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Abstract

The empirical risk minimization approach to data-driven decision making assumes that we can learn
a decision rule from training data drawn under the same conditions as the ones we want to deploy it in.
However, in a number of settings, we may be concerned that our training sample is biased, and that some
groups (characterized by either observable or unobservable attributes) may be under- or over-represented
relative to the general population; and in this setting empirical risk minimization over the training set
may fail to yield rules that perform well at deployment. We propose a model of sampling bias called
I’-biased sampling, where observed covariates can affect the probability of sample selection arbitrarily
much but the amount of unexplained variation in the probability of sample selection is bounded by a
constant factor. Applying the distributionally robust optimization framework, we propose a method for
learning a decision rule that minimizes the worst-case risk incurred under a family of test distributions
that can generate the training distribution under I'-biased sampling. We apply a result of Rockafellar
and Uryasev to show that this problem is equivalent to an augmented convex risk minimization problem.
We give statistical guarantees for learning a model that is robust to sampling bias via the method of
sieves, and propose a deep learning algorithm whose loss function captures our robust learning target.
We empirically validate our proposed method in simulations and a case study on ICU length of stay
prediction.

1 Introduction

Empirical risk minimization is a practical and popular approach to learning data-driven decision rules [Bert-
simas and Kallus, 2020, Kitagawa and Tetenov, 2018, Vapnik, 1995]. Formally, suppose that we observe
i =1, ..., nsamples (X;,Y;) independently drawn from a distribution P, where X € X’ are covariates and
Y € Y is a target outcome, and we want to learn a decision rule i that minimizes a loss L under P:

h* = afginiHE(X, v)~p [L(h(X),Y)]. (1)

Then, empirical risk minimization involves choosing a decision rule h that is a (potentially penalized) mini-
mizer of the in-sample loss n=' Y7 | L(h(X;), Y;); and the learned decision rule is deemed to perform well
if the loss of h approaches the minimum possible loss that could be attained using h* [Vapnik, 1995].
Formal justifications for empirical risk minimization crucially rely on the assumption that the target
distribution we want to deploy our decision rule on, i.e., the one used to define the objective in (1), is the
same as the distribution P from which we drew the training samples (X;, Y;) used for learning. In several
important application areas, however, sampling bias in the data collection process may prevent practitioners
from accessing training data from the distribution that they intend to deploy the rule on; and such sampling
bias may hurt the target distribution performance of decision rules learned via empirical risk minimization.
One setting where sampling bias can be a concern is in designing risk predictors in a medical setting.
Various risk predictors are widely used to guide both clinical practice and hospital logistics: Goff et al. [2014]
discuss how risk predictors for cardiovascular disease are used to inform clinical guidelines, while Gul and
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Celik [2020] present a number of approaches to predicting emergency room admissions that can be used to
anticipate hospital staffing needs. We may be concerned about sampling bias if these risk models are trained
using data from a handful of hospitals (e.g., university hospitals participating in a study), and if the patients
in these hospitals are not representative of the general patient population.

Another major situation where sampling bias may matter is in studies run on volunteers. In randomized
trials for estimating treatment effects, participants often volunteer or apply to be a part of the study:
Attanasio et al. [2011] measures the effect of a vocational training program on labor market outcomes in
a randomized trial where participants needed to apply to be a part of the study; and the effectiveness of
antidepressants is typically assessed in randomized trials involving volunteers [Wang et al., 2018]. In such
studies, participants may differ from non-participants in fundamental ways, and a decision rule based on trial
data may perform poorly when deployed on non-participants. Furthermore, vulnerable populations may be
less exposed to study recruitment, so failure to generalize under sampling bias may cause these populations
to be disproportionately impacted by errors of the decision rule.

The goal of this paper is to develop an alternative to empirical risk minimization that is robust to
potential sampling bias. We still assume that we get to work with n i.i.d. samples from P; however, we now
define the optimal decision rule in terms of a different distribution Q,

h* = arg}rlnin Ex,v)~q [L(M(X), Y], (2)

and allow for the prospect that P may be biased relative to our target distribution Q). For example, in the
context of medical risk prediction, () could be the nationwide patient distribution, whereas P is the patient
distribution in the hospitals we have data from.

Of course, if there is no link between our sampling distribution P and our target distribution @, then
learning data-driven rules is not possible. Throughout this paper, we will assume that P is biased—but not
too biased—relative to @, in the sense formalized by the I'-biased sampling model given below. Here, I' > 1
captures the allowed strength of sampling bias, and larger values of I" allow for more bias.

Definition 1. Let I' > 1. For any pair of distributions P and @ over (X,Y), we say that () can generate
P under I-biased sampling if there exists a distribution Q over (X,Y,S), where S € {0,1} is a “selection
indicator” that satisfies the following properties: The (X,Y)-marginal of Q is equal to Q, then (X,Y)-
marginal of Q conditionally on S = 1 is equal to P, and

PslS=1]X=2Y =y|

-1
]P)Q[S:1|X::L'] G[F ’F] Vee X,ye). (3)

This model of sampling bias is an extension of the model adopted in Aronow and Lee [2013] and Miratrix
et al. [2018] to the setting where there are covariates X that may affect whether a sample is selected (S = 1).
In I'-biased sampling, the covariates X may affect the probability of sample selection arbitrarily much, but
the amount of unexplained variation in the probability of sample selection is limited due to (3). On the
other hand, the model with I' = 1 corresponds to “unconfounded sample selection” that is widely studied in
the literature on generalizability [e.g., Stuart et al., 2011, Tipton, 2013, 2014].

One challenge of learning under I'-biased sampling is that the true test distribution is unknown and
there are many possible distributions that can generate the observed training distribution P under I'-biased
sampling. To address this problem, we use distributionally robust optimization (DRO) [Ben-Tal et al., 2013]
to learn a decision rule that is robust to all distributions that can generate our observed training distribution
P under I'-biased sampling. The goal of DRO is to minimize the worst-case risk over a family of plausible
test distributions S (the robustness set), i.e.

argmin sup Eq [L(h(X),Y)]. (4)

h QeS
To learn decision rules that are robust to I'-biased sampling, we consider robustness sets Sp(P,Qx) for
I > 1, where Q € Sp(P,Qx) if @ can generate P via I-biased sampling and @ has covariate distribution

equal to Qx.
The main contribution of this work is a method for learning

hi =argmin  sup  Eg[L(h(X),Y)] (5)
h  QeSr(P,Qx)



for any distribution @Qx that is absolutely continuous to Px. We show that there is a convex loss function
L%y (given below), defined over an augmented feature space, such that the solution to the following risk
minimization problem

(hL, af) = ar%IilinEp [LEU(h(X),a(X),Y)] , ©
LgU(z7a7y) = F_lL(z,y) + (1 - F_l)a + (F - F_l)(L(Z7 y) - a)+a

with data drawn from the training distribution P, also solves (5) for any distribution Qx that is absolutely
continuous with respect to Px. We call the minimization problem in (6) Rockafellar-Uryasev (RU) Regression
and LEU the RU loss because results of Rockafellar and Uryasev [2000] play a key role in our derivation of
this loss function. A notable aspect of our proposed method is that it does not require any knowledge of
Q@ x because it relies on the fact that the minimization of the worst-case risk over a sufficiently flexible class
of functions is equivalent to minimization of the conditional worst-case risk for every x € X

The remainder of the paper investigates RU Regression theoretically and empirically. In Section 3.1, we
demonstrate useful properties of the population RU risk, including convexity, differentiability, existence and
uniqueness of the minimizer, and strong convexity around the minimizer. In Section 3.2, these properties
enable us to derive formal guarantees for learning via empirical minimization of LEU using the method of
sieves [Geman and Hwang, 1982]. Furthermore, the useful properties of the population RU risk also suggest
that for practical implementation, the problem in (6) can be solved via stochastic gradient descent. As a
result, we propose to perform the optimization in (6) by joint-training of neural networks, one for each of h
and «, with the RU loss as the objective. In Section 4, we validate our approach in simulations and a case
study with the MIMIC-III dataset [Johnson et al., 2016a].

1.1 Related Work

Our proposed model of sampling bias, I'-biased sampling, builds on previous models for sampling bias
[Aronow and Lee, 2013, Miratrix et al., 2018], where samples Y; are drawn i.i.d. from the target distribution
Q@ but only included in the training dataset with a latent probability w; € [«, 5], for a, 8 € (0,1]. Under this
model, these works focus on partial identification of the population mean outcome Eq [Y]. If we interpret
m = IE”Q [Si | X, YZ-], then our I'-biased sampling model as specified in Definition 1 is statistically equivalent
to an extension of the model used in Aronow and Lee [2013] and Miratrix et al. [2018] to include covariates,
in such a way that we allow the unobserved probability of sample selection 7w to be arbitrarily affected by
the covariates X but place bounds on the amount of unexplained variation in ;. Also, unlike Aronow and
Lee [2013] and Miratrix et al. [2018], we focus on the problem of learning a robust decision rule rather than
on partial identification of moments of Q.

Our model is also connected to the broader literature on sensitivity analysis in causal inference [Andrews
and Oster, 2019, Dorn et al., 2021, Jin et al., 2022, Nie et al., 2021, Yadlowsky et al., 2018], the goal of
which is to understand how causal analyses justified by assuming randomized or unconfounded treatment
assignment could be affected by a failure of these assumptions. In particular, our I'-biased sampling model
has a similar statistical structure as the I'-marginal sensitivity model used by Tan [2006] to quantify failures
of unconfoundedness. However, in these sensitivity analyses, the concern is typically regarding threats to
internal validity (i.e., failures of unconfoundedness), whereas here we model sampling bias as a threat to
external validity.

To learn a decision rule that is robust to I'-biased sampling, we apply the DRO framework, which is
widely used for learning models that are robust to unknown distribution shift [Duchi and Namkoong, 2021,
Duchi et al., 2020, Hu et al., 2018, Michel et al., 2022, Mohajerin Esfahani and Kuhn, 2018, Oberst et al.,
2021, Oren et al., 2019, Sagawa et al., 2019, Thams et al., 2022]. Previous works that apply DRO for learning
robust models typically specify a robustness set of interest and provide a method for either evaluating the
worst-case risk over the set, learning the solution that minimizes the worst-case risk over the set, or both.
These works vary in how they define the robustness set and whether they consider robustness sets over the
conditional distribution of Y given X, the marginal distribution over X, or the joint distribution over (X,Y).
While learning under our I'-sampling bias model is conceptually a DRO problem, our problem setting has
many crucial differences from the most widely studied DRO setting, e.g., the one considered in Duchi et al.



[2020]; and these differences require us to develop new learning algorithms and new analysis techniques to
prove formal results. We discuss connections to the DRO literature in more detail in Section 2.2.

Finally, our contribution is related to the broader literature on data-driven decision making. This liter-
ature has been active in recent years, including contributions from Athey and Wager [2021], Bertsimas and
Kallus [2020], Elmachtoub and Grigas [2022], Foster and Syrgkanis [2019], Kallus and Zhou [2021], Kitagawa
and Tetenov [2018], Manski [2004], Nie and Wager [2021], Stoye [2009], Swaminathan and Joachims [2015],
Zhao et al. [2012] and Zhou et al. [2022]. A recurring theme of this line of work is in choosing loss func-
tions L(-) that capture relevant aspects of various decision tasks [Bertsimas and Kallus, 2020]. Our results
pair naturally with this line of work, in that our approach can be applied with generic loss functions to
learn decision rules that are robust to potential sampling bias. We also draw attention to Kallus and Zhou
[2021], who consider learning optimal treatment rules from confounded data, i.e., where the “treated” and
“control” samples available for training may be biased according to unobservable attributes. Our work is
related to that of Kallus and Zhou [2021] in that we both consider using robust optimization techniques to
learn from data potentially corrupted via biased sampling; however, the type of bias we consider (test/train
vs. treatment/control), and resulting algorithmic and conceptual remedies, are different.

2 Rockafellar-Uryasev Regression

We consider the following general loss minimization setting. We have access to ¢ =1, ..., n samples (X;, Y;)
drawn from a training distribution P over X x ). We seek to learn a decision rule h such that, given
a loss function L(z,y), the expected loss Eg [L(h(X), Y)] is small when (X, Y) is drawn from our target
distribution Q. The key challenge is that we do not assume that the training distribution P and the target
Q@ are the same. Rather, @) is unknown, and we only assume that ) generates P via I'-biased sampling in
the sense of Definition 1, for some I > 1.

