burke in relation to the #metoo
movement. We then employed community detection algorithms
to identify emerging communities based on the hashtags used in
these discussions. We observed that the #metoo hashtag was evolv-
ing, reflecting its diverse morphological nature. In particular, we
noticed that under Tarana’s tweets, there was a greater focus on
marginalized communities compared to Milano’s tweets, which
predominantly represented mainstream media and had fewer vari-
ations. Milano’s tweets displayed a significant level of communal
homogeneity, echoingwhat was portrayed in themedia. Conversely,

Tarana’s tweets exhibited more diversity, with greater heterogene-
ity in the hashtags used under Burke’s name. Collecting tweets
using the metoo hashtag alone would only capture the dominant
discourse, which mirrored published articles and social media more
broadly. However, by focusing on Tarana’s tweets, we accessed
conversations on the fringes, where communities existed on the
periphery and engaged in more personal discussions. Therefore,
we had to devise specific metrics that were relevant to Tarana’s
conversation, such as measuring the number of derivatives that
emerged.

The research project’s workflow was designed to create two
networks (see figure 2): a QUINTA network and a non-QUINTA
network. The latter employed a generic approach where the lower-
degree nodes were eliminated to give more attention to the main
communities in the dataset. The former followed the reflexive-
intersectional approach, removing the larger-degree nodes within
the dataset to reveal smaller communities. The intent was to ex-
tend beyond the dominant racial and gender lens of the #metoo
movement.

The literature review found ample historical and social context
relating to inequalities in prior #metoo movement scholarship. Both
the network analysis [106, 115] and synopsis perspectives portray
the movement as unifying and unified, yet more focus on white
cis-hetero affluent women narratives despite the fact that sexual
assault and violence impact all social and identity positionings [15,
49, 59, 70, 76, 86, 90, 99, 109]. Furthermore, given the numerous
critiques of co-option from the original ‘me too’ movement [4, 15,
35, 48, 50, 76, 86, 109], the design of the network analysis workflow
needs to capture the hidden users in the movement.

Did the literature review address the social and historical
contexts of inequality of the proposed techniques?

To fully comprehend the inequality surrounding the #metoo
movement, as well as issues of sexual assault and violence, it was
crucial to consider the social and historical contexts. Each marginal-
ized identity affected by these issues has a well-documented but of-
ten overlooked history of exclusionwhen compared to the dominant
identity. During our examination of previous scholarly works [106,
111, 115] that employed network analysis to study the metoo hash-
tags, we identified a gap in identifying intersectional communities
within the #metoo discourse. Notably, Xiong et al.[115] and Suk
et al.[106] argued that the data sets contained intersectional com-
munities actively participating in global online conversations, yet
these communities were disregarded or absorbed within the larger
analysis. This is significant because numerous scholars have ex-
pressed concerns about how this absorption has undermined the
grassroots nature of the original #metoo movement and obscured
the voices of marginalized intersectional individuals. The proposed
QUINTA technique aims to address these gaps and rectify these
issues.

Why are you doing this research? What is the personal
benefit for you? Are you causing harm and erasure? What
story are you trying to tell?

The #metoo movement is one of the most vivid and widely-
recognized examples of an online social movement. A popular nar-
rative about the history of #metoo is that the movement started on
October 15, 2017, in response to a viral tweet from celebrity Alyssa
Milano. However, the anti-harassment social movement #metoo
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Figure 2: QUINTA Design in #MeToo Case Study

actually began in 2006 when activist Tarana Burke wanted “to pro-
vide space for women of color to understand that they have a deep
worthiness just because they exist" [66]. As Milano’s tweet went vi-
ral, Burke’s contributions were at risk of being ignored or co-opted.
Sexual assault and violence do not happen only in Hollywood; they
are unfortunately ubiquitous. Some survivors4 of sexual assault
and violence possessed multiple social intersections of race, gender,
orientation, able-bodiedness, class, nationality, religion, etc. which
were also at risk of being ignored. It is their story that we are trying
to tell.

The viral nature and popularity of an online movement pro-
vided researchers with a significant opportunity to study its so-
cietal and communal impacts. However, existing scholarship on
#metoo largely neglected survivor communities beyond Hollywood
and predominantly focused on Milano [72, 73, 84, 115, 117] . Many
#metoo researchers primarily centered their analysis on the experi-
ences of white women, mirroring the narratives prevalent in news
media, which entered on the cis-gendered, affluent, able-bodied,
white women in Hollywood. Consequently, their findings and con-
clusions failed to capture the intersectional nature of the actual
metoo movement.

Accordingly, this study’s design is intended to address these
harms and erasures. Other scholars [15, 22, 67, 86, 110] illuminated
this disconnect and called attention to the question of who was
getting centered. Boyd and McEwan [15] specifically argued that
the sudden increase in the #metoo hashtag’s visibility paradoxi-
cally led to the erasure of the Black female and LGBTQAI+, voices
that had initially established the ’me too’ movement, thus causing
harm to those communities. Boyd [16] expanded this investigation
into quantitative spaces, particularly data science. The underlying
question was how data scientists and researchers could mitigate
these biases to prevent further harm to vulnerable communities
via our methodological approach, to be more consciously aware of
and lessen the harm our work causes. In answering this question
with QUINTA, our motivations and personal benefit are one and
the same: to recenter the #metoo research on marginalized voices.

4We use the term “survivor," which is what Tarana Burke [18, 19] used to empower
those who have experienced sexual assault and violence.

5.2 Data Collection
Have you thought about neglected groups? Who are you
centering and who are you marginalizing?

Previous data science scholarship researching the #metoo move-
ment mostly used a garden hose and random sampling methods to
collect data for network analysis. In addition, Trott [111] observed
that intersectional narratives were absent from the first day and
throughout, demonstrating how popular white feminists dominated
the protest’s core. Yet, Trott [111] found that Tarana Burke was
located on the periphery of her network analysis.Because of all
these factors, the motivation to use snowball sampling (see figure 3)
is where the researcher picked the two seed points of Burke and
Milano. These two women were selected for their unique roles in
the #metoo movement as, respectively, (1) the creator of the ’me
too’ movement and (2) the celebrity widely credited for the ’me
too’ phrase and hashtag going viral on Twitter. In essence, this
is inherently an act of centering. The purpose of this centering
is to allow the snowball sampling to reveal groups that would be
neglected in the garden-hose approach.

The data collection needed to implement a sampling technique
that encapsulated the communities formed around the movement’s
two focal women, Burke and Milano. The researcher used snowball
sampling [7, 17] to collect the data from Twitter to see who is
participating in this movement solely from these two women’s
involvement and capture the intersectional population involved in
#metoo. This collection method also avoids high-engagement users
who are often over-represented in garden-hose techniques, thus
increasing the visibility of marginalized identities. This coincides
with researchers [13, 39, 40] who emphasize the use of methods
that are suited for finding “marginalized populations who are not
readily accessible using more traditional sampling methods such
as random sampling" [13][p. 338] and garden-hose samplings. To
summarize, in addition to the underlying marginalizations and
inequalities that the snowball sampling has been designed to center,
the overrepresentation of high-engagement users is another form
of structural inequality that we have taken care to address.

Who is included or excluded from the collection? Why
and how are you silencing or amplifying them?
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Figure 3: QUINTA Collection in #MeToo Case Study

Since collection needs to be mindfully designed to incorporate
maximal heterogeneity, we proceeded with the snowball sampling
technique. Under the snowball sampling scheme, there were two
inclusion criteria to collect a Twitter account in a “generation,” or
iteration of sampling: (1) having been "@”-mentioned by a user in
the previous generation, and (2) having used the hashtag #metoo
(case-insensitive) in a tweet. As a result, any users who were not
part of this network were excluded, which allows for the extreme
amount of “noise” associated with garden-hose techniques to be
filtered out, allowing for marginalized populations to be detected.

5.3 Data Cleaning
Are normalizing and cleaning techniques reinforcing a dom-
inant re-framing or are they promoting inclusivity? While
cleaning the data, the focus scope was on English written tweets. A
limitation was excluding non-English tweets due to the presence of
non-ASCII characters. This limited the context to primarily focus
on the #metoo movement in the United States and the broader an-
glophone world. This includes people who speak some English but
for whom it is not their primary language. In the American context,
this centers the dominant language group, which overlaps with the
identities of the two seeds, but excludes speakers of non-dominant
languages. Globally, English is dominant as a lingua franca, but is
not the only dominant language.

Do the techniques used exaggerate unequal visibility and
further enhance structural inequality? Focusing on English
only tweets limits the convesation and the expansiveness of the
#metoo hashtag. The scope is limited to how the hashtag shifted
into contexts outside of the english-language domain. Therefore,
there was a great attempt to use the location metadata. Unfortanta-
ntly, it was unavailable, but our assumption is that the majority of
non-English tweets were not from the U.S., with the possible excep-
tion of some appreciable proportion of Spanish-language tweets,
given its status as the second-most popular language in the U.S.
The exclusion of non-English tweets renders them invisible to this

analysis. Scholars [81] documented how the #metoo hashtag was
transformed differently within Japanese culture, for instance. This
analysis will missed out on opportunity to examine non-english
tweets. Unfortunately, it was hard to avoid the exclusion of non-
English tweets given how global the viral hashtag traveled across
the world.