For any marginal covariate distribution Q x, let Sr(P, @Qx) denote the set of all distributions @) are related
to P via I-biased sampling and have marginal distribution over X equal to Qx. (Recall that Definition 1
only bounds “unexplained” sampling bias allows; it allows for arbitrary sampling bias explained by X, and
thus places no meaningful restrictions on @ x). Given any choice of Qx, we target the robust decision rule

hoy.r€ argmin sup{Eq[L(A(X), Y)]: Q € Sr(P, Qx)}, (7)
heL?(Px,X)

where L?(Px, X) denotes the space of square-integrable measurable functions with respect to Pyx. The
formulation (7) may look challenging to use as the basis for a practical approach to learning. First, it is
formulated in terms of the marginal distribution @Qx which may sometimes be known [e.g., Nie et al., 2021],
but often is not known. Second, the optimization problem (7) has a min-max form that is not obviously
amenable to statistical learning. The following results show how both of these challenges can be addressed.

As a preliminary to our subsequent analysis, we start by giving a more explicit characterization of the
set Sr(P, @ x) that can generate P under I'-based sampling: ) can generate P via I'-biased sampling if and
only if the likelihood ratio between the conditional distributions of ¥ | X of @ and P is bounded between
I'"! and T and the density ratio between the covariate distributions of P and @ are bounded.

Lemma 1. Let P,Q be the distributions over (X,Y). Q can generate P via T'-biased sampling if and only if

-1 < dQY\X:w(y)

F P el b
= dPyix—2(y)

<T, VeeXyec) (8)

and sup,¢ y sg);((g;)) < C for some C' < co. Proof in Appendiz C.3.

We are now ready to spell out our first main result, i.e., a reformulation of our learning objective (7) as
the minimizer of the expectation a convex function over data drawn from the training distribution P. We
demonstrate that there exists a single function hj. that solves the problem (7) simultaneously for any Q) x that
is absolutely continuous with respect to Py, and furthermore this h{. can be characterized as the minimizer
of a convex loss defined in terms of the observed data distribution P. We refer to the loss function in (9)
the Rockafellar-Uryasev (RU) loss because the proof of Theorem 2 draws heavily from results of Rockafellar
and Uryasev [2000]; we will also refer to learning via empirical minimization based on (9) as RU Regression.



Theorem 2. Suppose that (X, Y) € X xY are drawn i.i.d. with respect to a distribution P for some X C R?
and Y C R. Let L(z, y) be a loss function that is convex in z for any y € ), and let T > 1. Then the
following augmented loss function,

LEU(Za avy) = F_IL(Z7y) + (1 - F_l)a’ + (F - F_l)(L(Zv y) - a)+> (9)
is convex is (z, a) for any y € Y. Furthermore, any solution

{hi, ar} € argmin Ep [Lry(h(X), a(X), V)] (10)
(h, @)EL2(Px, X)xL2(Px, X)

is also a solution to (7) for any Qx that is absolutely continuous with respect to Px, i.e., Qx < Px and

SUp, v jgf(((?) < 00. Proof in Section 2.1.

A proof of Theorem 2 is given in Section 2.1. We define notation that is used in the proof, as well as
the remainder of the paper. Let F.p(,)(2) be the c.d.f. of L(h(x),Y), where Y is distributed according to
Py |x—,- In other words, F,.;(,)(2) is the distribution over the conditional losses when X = x. Define the
function g} (z; h(x)) to be the 7-th quantile of distribution over the conditional losses when X = z, i.e.

qs(ﬂ h(m)) = F;i(w)(n)- (11)
Also, define
T
n(T) = T+1 (12)

2.1 Proof of Theorem 2

For the first claim, the convexity of L% ; follows immediately using the standard rules for composing convex
functions [Boyd and Vandenberghe, 2004]. We focus on the second claim of Theorem 2. We use the following
lemma to rewrite our worst-case population risk minimization problem in (7) as a worst-case conditional risk
minimization.

Lemma 3. A function h € L?>(Px,X) solves (7) iff h solves

h&l)igRsup {]EQY\X [L(h(2),Y)| X =2]:Q € Sp(P, QX)} (13)

for every x € supp(Px). Proof in Appendix D.1.
Using Lemma 1, we can characterize the distributions in Sp(P, Qx) as distributions for which (8) holds

dQx (x)

and sup,¢y < C for C < co. By the Neyman-Pearson lemma, we can verify for any decision rule h,

sup{Eq, x [L(W(X),Y) | X = 2] : @ € 5r(P,Qx)}

14
=By [L(X),Y) (D70 4 (0 = T IL((X),Y) = gl (X3 h(X))) | X = 2], 44

where ¢ (z; h(z)) is as defined in (11) and 5(T') is as defined in (12). (13) can be rewritten as
min By [L((@), V) (D7 4+ (0 =D)L (@), Y) > afe) (X b)) | X = 2] (15)

Thus, we can focus on the optimization problem in (15).

We realize that the objective in (15) is closely related to the conditional value-at-risk (CVaR) [Rockafellar
and Uryasev, 2000], which is widely considered in the finance literature. For a continuous random variable
W with quantile function (inverse c.d.f.) gw and n € (0, 1), the n-CVaR of W is given by

CVaR, (W) =E[W | W > qw(n)].



Applying the CVaR definition, we realize that
Epy x [L(WMX), Y)I(L(R(X),Y) > g (X; h(X))) | X = 2] = (1 = (T)) - CVaRy ) (L(h(x),Y)).  (16)
Substituting (16) into (15) and simplifying gives the following problem

h{g)igRF‘lEpy‘X [L(h(z),Y)| X =2]+ (1—-T"")- CVaR,r(L(h(z),Y)). (17)

We are now ready to use the influential result of Rockafellar and Uryasev [2000, Theorem 1], which in our
setting implies that the CVaR of the loss itself can be formulated as the solution to a convex optimization
problem:

CVaR,(L(h,Y)) = mina + (1 —n) "By [(L(h,Y) = a)4] (18)
for a loss L(h,Y) that depends on h € H C R and Y, a random variable with a density. Thus, we can
rewrite the term CVaR, ) (L(h(z),Y)) from (17) as

CVaR,ry (L(h(2),Y)) = min_a(x) + —

a(2)ER fn(r)E”le [(L(h(x),Y) = a(x)|X = z]. (19)

Furthermore, by Theorem 2 of Rockafellar and Uryasev [2000], any minimizer of the following joint opti-
mization also minimizes the CVaR. In particular,

. o : _ )1 _
min CVaRy(L(h,Y) = | min o+ (1—n) "By [(L(hY) = a)]. (20)

Applying this theorem to (17), we have that

argmin~"Ep,  [L(h(X),Y)) | X =]+ (1 —=T") - CVaR, ) (L(h(z),Y))
h(xz)eR
= argmin I'* ‘Epy 5 [L(R(2),Y)) | X = 2]
h(z),a(z)ER

+(1-T7) - (a(@) + %WEPY‘X [(L(h(@), Y) = a(2))4|X =a] )

= argmin I'"-Ep,  [L(h(z),Y)) | X = 2]+ (1 -T""a(z)
h(z),a(z)ER

+ (T =T HEp,  [(L(A(2),Y) — a(2))+|X = 2]

= argmin Ep, . [Liu(h(z),a(z),Y) | X = z].
h(z),a(z)€ER

The last line follows from the definition of Lk in (9). In other words, (17) can be written as the augmented
conditional risk minimization
in E Liy(h V)| X =x]. 21
omin  Ery . [Lh(h(o).a(e),Y) | X = 1] 2
Functions hf, o that solve (21) also solve (10). In addition, any minimizer of (21) also solves (13) for any
x € supp(Px). The following lemma gives that functions that minimize (13) for every x € supp(Px) also
minimize (7).

Lemma 4. Suppose h,& solve (13) for every x € supp(Px). Then h solves (7) for any Qx such that

Qx < Px and sup,cy jgf(((z)) < 00. Proof in Appendiz D.2.

Thus, we can finally conclude that hf,af also minimize (7). In other words, our robust optimization
problem in (7) can be formulated as (10), a risk minimization problem under the training distribution P
that involves learning an auxiliary function « along with the decision rule h.

A key aspect of RU Regression is that the optimal decision rule is agnostic to the test covariate distribution
Qx as long as it is absolutely continuous with respect to the training covariate distribution Px. This is



because we propose to learn the minimizer of the worst-case loss conditionally for every x € X. The
minimizer is a conditional quantity. We can simply study (10) to learn a decision rule that is robust to
conditional shifts of the form in (8) and almost arbitrary covariate shifts.

In order for conditional risk minimization to be equivalent to the population risk minimization, we require
the decision rule h and auxiliary function « to come from a flexible class, such as L?(Pyx, X). For practical
implementation, in Section 4, we propose to use joint optimization of deep neural networks to learn the
solution of (10). We will use one neural network to represent h and another neural network to represent «
and train the networks with the RU loss using a standard optimization algorithm, such as stochastic gradient
descent or its variants.

2.2 Connections to Other DRO Frameworks

As discussed above, our approach to learning decision rules under unknown conditional shifts yields a dis-
tributionally robust optimization (DRO) problem [Ben-Tal et al., 2013]. One recent paper providing general
results for DRO in a statistical learning setting is Duchi and Namkoong [2021], who consider worst-case
shifts in the joint distribution over (X,Y") and robustness sets that are f-divergence balls about the training
distribution P. Specifically under their learning objective, the optimal decision rule would be

n* = argminsup {Eq [L(h(X), Y)] : Dy(QIP) < p}.  Ds(@IP) = / f(j%)da (22)

where Dy is an f-divergence. Clearly, this problem is conceptually related to (7); however, there are a number
of key differences that require new ideas both in terms of learning algorithms and analysis techniques.

A first difference between our DRO problem (7) and (22) is the robustness sets that are considered in each
problem. To cast (8) as a constraint of the form D;(Q|P) < p, we would need to consider an “improper”

f-divergence, i.e. with
0 I'<z<T
f(z) = { : (23)

oo else

The fact that this function is discontinuous and unbounded means that the formal results (and proof strate-
gies) of Duchi and Namkoong [2021] cannot be applied in our setting.

A second difference between our DRO problem (7) and (22) is that our problem can be solved by a
method that jointly optimizes over the arguments of a convex risk minimization problem (10). Our result
from Theorem 2 superficially resembles the dual formulation of (22):

arguiin inf {Er [Af* (L(’L(X)AY)_”)} ), (24)

where f* is the Fenchel conjugate of f. However, comments in Namkoong and Duchi [2016] suggest that
for general f-divergences, joint optimization algorithms for solving (24) would be ill-conditioned due to the
dependence on A~! in the first term. In contrast, for the improper function f (23) relevant to our problem,
f*(u) =T (u)y — T~ (u)_. For this particular choice of f, A can be removed from the optimization problem
(24). Our approach exploits special structure in our distribution shift model that is not present in the
problems studied in Duchi and Namkoong [2021].

A third difference between our DRO problem (7) and the problem in (22) is that (7) involves constraints
on the distribution shift that hold conditionally on x, instead of a constraint on the shift in the joint dis-
tribution over (X,Y’). Many previous DRO works consider robustness sets that constrain the shift in the
joint distribution over (X,Y") [Duchi and Namkoong, 2021, Duchi et al., 2020, Hu et al., 2018, Michel et al.,
2022, Mohajerin Esfahani and Kuhn, 2018, Oren et al., 2019, Sagawa et al., 2019] or the marginal distribu-
tion over X [Duchi et al., 2020]. However, our motivating problem yields constraints on conditional shifts
that must hold simultaneously for every x, which results in a different and substantially more complicated
optimization problem that requires more delicate methods and analysis. For example, Levy et al. [2020]
proposes a mini-batch gradient-descent algorithm for learning the solution to (22); however, this algorithm
cannot be used with conditional constraints (unless one can gather multiple observations for every x, which
is impossible for continuous-valued ).