Who are you silencing/amplifying by cleaning the data?
Why is that happening and how can you fix it? The largest
subset of non-English tweets were in East Asian languages; thus,
East Asian voices were particularly impacted by silencing in this
data cleaning. Likewise, the Spanish-speaking American population
was also likely impacted. Due to their large proportion of the Amer-
ican population, this is not insignificant to the American context
of the study, but it may be a mitigating factor that this population
is highly bilingual in English. Other non-English-speaking groups
bear mentioning as having been silenced as well.

5.4 Data Exploration
Are you developing and investigating adequate measures
for using the data? At first glance, using metrics like retweets
and favorites may seem like a approach to analyzing the data with
respect to the objective of identifying community stories besides the
dominant narrative. However, only doing this does not lend itself
well to capturing heterogenous voices that may be of smaller size.
Therefore, we explored what impact two major types of hierarchical
5 clustering, divisive and agglomerative, have on the data.

For the investigation of adequate measures, we turn to commu-
nity detection algorithms.Since community detection algorithms
are often underpinned by maximizing likelihood of node presence
with respect to node degrees, we acknowledge that doing this with
larger communities - when we want to look at small communiites -
may run the risk of overshadowing them. Therefore, we try to use

5The word ‘hierarchical’ implies there is a rank (or order) to how objects are grouped
together.
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algorithms that focus on detecting communities for smaller net-
works. For instance, the Edge-Betweenness algorithm is a divisive
type of community detection algorithm which detects communities
for smaller networks [116], which puts more emphasis on the im-
portance of a node within its network. By contrast, the WalkTrap
algorithm uses short “random walks" to find communities in the
networks where the walks stay inside the same community [116].
By using two algorithms with complementary focuses, we increase
our chances of detecting significant information.

Are differences conceptualized as stemming from struc-
tural inequalities produced from the techniques?We centered
conceptualizing differences based on structural network qualities.
For example, there may be undetected structural inequalities pro-
duced in the elimination of nodes from the network grap. However,
the types of hashtags we see when nodes are eliminated from each
step depends on the technique used, which is why we used multiple
techniques with complementary focuses. The overall effect is a
structurally more equitable view of the entire data set.

Who are you silencing/amplifying in the models you are
exploring? Why is that happening and how can you fix it? In
order to identify silencing or amplification in the models, several
models and meausrement outcomes were tested. Creating different
pathways and testing several modes of node elimination (Figure4)
illuminated who is being silenced or amplified by each technique
. We hypothesized that if we remove lower degree nodes (in the
Non-QUINTA Network Pathway), this will center on more popu-
lar (and thus likely dominant) communities related to the #metoo
hashtag; whereas in the QUINTA pathway, when we remove the
highest degree node (which is #metoo), we may see an increase in
community hetergeneity which increase abilities to capture smaller
and more marginalized communities. By using selective silencing
and amplification within each technique, and using both techniques
together, their complementarity “fixes” each other.

5.5 Model
Does your evaluation attend to diversity and inclusion in
the data and outcomes? At first glance, using metrics like de-
grees, retweets and likes are a good approach to analyzing the data.
However, only doing this does not lend itself well to capturing het-
erogenous voices that may be of smaller size. Therefore to approach
attention to diversity and inclusion in the data and outcomes, we
form metrics which to that capture community hetergeneity as way
to consider modeling quality. Furthermore, we intentionally choose
to split cross a QUINTA and non-QUINTA pathway in order to
contrast research outcomes when reflexivity is engaged. In doing
this, we observe minor differences between the two community
algorithms within each respective pathway (see figure 5). However,
there were stark differences in node removal when comparing the
two pathways against each other. Depending on which pathway
was taken, the non-QUINTA would not be oriented toward diver-
sity and inclusion based on the hashtags present. In the QUINTA
pathway, there were more hashtag derivatives present representing
intersectional communities. In exploring these differences across
the pathways with respect to how we define both outcomes and
collect the data, we attend to more inclusive praxis.

Are you testing for both similarities and differences in
outcomes for different groups (e.g., implicit bias)? We ground
contrasting similarities and differences in this task by splitting the
research process into one which centers dominant voices versus
one that does not. Furthermore, we intentionally choose to analyze
different outcome with respect to how the removal of a dominant
voice shifts conversation hetergeneuity via hashtag derivative mea-
surement. In particular, we tested various outcomes such as the
removal of nodes with lower weights and the removal of the hash-
tag #metoo as it represents a consuming, monolithic conversation
which overshadows others around it. In the non-QUINTA pathway,
when we removed the nodes with the lower weights, we gave more
priority to nodes more central to the network. As a result, lower
nodes represented less frequently used hashtags. When removing
the #metoo tag from the non-QUINTA pathway, we found that even
if the pathway did not have the #metoo hashtag, it overshadowed
mostly everything else. Meanwhile, when themost monolithic node,
the #metoo network, was removed in the QUINTA pathway, it led
to more visibility to the other nodes on the network’s fringes.

Who are you silencing/amplifying in your model selection
(e.g., representation)? Why is this the best model and if it is
not how can you address it?

Model selection influences how intersectional communities are
exposed, amplified, or go otherwise unseen. Therefore, the imple-
mentation of the network analysis involved creating two strate-
gies. The first focused on the #metoo hashtag revealing monolithic
conversations involving sexual assault and violence. The second
involved removing #metoo to reveal nuanced community-specific
implications of sexual assault and violence. Emerging themes arose
from each strategy (1) more general conversations surrounding
the main hashtag and (2) removing the main hashtag exposed in-
tersectional communities identified by hashtag derivatives. Each
strategy uses the concept of silencing - removing the main hashtag,
or the main hashtag silencing others - to detect different communi-
ties, but it is clear that the second strategy is superior in detecting
marginalized communities.

The implementation of network analysis stemmed from the abil-
ity to visualize the various hashtag communities in a network. In
each pathway, we used community detection algorithms that are
hierarchical in how they cluster similar objects together. Further-
more, we chose not to follow dominant practice of removing low
degree nodes for modeling to prevent the erasure of various com-
munity conversation. In using these algorithms, we see a future
need to investigate the mathematics of each community detection
algorithm to determine if any inclusive or exclusive aspects go on
unnoticed.

In the intersectional network analysis, we are led to travel to the
margins of the data instead of focusing on the most monolithic node
- that is, #metoo. Therefore, we removed the #metoo node from the
network to give more visibility to the other nodes. Removing the
largest node, #metoo, reduced the node strength range from 0 to
18. Also as a consequence, this drastically reduced the number of
edges from 83 to 65. The rationale behind intersectional network
methodology is the ability to visualize the nodes that are not readily
seen therefore revealing other nodes present in the network which
would not have been viewed previously. This can be seen in Figure
4.6a. What cannot be readily seen in the figure is that there are
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Figure 4: QUINTA Explore in #MeToo Case Study. Upper Non-Quinta network path shows... Lower Quinta pathway shows...

Figure 5: QUINTA Model in #MeToo Case Study. Left graph shows.... Right graph shows...

numerous singleton nodes due to removing the #metoo node. In
this pathway, since we are focused on the nodes located in the
margins, we do not remove any edges from the network nor do we
filter any nodes.

5.6 Interpret
Are findings being interpreted to represent a universal or
normative experience?

The Non-QUINTA pathway (Figure 5) was extremely reflective
of broader experiences in mass media and other public spaces.
We also saw communities with general #metoo support especially
in the Edge-Betweenness community detection algorithm. This
included #timesup and a specialized community advocating for
discussions about sexual assault and violence for k-12. Thus, it
is easy to say that these communities are amply represented in
our findings. However, in the QUINTA pathway ( figure 5), the

hashtag derivatives 6 of #metoo were more prevalent, but these
communities were not as prominently discussed in the media. Ex-
amples include #metooblackchurch, #metooqueer, #metoomuslim,
#metoodisabled, and #ustoo, to name a few. The universal aspect of
these experiences is straightforward: the ubiquity of sexual harass-
ment and violence. By intentionally looking for these voices, these
impacted communities and their experiences are valid and differ
from majority voice experiences.

Are you considering how similarities and differences in
outcomes are interpreted and how the structural inequalities
are enhanced by the algorithms and statistics?

Looking more granularly at clustered hashtag communities be-
tween the QUINTA and Non-QUINTA pathway, we observed slight
differences in the number of hashtags yielded, along with which
hashtag that most stood out as important in the community. No-
tably, both community detection algorithms produced the same

6“Hashtag derivatives are defined as a hashtag whose composition varies on, but
strongly reflects, the original hashtag.” [16][p. 60]
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number of communities and nearly the same importance, even
though the Non-QUINTA pathway reflected more network degree
and density.This affirms the importance of grounding a task in struc-
tural differences, reflected in a social context. Within the context of
the well-known existing inequalities between these two groups of
communities - roughly speaking, the dominant and the marginal-
ized - we believe that our work helps to reduce these inequalities
by centering each group of communities respectively.