A handful of recent works consider robustness sets that place restrictions on conditional shifts [Esteban-
Pérez and Morales, 2021, Oberst et al., 2021, Thams et al., 2022]. Esteban-Pérez and Morales [2021] takes
statistical uncertainty to be the source of the distribution shift and considers shifts in the empirical condi-
tional distribution for subsets of A with sufficiently large measure. In contrast, we consider sampling bias,
which is present even in the population case with infinite samples, as the source of the distribution shift we
seek to be robust against. Furthermore, our problem also requires placing constraints on the conditional
shift for every z, not just subsets of X'. Oberst et al. [2021] leverages access to noisy proxies of unobserved
variables for learning models that are robust to shifts in the distribution of unobservables. Thams et al.
[2022] studies how to evaluate the worst-case loss under a parametric robustness set, which consists of inter-
pretable, conditional shifts. Our work differs from Oberst et al. [2021], Thams et al. [2022] in that we do not
make any fine-grained assumptions on the nature of the shift, such access to proxy variables or a parametric
form. We note that the challenge of considering robustness sets that enforce conditional restrictions has also
recently been considered in the literature on sensitivity analysis in causal inference [Dorn et al., 2021, Jin
et al., 2022, Nie et al., 2021, Yadlowsky et al., 2018].

3 Theoretical Guarantees

In the previous section, we showed that minimax decision rule under I'-biased sampling could be expressed
as the population minimizer of a convex loss function over an augmented function space. This is helpful in
understanding what the minimax decision rule looks like—and suggests that the corresponding DRO problem
may be tractable. In practice, however, we of course do not have access to the full sampling distribution P,
and need to choose our decision rule based on a finite (random) sample from it. Here, we investigate the
properties of learning algorithms that leverage the representation result derived above, and learn decision
rules via empirical minimization using the loss function Lk given in (6).

One challenge in doing so is that Lk (2, a, y) is not strongly convex in (z,a); and in fact is not even
strongly convex in expectation when a < 0. The following results show, however, that the expected RU
risk has a unique minimizer—and is strongly convex and smooth in a neighborhood around the minimizer.
These properties enable us to obtain nonparametric estimation guarantees by applying the method of sieves
in Section 3.2. Overall, our results suggest that LEU has sound statistical properties in finite samples,
and thus that empirical minimization using this loss function is a promising approach to learning minimax
decision rules under I'-biased sampling.

3.1 Properties of Population RU Risk

First, we consider the problem of minimizing the population RU risk with respect to (h, ) over L?(Px, X) x
L?(Px,X). We consider the following norm on this product space

1y )llz2 ey ) = BBy ) + 0l -

Under the following two assumptions, we can show that any minimizer of the population RU risk lies in a
bounded subset of L?(Px, X) x L*(Px, X).

Assumption 1. X ¢ R Y C R, and X x Y is compact.

Assumption 2. The loss function L(§,y) = ¢(y — ¢) for some function ¢(z) that is Cp, ;-strongly convex,
twice-differentiable and is minimized at £(0) = 0.

Since Y is bounded, Y C [-B, B]. We can define a bounded class of decision rules
H ={hec L*(Px,X)|||h||s <2B}.
We define a constant M, such that

sup qs(r)@;h(ﬂf)) < M, (25)
heH,xeXxX



and note that M, < oo because H is bounded and X x ) is compact. We define the bounded class A for
the auxiliary functions
A={ac *(Px,X)|0< a(r) <M, VrciX}.

Let © = H x A. In the following result, we show that minimizing the population RU risk over L?(Pyx, X) x
L?(Pyx, X) is equivalent to minimizing the population RU risk over ©.

Lemma 5. Under Assumption 1, 2, if any minimizer of (h,o) — Ep [Ll;(h(X), a(X),Y)] exists over
L?(Px,X) x L?(Px, X), then it must lie in ©. Proof in Appendiz C.J.

From now on, we will only consider minimization of the population RU risk over ©. We can show that
the population RU risk has at least one minimizer on ©.

Lemma 6. Under Assumption 1, 2, Ep [L%,(h(X),(X),Y)] has at least one minimizer on ©.

To show that the population RU risk is strictly convex on ©, we make the following assumption on the
conditional distribution Py |x—;.

Assumption 3. For every z € X, we assume that Py x—,(y) is differentiable and strictly increasing in its
argument and has positive density on J. We assume that sup,c x ,cr Py|x=2 (y) < Cpu, where 0 < Cp,, < 00.

Lemma 7. Under Assumptions 1, 2, 3, Ep [L%U(h(X),a(X),Y)] is strictly convex in (h,a) on ©. Proof
in Appendiz C.6.

As a consequence of strict convexity on ©, the population RU risk must have at most one minimizer over
©. Meanwhile, Lemma 6 gives that it has at least one minimizer over ©, as well. Combining these results
gives that the population RU risk has a unique minimizer over ©. Because of Lemma 5, this means that the
population RU risk also has a unique minimizer over all of L?(Px, X) x L?(Px, X).

Theorem 8. Under Assumptions 1, 2, 3, Ep [L%,(h(X),a(X),Y)] has a unique minimizer (hf, o) over
©. Proof in Appendiz C.7.

In addition, we can develop an interpretation of af. that minimizes the population RU risk.

Lemma 9. Under Assumptions 1, 2, 3,

of () = gyry (@3 1 (),

and there exists M; > 0 such that
op(z) > M; VYxeX.

Proof in Appendix C.8.

Using Lemma 9, we can show that the population RU risk is strongly convex near the minimizer. We
define constants that will be used in the proof of strong convexity. Recall that under Assumption 2, we can
rewrite L(¢,y) = £(y — 9). Let £7" be the inverse of £(z) where z > 0. Let £;* be the inverse of £(z) where
z < 0. Define

Canu = sup |0'(¢;1(My))], (26)
ie{1,2}

= inf [N (M) 2

Cur = inf, |0(6(01) (21)

To define the next set of constants, we define ¢ (x) to be the c-th quantile of Y where Y is distributed
according to Py|x—,.

Cp = inf pY|X:x(qz/($)); (28)
ce(1-22 1420 zex

Cri-Cpy Cay
20?7“ ’ (Cau ' Oa,l + 1) + CL,l : Ca,l Ca,u .

k1= (1—-T71). (29)



Additionally, let
s = inf [0(67Y (M, =6
Cas iel{I},2}‘ (€; (M = 9))], (30)
Cpic = inf Py x=2(a () + ). (31)
ce1- 22 14 2D be[—e,e] zEX

We can show that in a || - ||so-ball about the minimizer, the population RU loss is strongly convex, where
the constant of strong convexity approaches k; as the ball’s radius shrinks.

Theorem 10. Suppose Assumptions 1, 2, 3, hold. Let Cs = {(h,a) € O | ||(h,a) — (b}, af)||eo < 0}, and

let 0 <e< %p(z) There ezists 0 < 6(e) < M; such that Ep [LG,(h(X),(X),Y)] is k1,c-strongly convex

on Cs(cy, where

Cri-(1—nT) —2C,.-€) - Cpe Cas(c
preim (-1 Cut Um0 2209 Cpre | Catstg (32)
2Cp,u . (Ca,u : Ca,l,é(e) + 1) + CvL,l . Ca,l,é(e) Ca,u
Ase— 0,
Kl,e = K1.
Proof in Appendixz C.9.
To show that the population RU risk is smooth in an || - ||oc-ball around the minimizer, we require an

additional assumption on the loss function L. Essentially, we need L to be Cf ,-smooth for some constant
0< CLA,u < 0Q.

Assumption 4. The second derivative of £(z) as defined in Assumption 2 is upper bounded by C7, ,,, where
0< CL,u < 0.

The constant for smoothness depends on the constant C), ,, from Assumption 3, C,,, from (26), C, s
from (30), and Cf,,, from Assumption 4. Let

1

NS COTEE) <33>
a,l

We can show that in an || - || ball about the minimizer, the population RU risk is smooth, where the

constant for smoothness of the population RU risk approaches ko as the radius of the ball decreases.

Theorem 11. Suppose Assumptions 1, 2, 3, 4 hold. Let Cs = {(h,a) € © | ||(h,a) — (h}, af)||eo < 0}. For
every 0 < e < 12225?! there is 0 < 0(e) < M such that Ep [Lry(h(X), a(X),Y)] is kg c-smooth in (h,a) on
Cs(e) where

kg = (D — D7) (2cp,u (Ca,u + )) +T-Cpoa. (34)

Ca,1,5(e)

Ase— 0,
K2,e = K2.

Proof in Appendixz C.10.

3.2 Estimation Guarantees via Method of Sieves

To simplify notation, we denote 6 := (h, @) and rewrite the population RU risk as Ep [LE;((X),Y)] . The
empirical risk is accordingly

Bp [Lhu(00X),Y)] = 3 LRy (00X, Y. (35)

In addition, we will denote the minimizer of the population RU risk as simply 6* := (h}, o), omitting the
dependence on T'.
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Thus far, we have demonstrated that * is the minimizer of the population RU risk over the infinite-
dimensional space ©. In practice, we aim to minimize the empirical RU loss (35). However, due to the
computational difficulties of estimating infinite-dimensional models using finite samples, we do not minimize
the empirical risk over © directly. Instead, we apply the method of sieves [Geman and Hwang, 1982]; we
consider optimizing the empirical risk over an increasing sequence of sieves ©; C ©5 C --- C O, which are
finite-dimensional parameter spaces. The sieves we consider have the property that infygceo, ||6 — 0*||cc — 0
as m — oo. To ensure consistency, we increase the complexity of the sieves with the sample size. We let

0, = argminEp [Liu(0(X),Y)].
€O,

To estimate h, it is sufficient to consider sieves that consist functions bounded between —2B and 2B. To
estimate «, it is sufficient to consider sieves that consist of nonnegative, bounded functions because any
minimizer of the population RU risk has 0 < a*(x) < M, for all z € X. In order to make our sieve-based
estimates h(z),a(z) be bounded, we use the same strategy as in Jin et al. [2022]; we truncate standard
sieve space to bounded functions. The following two natural examples of truncated sieve spaces were also
discussed by Jin et al. [2022]:

Example 2 (Polynomials). Let Pol(J,,) be the space of polynomials on [0, 1] of degree J,, or less; that is

Jn
Pol(J,,) = {x — Zakxk,m €10,1] : ax € R}.

Let Pol(J,,a,b) be the space of polynomials on [0, 1] of degree J,, or less that are bounded between a and
b; that is

Pol(J,,a,b) = {x — min(max(f(z),a),b),z € [0,1]: f € Pol(Jn)}.

Then, we define the sieve with truncation as ©, = H, X A,, where H, = {z — HZ=1 felzr) « fr €
Pol(J,,—2B,2B),k = 1,...d} and A, = {z — Hk 1fk(:1:k) fr € Pol(J,,0,M,)} for J, — co. We can
also define the sieve Wlthout truncation as ©,, = H,, x A,, where H,, = ={z— Hk 1 fe(xe) « fr € Pol(Jp)}
for J,, — oo and A,, = {z — Hk:l fr(zr) : fr € Pol(Jy,)} for J, — oc.

Example 3 (Univariate Splines). Let J,, be a positive number, and let to,1,...ts,,ts, +1 be real numbers
with 0 =t9 <t1 <...t;, <tj,+1 = 1. Partition [0,1] into J, +1 subintervals I; = [¢t;,¢j41),5 =0,...J,—1
and I; =[ts,,ts, +1]- We assume that the knots t1,t5...t;, have bounded mesh ratio:

maxo<;<Jy (tj+1 — t;)

< ¢ for some constant ¢ > 0.
mln0<J<Jn (t]"!‘l —t; )

Let 7 > 1 be an integer. A spline of order r with knots ¢; ...t is given by

Spl(r, J,) {Zakas +Zb max{z —t;,0}]" ",z €[0,1] : ax, b; € R}.

Let Spl(r, J,, a,b) be the space of splines that are bounded between a and b; that is
Spl(r, Jn,a,b) = {x — min(max(f(x),a),b),z € [0,1] : f € Spl(r, Jn)}

Then, we define the sieve with truncation as ©, = H, X A,, where H, = {z — szlfk(sck) D fx €
Spl(r, J,, —2B,2B),k=1,...d} and A, = {x — Hk 1 fr(xk) « fr € Spl(r, Jpn, 0, M,,)} for J,, — co. We can
also define the sieve Wlthout truncation as ©,, = H,, x A,,, where H,, = {z — Hk 1 fe(zr) « fi € Spl(r, Jn)}
for J,, — oo and A, = {z — szl fi(zr) = fr € Spl(r, Jp,)} for J, — oc.
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We prove results that demonstrate the consistency of the sieve estimation procedure. Let

0;, = argminEp [Ly(0(X),Y)]. (36)
0€0,,

First, we show that 6, is the unique minimizer of the population RU risk over the sieve space ©,,. Then,
we prove that the sieve approximation error, the bias that results from minimizing the population RU risk
over a finite-dimensional sieve space, converges to zero as the dimension of the sieve spaces goes to infinity.
Then, we consider ém,nv the minimizer of the empirical risk over ©,,, i.e.

O = argminl@p [LgU(H(X), Y)]
60€O,,

for a sufficiently large integer m. We can show that the estimation error, the error that results from estimating
the minimizer of the empirical risk (in finite samples) in a fixed sieve space, converges to zero in probability.

Lemma 12. Under Assumptions 1, 2, 3, Ep [L%(0(X),Y)] has a unique minimizer over ©,, called 67,.
Proof in Appendiz C.11

Theorem 13. Under Assumptions 1, 2, 3, as m — o0,
165, = 071 L2(Px .x) = O-
Proof in Appendiz C.12

Lemma 14. Under Assumptions 1, 2, 3, ém,n exists with probability approaching 1 and
O 2> 07,
as n — oo and m sufficiently large. Proof in Appendiz C.183.

Combining Theorem 13 and Lemma 14 implies the consistency of the sieve estimation procedure: as
m,n — 0o,
N * ) * * * p
Om,n — 0% L2(px.x) < Omn — Oh nllLzpy.x) + 1050 — [l L2(Px.x) = 0.

To obtain a rate of convergence, we consider the classes of sufficiently smooth functions. Given a d-tuple
B = (Bi,...B4) of nonnegative integers, set [3] = B1 + B2 + -+ + B4 and let DP denote the differential

operator defined by D? = %. A real-valued function h on X is p-smooth if it is m times continuously
fL’l .’.Ed

differentiable on X and DPh satisfies a Holder condition (Definition 4) with exponent «y for all d-tuples 3 of
nonnegative integers with [5] = m. Denote the Hélder class, or the class of all p-smooth real-valued functions
on X, by AP(X), and the space of all m-times differentiable real-valued functions on X by C™(X). Define a
Holder ball with smoothness p =m + v as

DPh(z) — DPh
AP(X) = {h € C™(X): sup sup |DPh(x)| <e¢, sup sup | (z) 5 W)l < c}.
[B]<m z€X [B]=m z,yEX, lz —yls
TAY
To ensure that h, a are bounded, we define the truncated function class
A2(X,a,b) ;== {z — min(max(f(z),a),b), f € A(X)}.

To obtain a rate of convergence for the estimators, we impose the following assumption on the true optimizer.

Assumption 5. Assume that * € AP(X,—-2B,2B) x AP(X,0,M,) for some ¢ > 0. We redefine O :=
AP(X,-2B,2B) x AL(X,0, M,).

We also required that the second moment of Y, where Y is distributed following Py|x—,, is bounded for
all x € X.

Assumption 6. We assume that sup,cy Ep, [Y2 | X = :c] < 00.

12



In addition, we require the following condition on the density of Px.

Assumption 7. Px has a density that is bounded away from 0 and oo, i.e. 0 < infiexpx(z) <
Sup,cx Px(z) < oo for all z € X.

Under this last assumption, || - ||z2(py ) < || - [|22(x,x), Where X is the Lebesgue measure. Finally, with
these assumptions, we can apply a result from Chen [2007] to show the following rate of convergence. The
proof of the result requires balancing the sieve approximation error and estimation error. To get a handle
on the sieve approximation error, we use the result from Timan [2014] that for the sieves €} J,, in Example 2
and 3 and 6* € A2(X) x AP(X) for X compact,

inf [0 — 6| = O(J; 7).

€09,

Theorem 15. Let J, = (L)ﬁ Under Assumptions 1, 2, 3, 4, 5, 6, 7,

logn

. logn\ =2
\|9n*9*||L2(Px,X):0P(< ) ' )
Furthermore, for some Qx < Px, if the density ratio sup,cx % < 00, then

116, — 0|2 (Qx,x) = OP((loin)ﬁ)y

as well. Proof in Appendiz C.1/.

The minimax-optimal rate of convergence for nonparametric regression over the class of p-smooth func-
tions is Op(n~%7) [Stone, 1982]; and so Theorem 15 demonstrates that up to log factors, RU regression
achieves the rate of convergence we would expect for nonparametric regression. In other words, we find that
minimax learning under I'-biased sampling changes our learning objective; but doesn’t meaningfully change
the rate of convergence at which we can achieve good performance via empirical minimization.

4 Experiments

We evaluate the empirical performance of RU Regression when neural networks are used to learn h, . First,
we demonstrate that RU Regression enables us to learn models that are robust to I'-biased sampling in
simulation experiments with synthetic data. Second, we apply RU Regression in a semi-synthetic experiment
with patient length-of-stay data from the MIMIC-III dataset Johnson et al. [2016a]. The code for our
experiments is available in https://github.com/roshni714/ru_regression.

4.1 Deep Learning Implementation

Following best practices in applied machine learning, we implement our baselines and proposed method
using neural networks [Goodfellow et al., 2016]. From a statistical perspective, neural networks can be seen
as a practical alternative to sieve methods that automate the selection of relevant basis functions [Chen
and White, 1999, Farrell et al., 2021, Schmidt-Hieber, 2020]. The benefits of neural networks include that
they can be used as a black-box primitive for flexible function classes, they are straightforward to train
using standard deep learning libraries, and they require less manual hyperparameter tuning than classical
sieve-based approaches.

A neural network can be thought of as a function fy : X — R, where 6 denotes the parameters of the
network. The output space of the neural network is often the space of outcomes ) but can also take other
values. We use Pytorch, a standard deep learning library, to instantiate, train, validate, and test the neural
networks [Paszke et al., 2019]. Using the Pytorch library, it is straightforward to compute the training loss,
update the parameters of the network during training using a variant of stochastic gradient descent called
Adam optimization [Kingma and Ba, 2014], measure the validation loss the network incurs during training,
and save the network parameters that yield the lowest validation loss for later evaluation at test-time.
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Figure 1: Model architecture for RU Regression.

Our proposed method, Rockafellar-Uryasev regression, is implemented using two neural networks. One
of the networks represents the decision rule A : X — ), while the other network represents the auxiliary
function o : X — R. A visualization for the model architecture is provided in Figure 1. Recall from Theorem
2 that RU Regression is a joint optimization over both (h,«). Mirroring this in our implementation, we
propose to learn the parameters of the networks h and « simultaneously. To do so, the covariates X from a
training sample (X,Y") are passed to both networks h and «, and the outputs of both networks h(X), a(X)
are obtained. Next, we compute Lky(h(X),«(X),Y) by summing the three terms of the RU loss (9).
Recall that the third term of the RU loss depends on (L(h(X),Y) — a(X))4+. This term can be represented
as ReLU(L(h(X),Y) — (X)), where the ReLU (rectified linear unit) function is a commonly used neural
network “activation” or transform available in Pytorch. After computing the loss, we can compute the
gradient of the RU loss with respect to the parameters of network h and the parameters of network a and
update the parameters of both networks using the Adam optimizer.

4.2 Simulations with Synthetic Data

We perform two simulations with synthetic data. We first consider a one-dimensional toy example because it
permits visualization of the data distributions and the learned models. Next, we show that similar trends hold
in a high-dimensional simulation. Implementation details for these experiments can be found in Appendix

A.
4.2.1 Methods

We compare the performance of two baselines and our proposed method.

1. Standard ERM - We fit a neural network model with the squared loss function

L(z,y) = (y - 2)° (37)
on the training data.

2. Oracle ERM - We fit a neural network model with the squared loss function (37) on data sampled from
the test distribution.

3. Rockafellar-Uryasev Regression (RU Regression) - We fit two neural networks with the RU loss on the
training data.

The two baselines, Standard ERM and Oracle ERM, are each implemented using a single neural network,
which represents the decision rule h : X — )). Both methods are trained using the squared loss function.
Standard ERM and RU Regression are trained on samples from the training distribution (which may differ
from the test distribution), while Oracle ERM is given access to data sampled from the test distribution at
train-time. Additional implementation details are in Appendix A.
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One-Dimensional Simulation Data Distributions
Data Distribution when p=0.1 Data Distribution when p=0.2 Data Distribution when p = 0.5 Data Distribution when p=0.7 Data Distribution when p = 0.9
150 150

T
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Figure 2: From left to right, we visualize the distribution over (X;,Y;) as p varies in {0.1,0.2,0.5,0.7,0.9}.
We note that as p increases the proportion of samples where U; = 1 increases.

4.2.2 One-Dimensional Toy Example

Data Generation. We generate a synthetic dataset of samples of the form (X;,Y;,U;), where X; € R
represents observed covariates, Y; € R represents the outcome, and U; € {0,1} represents an unobserved
variable that influences the outcome Y;. We suppose the data is distributed as follows

X; ~ Uniform[0,10], U; ~ Bernoulli(p), Y;|X; ~ N(VX; +U;(3VX; +1),1). (38)

The outcomes Y; can be clustered into two bands corresponding to U; = 1 and U; = 0, respectively. In
this simulation, we consider a biased training distribution where p = 0.2, so we are less likely to ob-
serve examples with U; = 1. Meanwhile, the possible test distributions are generated by varying p, e.g.
p € {0.1,0.2,0.5,0.7,0.9}. These data distributions are visualized in Figure 2. For all methods, the train,
validation, and test sets consists of 7000, 1400, and 10000 samples, respectively.

Results. When the test distributions have p € {0.1,0.2}, the training distribution, which has p = 0.2, is
generated with a low amount of sampling bias. In Table 1, we observe that Standard ERM achieves low test
MSE in these cases.

However, for test distributions with p € {0.5,0.7,0.9}, the training distribution is a more biased sample
of the test distribution. In these cases, we observe that Standard ERM yields high test MSE. The RU
Regression methods achieve higher test MSE on the original training distribution than Standard ERM but
are more robust than Standard ERM in the presence of sampling bias. Note that Oracle ERM outperforms
both the Standard ERM and RU Regression methods; this is expected because the Oracle ERM model is
trained on data from the same distribution as the test distribution.

In addition, we visualize the regression functions learned from each of the methods. From the left plot of
Figure 3, it is clear that the regression model learned via Standard ERM incurs high error on samples with
U; = 1 and low error on samples with U; = 0, which explains why the method performs poorly on distributions
with higher p (higher proportion of samples with U; = 1). Furthermore, we observe that increasing I' yields
regression functions that incur lower error on samples with U; = 1, relative to the Standard ERM model.
The Oracle ERM model visualized in Figure 3 is the model that is trained on data generated when p = 0.5.
We see that this model makes similar predictions as the RU Regression models, which explains why the RU
Regression models perform similarly to the Oracle ERM model on the p = 0.5 test distribution.

Furthermore, we verify that the solution learned by the neural network is consistent with Theorem 9,
which states that

o () = gy (: hi(x)) V€ X.

For each RU Regression method, we plot the function &r(z) learned by the neural network. In addition,
with access to the data generating process, we can explictly compute the function q#(r)(X ;hr(X)). In the

right plot of Figure 3, we observe that ér closely matches qﬁ(r) (X; hr (X)) across the possible values of X.

4.2.3 High-Dimensional Experiment

Data Generation. We generate a synthetic dataset of samples of the form (X;,Y;, U;), where X; € R?
represents observed covariates, Y; € R represents the outcome, and U; € {0,1} represents an unobserved
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Figure 3: Left: We visualize the decision rules h that are learned in our one-dimensional toy example.
Standard ERM incurs low error on samples with U; = 0 but high error on samples with U; = 1. Models
learned via RU Regression incur lower error on samples with U; = 1. The Oracle ERM model visualized
here is the model that is trained on the data distribution when p = 0.5. Right: We visualize the auxiliary
function ar that is learned in the RU Regression methods for our one-dimensional toy example. We realize
that the learned ér closely tracks qﬁ(r) (z; hr(z)) as expected.