Who are you silencing/amplifying in the interpretation of
your model outcomes (e.g., sensitivity to nuanced variations
in the data)? We understood through previous work [16] that the
majority voice in the network analysies predominantly reflected
only the #metoo hastag. This was observed in our analysis: the Non-
QUINTA pathway was extremely reflective of what was happening
in mass media and the conversations that were going on in public
spaces, yet it was only able to reflect more homogenous tags of
#metoo. The impact of this is a silencing of non-dominant voices.
In contrast, when approaching the analysis via a QUINTA Pathway,
we centered tag heterogeneity and in doing so observed a larger
representation of diverse communities; these are who we amplify.
Nonetheless, we should note that the US indigenous communities
are completely missing from this conversation. Despite our best
efforts at methodological inclusion, we still have a massive gap that
needs to be taken into account in future work.

6 DISCUSSION
QUINTA grapples and employs reflexivity and intersectionality
paradigms to question and illuminate where the power lies in the
research process. This paradigm encourages researchers to eschew
the prescriptive, rote habits of traditional workflows, and take steps
to be equitable and inclusive. The goal of QUINTA is to begin
making better decisions about the implementation of our method-
ologies. This means we do not engage in witch hunts that assume
researchers were not or cannot be reflexive; nevertheless, it leaves
us the space to critique our work and explore opportunities to be
more inclusive. Furthermore, QUINTA presents a more special-
ized, targeted way to design equitable data pathways that more
thoroughly represent inequalities. This framework also opens the
door for other quantitative domains to think more critically about
diversity and differences across the tech universe.

6.1 Limitations and Future Work
The purpose of reflexivity is to be engaged throughout the entirety
of the research process. Reflexivity is not a passive concept; there-
fore, neither is QUINTA a passive methodology. With reflexivity,
QUINTA requires conscientious engagement and intentional inclu-
sivity. The flip side of this is that it manifests as a limitation: when
not engaged with conscientiously or comprehensively, QUINTA
risks becoming a fig leaf, the latest in a long line of buzzwords. An
additional limitation is immediately thinking this work is only for
the data science community. Even though QUINTA was created
around the data science process, this process is a proxy for any
other data centric processes. The example illustrated in this paper
focused on network analysis. Further, Howison and colleagues [58]
cautioned researchers in network analysis to be mindful of the

method designs they choose for these networks impact the people
they include or exclude, particularly marginalized communities.

For future research, we encourage researchers (and practitioners)
to put this work into praxis, again echoing the intersectionality
scholars [12, 28, 29]. The reflexive questions will most likely be
reframed to fit a different context or even a domain. Nevertheless,
we can then build a body, a scholarship and as well fruitful conver-
sations to begin to understand the implications, biases incorporated
into the research process, from the researcher’s standpoint. As
researchers and practitioners, we will have to be vulnerable to ex-
ploring the possible complexity of research topics and communities
we are not a part of and may not intuitively understand. Instead
of being timid, perfunctory spectators to inequality, we can get
involved and use the questions posed in Table 1 to engage with the
work.

7 CONCLUSION
Data is not neutral. The profound social, technological, and finan-
cial investments in building data infrastructures speak to its power
and the need for new kinds of critiques and alternatives that center
multiply-marginalized perspectives, rather than once again quixoti-
cally attempting to reform dominant defaults. This paper introduced
a framework for centering AI researcher reflexivity in order to drive
responsible ML and AI fairness research via the grappling of power.
The framework, QUINTA, shows how reflexivity can help conceptu-
alize and call attention to the role and decisions researchers make in
this process. These decisions and model harm outcomes to histori-
callymarginalized communities, are not independent of one another.
Within the QUINTA framework, reflexivity and intersectionality
provides the foundation and work together. The QUINTA frame-
work is a strong vehicle for integrating intersectional perspectives
into data centric processes. There is justifiable theoretical, method-
ological, and epistemological tension between these perspectives,
making it especially ripe for exploration and synthesis. Use reflex-
ivity (and intersectionality) in QUINTA to critically reflect on your
role (as researchers and scientists) in how your decisions (whether
intentional or unintentional) harm vulnerable communities, rein-
force bias, and perpetuate inequities. Implementing QUINTA comes
with a disclaimer: it will take some perspective-taking, exposing
one’s blind spots throughout the process, and questioning the practi-
tioner’s modes of operating. QUINTA is not a feel-good approach; it
is a transformative approach meant to unveil uncomfortable truths
and perspectives, empowering researchers to be agents of change
in their own research – starting with themself.
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