Method Test MSE
p=0.1 p=20.2 p=20.5 p=0.7 p=0.9
Standard ERM 6.939 + 0.174 10.480 + 0.126 | 20.866 £ 0.304 | 27.880 £ 0.484 | 34.913 £ 0.668

RU Regression
(r=2)

10.074 £ 0.247

11.846 + 0.138

17.029 + 0.236

20.522 £+ 0.308

24.046 £+ 0.540

RU Regression
(r=4)

12.456 + 0.431

13.388 + 0.309

16.093 + 0.179

17.898 + 0.300

19.750 + 0.584

RU Regression
)

13.419 + 0.306

14.057 + 0.255

15.895 + 0.133

17.119 + 0.143

18.388 + 0.304

RU Regression
(' = 16)

13.613 + 0.400

14.197 + 0.308

15.873 + 0.140

16.983 £+ 0.262

18.142 + 0.480

Oracle ERM

6.306 + 0.187

10.480 + 0.126

15.743 + 0.152

13.341 + 0.123

6.274 £ 0.176

Table 1: Results from the one-dimensional simulation experiment.

We report the mean and standard

deviation of the test MSE from 6 random trials, where the randomness is over the dataset generation.
Standard ERM incurs high test MSE for high values of p. RU Regression is more robust to sampling bias
than Standard ERM. RU Regression matches the performance of Oracle ERM at p = 0.5.

variable that influences the outcome Y;. Since we aim to consider a high-dimensional example, we set d = 16.
We suppose the data is distributed as follows

X; ~ Uniform[0,1]%, U; ~ Bernoulli(p), Y;|X; ~ N(a’X; +0.5-U;,0.1), (39)
where a € R? is a constant vector. Similar to the one-dimensional example, the outcomes Y; can be clustered
into two hyperplanes Y; = a” X; + 0.5 for samples with U; = 1 and Y = a” X; for samples with U; = 0. As
in the one-dimensional example, we consider distribution shifts which result from varying p, the probability
that U; = 1. We consider a biased training distribution where p = 0.2, so examples with U; = 1 occur
with lower frequency than examples with U; = 0. At test-time, we evaluate the learned models on data
distributions where p € {0.1,0.2,0.5,0.7,0.9}. For all methods, the train, validation, and test sets consists
of 100000, 20000, and 20000 samples, respectively.
Results. The results from the high-dimensional simulation are consistent with those from the one-dimensional
simulation. From Table 2, Standard ERM achieves low test MSE when the amount of sampling bias is low,
meaning that the test distribution has p € {0.1,0.2}. However, the test MSE of Standard ERM increases
when the amount of sampling bias is high, when p € {0.5,0.7,0.9}. The RU Regression methods achieve
higher test MSE on the original training distribution than Standard ERM but are more robust than Standard
ERM under sampling bias. We note that RU Regression matches the performance of the Oracle ERM model
when p = 0.5.
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Method Test MSE

p=0.1 p=0.2 p=0.5 p=0.7 p=20.9
Standard ERM | 0.028 £ 0.000 | 0.043 £ 0.000 | 0.088 £ 0.002 | 0.118 £ 0.002 | 0.148 £ 0.003
RU (rffir';s;l"“ 0.041 £ 0.002 | 0.049 £ 0.001 | 0.071 = 0.001 | 0.086 % 0.003 | 0.100 % 0.004
RU (liieiris)“o“ 0.054 £ 0.008 | 0.057 £ 0.006 | 0.067 £ 0.002 | 0.073 %+ 0.006 | 0.080 % 0.011
RU (I;eir‘;s')swn 0.056 + 0.003 | 0.058 + 0.002 | 0.066 % 0.001 | 0.071 & 0.002 | 0.076 % 0.004
RU(Ilf‘e:grfgjwn 0.057 & 0.003 | 0.059 % 0.002 | 0.066 % 0.000 | 0.070 & 0.002 | 0.074 % 0.003
Oracle ERM | 0.025 £ 0.000 | 0.043 £ 0.000 | 0.066 £ 0.000 | 0.056 & 0.000 | 0.025 £ 0.000

Table 2: Results from the high-dimensional (d = 16) simulation experiment. We report the mean and
standard deviation of the test MSE from 6 random trials, where the randomness is over the dataset generation.
Standard ERM incurs high test MSE for high values of p, where the amount of sampling bias is high. RU
Regression is more robust to sampling bias than Standard ERM. RU Regression matches the performance
of Oracle ERM at p = 0.5.

4.3 MIMIC-III Data

Accurate patient length-of-stay predictions are useful for scheduling and hospital resource management
[Harutyunyan et al., 2019]. Many recent works study the problem of predicting patient length-of-stay from
patient covariates [Daghistani et al., 2019, Morton et al., 2014, Sotoodeh and Ho, 2019]. In this experiment,
we evaluate our approach on electronic health record data drawn from the publicly available MIMIC-IIT
dataset [Johnson et al., 2016a]. We study the robustness of regression models when the distribution of
patients observed at test time differs from the distribution of patients observed at train-time.

Data. In this experiment, the observed covariates X; consist of 17 different medical measurements of a
patient recorded within the first 24 hours of hospital stay (see Appendix A.3 for details on the particular
covariates). The outcome Y; is the patient length-of-stay in the ICU in days. We split the original dataset
into train, validation, and test sets consisting of 7045, 4697, and 7829 samples, respectively.

To simulate a setting where the data we observed is a biased draw from our true target distribution, we
imagine that datapoints from the true underlying distribution are observed with probability =; = 1/Y; (i.e.,
using notation from Definition 1, we have P [S,; | Y, = y] = 1/y). Under this assumption, we can use the test
set to get unbiased estimates for the loss of a rule learned on the training set given new draws from either
the training set, or the true target distribution:

Training Environment MSE = Z L(h(X;),Y;) /ntest

i=1

Ntest Ntest (40)
Target Environment MSE = Z 7 'L(h(X;), Y:)/ Z L.
i=1 i=1

We note that these m; remain unobserved, and are not used for any algorithm in learning. They are simply
used to define a hypothetical target environment under which we seek to perform well despite biased sampling
(with unknown sampling bias).

We compare the following methods.

1. Standard ERM - We fit a neural network model with the squared loss function (Equation 37) on the
training data.

2. Rockafellar-Uryasev Regression (RU Regression) - We fit two neural networks with the Lk loss func-
tion, where one network learns h and the other network learns «, on the training data. The model
architecture is visualized in Figure 1.

Results. As seen in Table 3, RU Regression trades performance on the training distribution for robust-
ness to sampling bias. RU Regression performs worse than standard ERM in the training environment but
is more accurate than the Standard ERM in the the target environment, where patients with high length-
of-stay occur with higher frequency than in the training environement. Thus, at a modest cost in shift-free
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Method Weighted Test MSE
Training Environment Target Environment

Standard ERM 3.230 £+ 0.079 6.926 + 0.265
RU Regression

(T = 1.50) 3.227 £+ 0.074 6.663 + 0.253
RU Regression

(T = 2.00) 3.274 £+ 0.072 6.607 + 0.247
RU Regression

(" = 2.50) 3.349 + 0.070 6.313 + 0.237
RU Regression

(T = 3.00) 3.441 + 0.068 6.060 + 0.224

Table 3: Results from MIMIC-III Experiment. We report the weighted test MSE and bootstrap standard
error with 5000 bootstrap samples.

accuracy, our method achieved considerable improvements in the presence of sampling bias. We emphasize
that RU Regression was not given any information on how the test set might differ from the training set; we
simply posited that the shift is some re-weighting of the type (8) and asked RU Regression to be robust to
any such shift (up to a factor I' = 3). We report the bootstrap standard error obtained with 5000 bootstrap
samples.

5 Discussion

In this paper, we considered a model for sampling bias, I'-biased sampling, and proposed an approach to
learning minimax decision rules under I'-biased sampling. Under our model, selection bias may depend on
unobservables—and the analyst may not be able to model sampling bias. As such, the optimal decision rule
under the target distribution is not identified; and the best the analyst can do is to seek a decision rule with
minimax guarantees under all target distributions that may have generated the observed data under I'-biased
sampling. One of our key results is that, although our learning problem may at first appear intractable,
we can in fact turn it into a convex problem over an augmented function space by leveraging a result of
Rockafellar and Uryasev [2000].

One question we have not focused on in this paper is how to choose I' in practice, i.e., how to set the
maximal bias parameter in Definition 1. We emphasize that I' is not something that’s identified from the
data; rather, it’s a parameter that the decision maker must choose when designing their learning algorithm.
Setting I' = 1 corresponds to the usual empirical risk minimization algorithm, with no robustness guarantees
under potential sampling bias. Using a larger value I' > 1 enables the analyst to gain robustness to sampling
bias at the cost of potentially worsening performance in the training environment.

One practical way to navigate the choice of T" is, following Imbens [2003], to consider values of I" that
help make decision rules robust across different available samples. For example, if one seeks to design a
generally applicable risk prediction model using data only from two hospitals A and B whose patients come
from different populations, one could examine which values of I enable one to use data from hospital A that
work well in hospital B, and vice-versa. While such an exercise does not tell us which value would be best
for accuracy on the (unknown) target distribution, it can at least shed light on the order of magnitude of
values for I" that are likely to be helpful in practice.

Finally, we note that it is interesting to consider how our results relate to the broader literature on “ro-
bust” learning. There is a broad literature on methods for learning that are robust to data contamination.
For example, there has been interest in models where a fraction € of the data comes from a different distri-
bution [Chen et al., 2016, Huber, 1964], or was chosen by an adversary [Charikar et al., 2017, Diakonikolas
et al., 2019, Lugosi and Mendelson, 2021]. Interestingly, however, methods that seek robustness to data
corruption effectively down-weight the influence of outliers, because otherwise a small fraction of corrupted
examples could affect results arbitrarily much. In contrast, in our setting, we tend to give larger weight
to samples with large loss—because under biased sampling a small number of samples with large loss in
the training distribution could reflect a much larger fraction of the true target. In other words, approaches
that seek robustness to data corruption end up to a large extent doing the opposite of what we do here in
order to achieve robustness to sampling bias. This tension suggests that a learning algorithm cannot simply
be “robust”. One can make choices that make an algorithm robust to some possible problems with the
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training distribution (e.g., sampling bias, or data corruption), but these choices will involve trade-offs that
may reduce robustness across other dimensions.
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A Experiment Details

A.1 One-Dimensional Toy Example
A.1.1 Models

For the Standard ERM and Oracle ERM models, we train a neural network with 2 hidden layers and 128
units per layer and ReLU activation to learn the regression function h. For the RU Regression model, we
jointly train two neural networks to learn the regression function h and the quantile function «, respectively.
A visualization of the model architecture for RU Regression is provided in Figure 1. Each of the neural
networks has 2 hidden layers and 64 units per layer and ReLU activation. We note that overall the Standard
ERM and Oracle ERM models have 18.8K trainable parameters, and the RU Regression model has 10.6K
trainable parameters.

A.1.2 Dataset Splits

For all methods, the train, validation, and test sets consists of 7000, 1400, and 10000 samples, respectively.
For Standard ERM and RU Regression, the train and validation sets are generated via the data model
specified in Equation 38 with p = 0.2. For Oracle ERM, the train and validation set is generated with the
same data model with the parameter p matching that of the test distribution. All methods are evaluated on
the same test sets, which are generated via the data model in Equation 38 with parameter p taking value
in [0.1,0.2,0.5,0.7,0.9]. For each of 6 random seeds [0, 1, 2, 3, 4, 5], a new dataset (Standard ERM/RU
Regression train and validation sets, Oracle ERM train and validation sets, and test sets) is generated.

A.1.3 Training Procedure

The models are trained for a maximum of 100 epochs with batch size equal to 1750 and we use the Adam
optimizer with learning rate le-2. Each epoch we check the loss obtained on the validation set and select
the model that minimizes the loss on the validation set.

A.2 High-Dimensional Experiment
A.2.1 Models

We use the same models as in the one-dimensional experiment. See Section A.1.1 for details.

A.2.2 Dataset Splits

For all methods, the train, validation, and test sets consists of 100000, 20000, and 20000 samples, respectively.
In the data model in Equation 39, we set

a = [0.098,0.430, 0.206, 0.090, —0.153, 0.292, —0.125, 0.784,
0.927,—0.233,0.583,0.0578,0.136, 0.851, —0.858, —0.826]

in all experiments. For Standard ERM and RU Regression, the train and validation sets are generated
via Equation 39 with p = 0.2. For Oracle ERM, the train and validation set is generated with the same
data model with the parameter p matching that of the test distribution. All methods are evaluated on
the same test sets, which are generated via the data model in Equation 39 with parameter p taking value
in [0.1,0.2,0.5,0.7,0.9]. For each of 6 random seeds [0, 1, 2, 3, 4, 5], a new dataset (Standard ERM/RU
Regression train and validation sets, Oracle ERM train and validation sets, and test sets) is generated.

A.2.3 Training Procedure

The models are trained for a maximum of 50 epochs with batch size equal to 25000 and we use the Adam
optimizer with learning rate le-2. Each step we check the loss obtained on the validation set and select the
model that minimizes the loss on the validation set.
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A.3 MIMIC-III Experiment
A.3.1 Dataset

Medical Information Mart for Intensive Care III (MIMIC-III) is a freely accessible medical database of
critically ill patients admitted to the intensive care unit (ICU) at Beth Israel Deaconess Medical Center
(BIDMC) from 2001 to 2012 [Johnson et al., 2016b, Goldberger et al., 2000]. During that time, BIDMC
switched clinical information systems from Carevue (2001-2008) to Metavision (2008-2012). To ensure data
consistency, only data archived via the Metavision system was used in the dataset.

A.3.2 Feature Selection and Data Preprocessing

We select the same patient features and imputed values as in Harutyunyan et al. [2019]. A total of 17
variables were extracted from the chartevents table to include in the dataset - capillary refill rate, blood
pressure (systolic, diastolic, and mean), fraction of inspired oxygen, Glasgow Coma Score (eye opening
response, motor response, verbal response, and total score), serum glucose, heart rate, respiratory rate,
oxygen saturation, respiratory rate, temperature, weight, and arterial pH. For each unique ICU stay, values
were extracted for the first 24 hours upon admission to the ICU and averaged. Normal values were imputed
for missing variables as shown in Table 4.

Variable MIMIC-III item ids from chartevents table | Imputed value
Capillary refill rate (223951, 224308) 0
Diastolic blood pressure | (220051, 227242, 224643, 220180, 225310) 59.0
Systolic blood pressure (220050, 224167, 227243, 220179, 225309) 118.0
Mean blood pressure (220052, 220181, 225312) 77.0
Fraction inspired oxygen | (223835) 0.21
GCS eye opening (220739) 4
GCS motor response (223901) 6
GCS verbal response (223900) 5
GCS total (220739 + 223901 + 223900) 15
Glucose (228388, 225664, 220621, 226537) 128.0
Heart Rate (220045) 86
Height (226707, 226730) 170.0
Oxygen saturation (220227, 220277, 228232) 98.0
Respiratory rate (220210, 224688, 224689, 224690) 19
Temperature (223761, 223762) 97.88
Weight (224639, 226512, 226531) 178.6
pH (223830) 7.4

Table 4: Variables included in dataset

Following the cohort selection procedure in Wang et al. [2020], we further restrict to patients with
covariates within physiologically valid range of measurements and length-of-stay less than or equal to 10
days.

A.3.3 Training Details

Models. For the Standard ERM model, we train a neural network with 2 hidden layers and 128 units per
layer and ReLU activation to learn the regression function h. For the RU Regression model, we jointly train
two neural networks to learn the regression function h and the quantile function «, respectively. Each of
the neural networks has 2 hidden layers and 64 units per layer and RelLU activation. A visualization of
the model architecture for RU Regression is provided in Figure 1. We note that overall the Standard ERM
model has 18.8K trainable parameters, and the RU Regression model has 10.6K trainable parameters.

Dataset Splits. For all methods, the train, validation, and test sets consists of 7045, 4697, and 7829
samples, respectively.
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B Standard Results

Definition 4. A function h on X is said to satisfy a Holder condition with exponent [ if there is a positive
number v such that |h(z) — h(zo)| < y|x — z0|? for zg,z € X.

Lemma 16. If there is a function Qo(0) such that (i) Qo(0) is uniquely mazimized at Oo; (i) 0o is an
element of the interior of a convezr set © and Qn(6) is concave; and (iii) Qn(0) = Qo(0)for all 6 € O, then
0, exists with probability approaching one and 6,, 25 6, (Theorem 2.7, Newey and McFadden [1994]).

Lemma 17. If a functional J : V — R is Gateaux differentiable J' at ug € V' and has a relative extremum
at ug, then J'(ug;v) =0 for allv e V.

Lemma 18. If {e;} is an orthonormal basis (a mazimal orthonormal sequence) in a Hilbert space H then
for any element u € H the ‘Fourier-Bessel series‘ converges to u:

oo

u= Z(u,@)ei.

i=1

Lemma 19. Let X be a Hilbert space, and suppose f : X — [—00, 00] is lower semicontinuous and convexr.
If C is a closed, bounded, and convex subset of X, then f achieves its minimum on C; i.e., there is some
rg € C with f(l‘o) = infmec f(x)

Lemma 20. Let A be a 2 x 2 symmetric matriz with tr(A) > 0 and det(A) > 0. Then

det A
min A Z ’
Amin(4) trA

Amax(A) < tr A.

Proof in Appendiz D.3.

Lemma 21. Let H(h,a) = G(h) + F(h, «), where G is strongly convex and Géteauz differentiable in h and
F is jointly convex in (h,«), strictly convez in «, and Gdteaux differentiable in (h,«). Then H is strictly
convez in (h,«). Proof in Appendiz D.4.

C Proofs of Main Results

C.1 Notation

We introduce notation that is used in the proofs and technical lemmas.

LEUJ(Zvy) =T""L(z,y) (41)
Liya(a) == (1~T""a (42)
Liys(z,y,0) = (0 =T71) - (L(z,y) — a)+- (43)
Define
Rpei={r e X | f(z) <} (44)
Spe={zeX| f(z) > c} (45)

When we consider loss functions L that satisfy Assumption 2, we define

t1(y) :={ e%/) 328 , (y) 1:{ 4(2/) 328 ’ (46)
T1 4(c) := Epy x_, LY —¢)| X = 2], (47)
Epy x, [(L(Y —¢) = d)I(U(Y —¢) >d) | X =a] d>0
Epy o, WY —c)—d| X = 1] d<0’

x

Tg’x(C, d) = {
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C.2 Technical Lemmas

We prove lemmas about the transforms Ty ,(c), T3, (c,d). These enable us to establish more general prop-
erties of the RU loss.

Lemma 22. Under Assumption 2, Ty ,(c) is twice-differentiable in ¢ and
Ep [Lyya(M(X),Y)] =T Epy, [T1,x (h(X))]-
Proof in Appendix D.5.

Lemma 23. Under Assumption 2, 3, T ,(c,d) is differentiable in c,d. In particular,

—Prl(Y —c¢)>d| X =xz) d>0
T&(c,d){_l =gz dix=a a=0
Equivalently,
d _ 14 Pyix=a(c+ 671(d) = Pyix=o(c+ £ (d)) d>0
T3,m(cvd)* _1 d<0.

In addition, Ts (c,d) is twice-differentiable in c,d when d > 0. The second derivatives are

T55(eod) = Y WD) - pyjx=al(c + 671(d) + Epy (1Y = )I(UY —¢) > d)],
i€{1,2}

_ Py|x=s(c+ 6 (d))
T (e, d)= ) @y

i€{1,2}
T5%(c,d) = py|x=a(c+ £ (d)) = py|x=s(c + £ (d)),

where {7 is the inverse of £(z) when z > 0 and £y is the inverse of £(z) when z < 0.
Also,
Ep [Lrys(h(X),a(X),Y)] = (L =T 7HEp, [T, x (A(X), a(X))].

Proof in Appendix D.6.
Lemma 24. Under Assumption 2, 3, there are symmetric matrices Ay (c,d), By (c,d) such that
Ag(c,d) X VT3 4(c,d) < By(c,d)

when d > 0. The entries of A,(c,d) are given by

Aci(ed) = Y 1@ pyix=alc +671(d) + Cry - Pr(l(Y —¢) > d | X =)

1€{1,2}

_ py|x=z(c+ (7' (d))
Amled)= 2 LT

1€{1,2,} 2

Ag (e, d) = pyjx—o(c+ €7 (d) — Py x=s(c+ 5 (d)).

The entries of By(c,d) are given by

Beaie,d) = D W) pyix=elc+ 67 (d) + Epy o, [(Y —¢) | X = 1],

ie{1,2}

B Pyix=c(c+ €7 (d))

Braled) = 2, =Gy
ie{1,2} i

Bz,lQ(Ca d) == pY\X:a:(C + gl_l(d)) - leX:I(C + Egl(d))

Proof in Appendix D.7.
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We give a few additional lemmas related to the RU loss. These lemmas are used in proofs of many of the
results from Section 3.1.

Lemma 25. Under Assumption 1, 2 3, Ep [L%(h(X),a(X),Y)] is Gateauz differentiable in (h,a) on
L?(Px,X) x L*(Px, X) and twice-Gateauz differentiable in (h,a) on C, where

C={(h,a) €O |alz) >0 VzelX}.
Proof in Appendix D.8.
Lemma 26. Under Assumption 2, Ep [Ll;w’l(h(X),Y)] is strongly convex in h. Proof in Appendix D.9.
Lemma 27. Under Assumptions 1, 2, 3, Ep [Ly 5(h(X), a(X),Y)] is strictly convex in o on A.
Proof in Appendix D.10.
C.3 Proof of Lemma 1
dPx (z)

First, suppose that ) generates P via I'-biased sampling. We show that (8) holds and that sup, ¢ » Qx (@) <
C for some C < o0.

dQy|x=2(Y) _ dQY|X(y)

dPy|x—a(y) dQy|x,5-1(y) )
_ d@;i,y(x,y) _ leX\s:ﬂiU) (50)
dQx(z)  dQx y|s=1(z,y)

_ NCZQX,Y(QS,?J) _ d@){\szl(m) (51)
dQx y|s=1(z,y)  dQx(x)

_ fiQX,Y($7y) _ d@){\8=1(m) . Ps[S=1] (52)
dQxyis=1(z,y)  dQx(z) PglS=1]

_ Pyls=1]|X=q] -
PalS=1|X=2Y =y]

e [r1,1). (54)

(53) follows from Bayes’ Rule. (54) follows from (3). So, (8) holds.
We also show that the covariate density ratio between P and @ is bounded. We note that
PQ [S =1 ‘ X = J?]

dPx(z) = dQx(z) - Pg [S=1]

Thus, we have that sup ¢y % is upper bounded by a constant.

Second, we show the converse. Let @ be a distribution over (X,Y’) that satisfies (8). We define Q to be
a distribution over (X,Y,5), where X € X, Y € Y, S € {0,1}.We set Qx,y = @ and define that

1 dP(z,y)
PslS=1|X=aY =y = 55
where N < 1/CT. Note that P5[S=1[X =2,Y =y| € [0,1] because (8) holds and sup,c 735’;((?) <C.

To show that converse holds, we must verify (3) holds for Q and that Q x,v|s=1 = P. First, we verify (3).
We compute Py [S =1[ X =z].

1 P(X,Y
S=1]X=2]=Eg4 4B )

F QN dQ(X:Y)

| X =2| = (56)

ol
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Note that

1 dP(z,y) Py |x=2(y)
Ps(S=1|X=zY=y=— ——"+F=Ps5[S=1|X =1 .
@ [ | ] N dQ(z,y) @ | | ] dQY\X:x(y)
From (8), we have that
dPy | x—q
Y‘X— (y) c [1—‘71,1—‘].
dQy | x=2(y)
So, we have that (3) holds for Q.
Now, we can verify that Qx y|s—1 = P. We aim to verify that
dQX,Y\S:l(fay) =dP(z,y). (57)

We have that

=Ps[S=1,X =2,Y =]
=Ps[S=1|X=a,Y=y]-P5[X =2Y =y
1

_ - dPX,Y(xvy) .
TN Q) (XY

— L dP(z,y).

dQx.y.s=1(z,y)

In addition, from (56), we have that

Thus, we have that R
dQx y,s=1(x,y)

=dP T, Y).
PQ S =1 X,y (T, Y)

dQx y|s=1(z,y) =

Therefore, we have that ) can generate P under I'-biased sampling.

C.4 Proof of Lemma 5

Suppose for the sake of contradiction (h, ) is a minimizer of the population RU risk and (h, «) ¢ ©. There
are three cases

1. (h,a) e HE x A,

2. (h,a) € H x A,

3. (h,a) € H® x A°.

First, we focus on the case where (h,a) € H¢ x A. We consider h,
h(z) h(z) € [-2B,2B]

h(z) =<2B  h(z)>2B
—2B h(z) < —2B

We note that (h,a) € ©. We define Ry, _2p5 and Sp 2p following (44) and (45).
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Ep [Liy(M(X), a(X),Y)] = Ep [Liy(A(X), a(X),Y)]
=Ep [(Lry(h(X),a(X),Y) — LgU(f(X),a(X), JI(Rh,—28)]
+Ep [(Liy(h(X), a(X),Y) = Ly (h(X), o(X), Y)I(Sh28)]

because they only differ on R} _op and Sp 2p. Analyzing the second term on the right side above, we see
that

Ep [(Liy (M(X), a(X),Y) = Lyy (A(X),a(X),Y)) - 1(Sh 25)]
= By [(P7 T (), (X)) + (0 = T7) - T x (h(X), a(X)) ) (Sh25)]
where 11 x,T5 x are defined in Lemma 22 and Lemma 23, respectively. For = € Sp, 2p,

DT o (h(x), (@) + (0 = T71) - Ty (h(x), a(2)) = D7 T o (h(@), a(x)) = (0 = T71) - T3 o (h(2), a(x))
h

= (h(z) = h(@)) - (T7TF . (h(2), (@) + (T = T7) - T§ x (h(z), a(2)) ) h() € [h(2), h(z)] (58a)
= (h(@) = h(2)) - Epy e, D70 (<0 = h(@)) + (0 =T - (=Y = h(2))) - LY = h(z)) > a(x))]
(58b)
> (h(z) = h(@)) - Epy o, [T (<0 = h(@))] (58¢)
> 0. (58d)

(58a) follows from the Mean Value Theorem, the differentiability of T3 ,, (Lemma 22), and the differentiability
of T3 ; (Lemma 23). (58b) follows from Lemma 22 and Lemma 23. The inequality in (58c) comes from the
observation that for = € Sy, 95, we have that Y — h(z) < —B because Y € [-B, B] and h(z) € [2B, h(z)].
So, —¢/(Y — iz(x)) > 0. Meanwhile, h(z) — h(z) > 0. So, the product of —¢'(Y — h(x)) - (h(z) — h(x)) > 0.
Since Pr(¢(Y — h(x)) > a(z)|X = z) > 0, (58¢c) holds. For the same reason, (58d) holds as well. Thus, if
Sh,2p has positive measure, then

EP [(LEU(h<X)a Oé(X), Y) - LEU(B(X>7 a(X)7 Y))]I<X € Sh723)] > 0.
An analogous argument can be used to show that for R _op with positive measure,
Ep [(Liy(A(X), a(X),Y) = Lpy (h(X),(X),Y))I(X € Ry,—25)] > 0.

Thus, as long as Rp _op U S 2p has positive measure, which must be the case under our assumption that
the minimizer (h,a) € HC x A, then there is (h,a) € © that achieves lower population RU risk. This is a
contradiction, so the minimizer cannot be in H¢ x A.

Now, we consider the next case that the minimizer (h,a) € H x A°. Consider & € A,

0 a(z) <0
a(z) =< alz) 0<a(r) <M,
M, oa(x)> M,

Note that (h,&) € ©. We define R, o and S, a7, according to (44) and (45), respectively. We have that

Ep [Liy(h(X), a(X),Y)] —Ep [Lﬂu(h(X),@(X) V)]
=Ep [(Liy (A(X), a(X),Y) = Ly (h(X), 4(X),Y))[(Ra,0)]
+EP [(LEU(h(X)’O‘(X)’Y) LEU(h(X>7 (X)vY>) ( ocMu)] .
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because they only differ on R, 0 and S, a7, . We find that

Ep [(Liy(h(X),a(X),Y) = Ly (M(X), &(X),Y)) - I(Ra,0)]
=1 =T HEp[(a(X) - a(X))(Ra0)] + (T = THEp [(L(A(X),Y) = a(X))+ - I(Ra,0)]
— (T =T7HEp [(L(M(X),Y) = &(X))+ - I(Ra0)]
= (1 =T7HEx [a(X)I(Ra0)] + (T =T 7HEp [(L(A(X),Y) — a(X))I(Ra )]
— (T =T7HEp [L(M(X),Y)I(Ra,)]
= (1 =TD)Ep [a(X) - I(Ra0)]-
If Rq,0 has positive measure, then
Ep [(Liy (M(X),o(X),Y) = Ly (h(X), &(X),Y)) - I(Ra,0)] > 0
because on R, o, we have that a(X) < 0 and also (1 —T') < 0. In addition,
Ep [(Liy(h(X),a(X),Y) = Ly (M(X), &(X),Y)) - 1(Sa,a,)]
=Epy [Epyx [Lhu2(a(X)) = Ly 2 (@(X)) + Liy 5(M(X), (X),Y) = Liy 5(M(X), &(X),Y) | X]1(Sa,n1,)] -

For z € S 1, , we compute

Epy,x [Lhu2(@(X)) = Lhy 2(@(X)) + Lhy 5(h(X), a(X),Y) = Lhy 5(h(X),a(X),Y) | X =] (59a)
= Epyx, [ =T (a(X) - a(X)) | X =] (59b)

+Epy e, (0= T (Tox (B(X), (X)) = Tox (h(X), (X)) | X = 2] (59¢)
= (1 =T (a(@) - a(@)) + (T =T~ (T (h(2), a(2)) - T (h(z), a(2)) ) (59d)
— (1 =T (a(z) — a(@) + ([ =T7Y) - (a(@) — alx)) - T (h(x),a(z)) @) € [a(@),a(z)]  (59%)
— (1 =T (a(2) — a(@) + ([ =T - (a(x) — &) - (~1 + Frp(e(a(x))) (59¢)
> (1 =T Y(a(z) - a@) + (T =T - (a(z) — a(x)) - (~1 +n(T)) (59)
=0 (59h)

In the above derivation, we have that (59d) follows from Lemma 23 and Assumption 2. Next, we apply the
Mean Value Theorem to T3 . (c, d) to arrive at (59¢). After that, we use the definition of Ty (¢, d) for d >0
from Lemma 23, where &(z) > 0. Finally, we recall that F.p(,) is the distribution over L(h(x),Y) = £(Y —
h(z)) when Y is distributed according to Py|x—,. We can show (59g) as follows. Since &(z) € [a(x), a(z)]
and x € So u,,, we have that

Fw;h(z) (d('r)) > Fm;h(m) (54(37)) = Fz;h(z) (Mu)v
and we have that
@ (@i h(2) = Fo ko, (0(D) < M,

by the definition of M, (25). So, we see that n(I") < Fy.;(s)(M,). In addition, we note that a(x) —a(z) > 0
for z € So p, and I' — I'~! > 0. We conclude that if S, M, has positive measure, then

Ep [(Liy (MX),a(X),Y) = Ly (h(X), &(X),Y)) - (Sapr,)] > 0.

Thus, as long as R, U Sq,a, has positive measure, which must be the case because we assumed that
(h,a) € H x A€, there is (h,@) € O that achieves lower population RU risk than the minimizer (h, «). This
is a contradiction, so any minimizer cannot be in H x A°.

Combining the two previous arguments, we can show that any minimizer also cannot be in H¢ x A°.
Thus, any minimizer of the population RU risk must lie in ©.
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C.5 Proof of Lemma 6

The main goal of this proof is to apply Lemma 19 to the function Ep [LLy(h(X),a(X),Y)] and set ©.
Clearly, the population RU risk is continuous. We have the RU loss is convex from the first part of Theorem
2, so the population RU risk is also convex in (h,a). In addition, ©® C L?(Px,X) x L?*(Px,X), which is
a Hilbert space. In addition, since L balls are closed in L?(Px, X), and © consists of a product of L
balls (one of which is not centered at 0), so © is closed in L?(Px, X). Also, © is convex and bounded. Thus
Lemma 19 holds, so Ep [Lyy (h(X), a(X),Y)] must achieve a minimum on ©.

C.6 Proof of Lemma 7

Let
F(hva) =Ep [LII;U,S(h(X)aa(X)ay)]
G(h) =Ep [Ly,, (h(X),Y)]
H(h,a) =Ep [LEU,l(h(X)’Y)] +Ep [LEU’?)(h(X),a(X),Y)] .
Note that

Ep [Liy (h(X), a(X),Y)] = H(h,a) + Ep [Ly o(e(X))] - (60)

Since the population RU risk is the sum of H and a function that is convex in (h, ), then it suffices to show
that H is strictly convex. The main goal of this proof is to show that the conditions of Lemma 21 hold so
that we can conclude that H, as defined above, is strictly convex in (h, «).

First, we note that I, G, H are all Gateaux differentiable by Lemma 25.

Second, we show that G satisfies the conditions of Lemma 21. By Lemma 26, G is strongly convex with
constant I'"*Cy, ;.

Third, we show that F' satisfies the conditions of Lemma 21. It follows from the first part of Theorem 2
that F is jointly convex in (h,«). Also, F' is strictly convex in « on A by Lemma 27.

As aresult, F, G satisty the conditions of Lemma 21. So, we have that H(h, «) is strictly convex in (h, a).
Furthermore, because Ep [LQUQ(O&)] is convex in « and does not depend on h, it is also jointly convex in
(h,a). Due to the decomposition in (60), Ep [Ly(h(X),a(X),Y)] is the sum of a strictly convex function
and a convex function in (h, «), and is thus strictly convex.

C.7 Proof of Theorem 8
First, by Lemma 5 we have that

argmin Ep [Liu(h(X),(X),Y)] = argminEp [Lyy (h(X), a(X),Y)].
(h,a)eL?(Px ,X)x L2(Px ,X) (h,a)€O©

Second, we can show that Ep [L;(h(X), a(X),Y)] has a unique minimizer on ©. By Lemma 7, we have
that Ep [Liy (h(X), a(X),Y)] is strictly convex on ©, so it has at most one minimizer on the convex set ©.
From Lemma 6, we have that Ep [LLy(h(X),®(X),Y)] has at least one minimizer on ©. Thus, there is a
unique minimizer (h}, of) on ©. Finally, (hf, af) is also the unique minimizer over L?(Px, X) x L?(Px, X).
C.8 Proof of Lemma 9
Let L(h,a) = Ep [LEy(h(X),a(X),Y)] as the population RU risk. Since L(h, a) is Gateaux differentiable
(Lemma 25) and has a unique minimizer at (h}:, of:) (Theorem 8), we can use Lemma 17 to realize that the
Gateaux derivative in the direction ¢ is equal to 0 for all ¢ € L?(Px, X), i.e.

Ly(h,ar5¢) =0, Vo € L*(Px, X).

Recall that from Lemma 25, we have that

Ly(hya;6) = (1 =T HEpy [6(X)] + (0 = T7Y) - Epy [T5 x (A3 (X), 01 (X)g(X)] -

31



So, at (h}, o), we have that

ey |00 (o + Tx (5 (0,0200) | =0, vo e 22(Px. ),

We note that by Lemma 23,
T?ii,w(h(x)a Oé(.]?)) =-1+ F:z:;h(z) (Oé(l’)),

where Fj.j(,) is the distribution over L(h(x),Y’) where Y is distributed according to Py|x—,. So, we have
that

Epy [6(X) - (=0(D) + Fx pz(x) (@f(X))] =0, Vo € L*(Px, X).

So, =n(I') + F iz () (af () must be equal to 0 almost everywhere for the above equation to hold for all ¢.
Therefore, we conclude that

af (@) = Fo b o (D) = gl (o i ().

Now, with this definition of af., we can show that there exists M; > 0 such that af(z) > M, for all
x € X. We aim to show that inf,cx nen qg(r)(:c; h(z)) > 0. For convenience, we define

We note that n(I') > 1. So,

We have that for any z € X, h € H,

Pr(L(h(X),Y) < m(X) | X =) = %

Recall that under Assumption 2, L(h(x),y) = ¢(y — h(x)). We can apply Assumption 2 to see that
1
Pr(Y € [A(z) + 65 (m()), h(z) + 7 (m(2)] | X = x) = 3

Now, we can use the upper bound on the density of py|x—, from Assumption 3 to see that

Coar (6 (0(a)) — 65 (m(2) > 5.
Rearranging, we have that
£ () 45 (m(a) > 55—
So, ’
mac{ £ (m(a). ~1" (@)} > 1.

Applying ¢ to both sides, we conclude that

mia) > (75—)-

Since ﬁ > 0, we have that m(z) is lower bounded by a positive constant for any choice of h € H,z € X.
Thus, we have that

* . 1
b (0) = dhoywhl) > oo > ¢ (75— ).

So, let M; = (;5—)/2. Then o*(z) > M, for all x € X.
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C.9 Proof of Theorem 10

The constant for strong convexity depends on lower bounds on the conditional density py|x—(-) and on
|¢/(¢71(-))| when these functions are evaluated over a particular region. To ensure that they can be lower
bounded, we pick the radius of the || - ||o ball about the minimizer.
Define
gi(z;h, ) = h(z) + ;o). (61)
For 0 <e< %(F) we pick 0 < d(€) < M to ensure that for (h, ) € Cs(), we have that

7
P,u

sup  |gi(z;h, @) — gi(z; by ap)| < e
zeX,ie{1,2}

By Lemma 9, we have that af.(z) > M, for all z € X. We consider (h,a) € Cs.). For such a, we have
that [|a — af|lec < d(€), and so a(x) > M; — d(e) for all z € X. Since §(¢) < M;, for (h,a) € Cs), we
have that a(x) > 0. Since the RU loss is twice-differentiable when a(z) > 0 (Lemma 25), we have that it is
twice-differentiable on Cs().

Let L(h,«), Ly (h,«), L3(h, @) be shorthand for the population RU risk, the first term of the population
RU risk, and the third term of the population RU risk, respectively.

L(hva) =Ep [LEU(h(X)’a(X)vY)] ;
Li(h,a) =Ep [LEU 1(R(
Ly(h,a) = Ep [Lyy 5(A(X),a(X),Y)].

We compute the second Gateaux derivative of the population RU risk.

(L 1, 05,9, 1,9) (620)
= (L (h,030) + L (1,053, 0), (6, 0) (620)
> (L4 (h03,9), (,0) (620
(0T Bey [[0X) 0X)] PTax(h00,a0) [ )] (620)
> (0= T8 | [000) 000) Ax(x),00x) |50 (62

(62b) follows from Lemma 25. (62¢) holds because (LY (h, «; (¥, @), (¥, ¢))) > 0 because L (h, ) is strongly
convex in h (Lemma 26) and does not depend on «. Next, (62d) follows from Lemma 23. Finally, A,(c,d)
is the lower bound on the Hessisan matrix of T3 (¢, d) defined in Lemma 24.

To develop a lower bound for (L” (h, a; 1, ¢), (1, ¢)), we aim to apply Lemma 20 to A, (h(x), a(z)). Before
we verify the conditions of Lemma 20, we introduce the following notation

Giw =[0G (@) i=1,2,
fiw = pyx=e(h(@) + £ (a(z)) i=1,2,

and we develop upper and lower bounds on a; , for i € {1, 2}, Zie{m} fie, and 1 — Fop0) (o).

First, we focus on a; .. By the definition of ©, we have that a(x) < M,. Since |¢'(¢; ' (y))| is strictly
increasing in y and on Cj(), a(x) > M; — d(e) for all x € X', we can recall the definition of Cq 5, Cy . from
(30), (26) to see that

0< Ca,l,&(e) <ajp <Chy<o0o 1=12,2€X.

Second, we aim to show that ), (1,2} fix is similarly upper and lower bounded. The upper bound is
straightforward from Assumption 3. To obtain the lower bound, we first analyze ), (1.2} Py x=z(hp(z) +
¢;*(af()), which can be written as > ieq1,2y Py x=2(9i(@; b, f)) using the definition of g in (61).

Let ﬁfl(qﬁ(m (w3 h})) corresponds to the ¢; ,-th quantile of Y, where Y is distributed following Py|x—s.
We realize that
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Y pyix=e(gi@hiaf)) = Y pyix=a(hi(@) + £ (o (@)

i€{1,2} i€{1,2}

= D pyix=e(hi(@) + 6 (g (@ hi(2)))
i€{1,2}

= Y pyixm(bi(@) + (@) — hi(2))
i€{1,2}

= Y prix=.lal,(@)).

ie{1,2}

2
corresponds to the n(T")-th quantile of the conditional losses, we must have that

Furthermore, we realize that either ¢; , or ¢o, lies in [1 — %F), 1+ @] First, because q#(r)("?; hi(z))

c1,p — 20 = (D). (63)

)

In addition, ¢1,, < 1,80 co, < 1—n(T). So, c25 € [0,1 —n(T")]. Suppose that ¢, € [1 — @, 1 —n(D)],
then clearly the desired claim holds. If ¢o, ¢ [1 — @, 1 —n(I")], this means that ¢, € [0,1 — @) So,
we must have that ¢, € [p(T),1 + @) Thus, we have that at least one of ¢; ,c2, lies in the interval

[1— 751+ ).

Now, we have that

Y fiz= > Pyix=o(gi@ih ),

ie{1,2} ie{1,2}
and 0(e) was chosen so that for (h,a) € Cs(¢

sup [gi(z;h, @) — gi(ws b of) = sup  [gi(zh, @) — pyx—a(q,, ()] < e
zeX,ie{1,2} rzeX,i€{1,2}

Thus, we realize that for (h,a) € Cs(,
gi(x;h,a) = qz/l(m) +0b;(z), bi(z) € (—e€),i€ {1,2},x € X. (64)

So, for (h,a) € Cs(¢), we realize that a lower bound on Zie{m} fiw= Zie{u} Py |x (gi(w; h, @) is given by
Cp1e from (31). Thus, we have that

0<Cpre< Y fia<20pu <00 i=12z€AX,
i€{1,2}

and clearly each f; ; must be nonnegative.
Third, we aim to show that 1 — F,.p(,)(a(x)) is similarly upper and lower bounded on Cs ). Clearly, an
upper bound on this quantity is 1. To compute the lower bound, we see that for (A, a) € Cs(e),

1 — Fppe)(a(x)) = 1 = Py|x—z(g1(z; h, @) + Py|x—z(g2(; h, )
=1— Pyjx=s(a, , () +b1(2)) + Pyjx=s(a, , () + ba(2)) b1(2),ba(x) € (—€,€)
>1—cipy—Cpyu-€t+crg—Chy-€
=1-n() —2Cpye
> 0.
The first line follows from the definition of F' and g¢; from (61). In the second line, we apply (64). In the

third line, we note that the c.d.f. of Py x_, at qzx () 4 b;(x) can be closely approximated by the value of

the c.d.f. at qgm(x) Next, we apply (63). The last line follows because € < %p(? Thus, we have that

1= Fppy(a(x) >1-n(T) - 2C, we > 0. (65)
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Now, we finally verify the conditions of Lemma 20. We note that A, (h(z),a(z)) is a symmetric matrix
by definition. We realize that tr A, (h(z), a(z)) > 0 because

tr Ay (h(z), a(2)) = Ag11(h(@), () + Ag 22(h(2), () (66)
= Z (7 fi,x + Z 52,93 + CL,@(]- - FT,h(I) (Ol(iC))) (67)
ie{1,2} ie{1,2} %
2 OL7£(1 - Fw,h(w)(a(x))) (68)
> 0. (69)

(68) follows from the observation that f;;,a;, > 0. (69) follows from (65). In addition, we see that
det A, (h(x), a(x)) > 0 because

det A, (h(z), a(z)) (70a)
= A (h(2), (@) - Ag g2 (h(2), a(x)) = (Apaa(h(@), alx)))? (70b)
(2w St Ol o)) - (X ) (1 oy (10¢)
i€{1,2} ief1,2;
- (Zl—’ + 22—”” + 2) i faw+ Cri(l = Fop) (a(2))) - ( > &) (70d)
2,z 1,x ic{1,2} ai,m
>0 (Y Ty 0 B (ate) (70¢)
ie{1,2} 7
2 CLie o (3 fu) (1= 0(1) = 2y00) (7o)
a,u ic{1,2}
>Cry- Cl -Cpre- (1 —n(T) —2C, 4¢) (70g)
> 0. (70h)

Thus, we can apply Lemma 20 to A, (h(x), a(z)) to see that

det A, (h(x), a(x))
Amin(Az (h(@), o(x)) 2 TG0 5"

We can combine the lower bound on det A from (70g) with the following upper bound on tr A to find a lower
bound on Amin(Az(h(7),a(x)) that does not depend on the choice of z € & and (h, a) € Cs(o).

tr Az (h(z), a(x)) = Z Qig finw+ Z f” + Cri(1 = Fyipa)(a())) (71a)
ie{1,2} ie{1,2} 7
1
< 2Cpu(Cau + )+ Cry (71b)
Ca,l,&(e)
_ 2Cfp,u(cva,'u, . Ca,l,é(e) + 1) + CL,l : Ca,l,&(e) (71C)
Ca,1,5()
Therefore, applying(71c) and (70g), we find that
det A, (h(x), a(z
i (As(1(0). ) > )
1 Ca,1,5(e)
> (1 =n(T) = 2C, y€) - —— - ) b
- (CL’Z (1 =) = 26pue) Cau Coa, ) (2Op,u(ca,u'ca7l,6(e) +1)+OL,I'Oa,l,5(e)>
CL,l ' (]- - ﬂ(F) - 2Cp,u . 6) . Cp,l,e Ca,l,6(e)

> .
o 2C’p,u . (Ca,u . Ca,l,é(e) + 1) + C(L,l . Ca,l,&(e) Ca,u
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Recall the definition of 1 from (32). We realize that for all x € X, (h, a) € Cj(.), we have that
T —T7Y) Ay (h(z),a(x)) = K1 e - I

Revisiting (62e), we have that

s
>
=
>
2
>
rm
s
ke
EE
| I
3
K

(L (h, 0 (6, 8)), (6, 8)) = (T —T=1) - Epy [[W) o(X

> Ee [00X) o0] e[S (73)
= 1By [B(X)? +0(X)7] (74
= Hl,e||(w7¢)||2' (75)

Thus, Ep [LEU(h(X),a(X),Y)] is k1, strongly convex in (h,a) on Cs(). We note that as e — 0, then
d(e) — 0, as well. So, Cf 5(c) — Ca,, where Cq is defined in (27) and Cp ;. — Cp, where Cp; is defined
in (28), and €- Cp,, — 0. So, we have that

: — — ) ) Ca €
hm(F _ F—l) CL,l (1 77(1_‘) 2Cp7u 6) Op,l,e ) 1,6(€)
e—0 2Cp,u . (Ca,u . Ca,l,é(e) + 1) + CL,l . Ca,l,(s(e) Ca,u
=T -T7Y. Cry - (1—n))-Cpy Cay

2Cp,u : (Ca,u : C'a,l + 1) + CL,Z . Ca,l Ca,u
— (1 _ F—l) . C1L,l : Cp,l ) Ca,l

2C(p,u . (Cau : Ca,l + 1) + CL,l : Ca,l Ca,u

Thus, as € — 0, then kq, — K1, where k; is defined in (29).

C.10 Proof of Theorem 11

Let L(h, &), L1 (h, &), L3(h, &), a; 4, fi » be defined as in the proof of Theorem 10. To show that the population
RU risk is #2-smooth on Cs(), we show that

(Lia(h, 03,0, (¥, 0)) < ral (1, D)[L2(py, )

We have that

(L"(h, o590, ), (1, 9))
= (L{(h, 059, ) + L5 (h, 3%, 8), (¥, 9))

<Ep, [WX) P(X)] - (r—vaTI,X(h(X),a(X)) +(T - F‘1>V2Tg,x(h(X)7a(X))) [ﬁ&(;”

<Ep, [W(X) #(X)] - (p—1v2TLX(h(X),a(X)) + (- r—l)VQBx(h(X),a(X))) LWQ

The second line follows from Lemma 25. The matrix B, (h(x),a(z)) is as defined in Lemma 24. It suffices
to show that there is ko  such that

L'V, (h(z), a(z)) + (0 — T Y By (h(2), a(x)) < ke Jo Vo € X.
Applying Lemma 22 and Assumption 4, we have that

_ EPY|X=;E [EN(Y - h(z))] 0

V2T . (h(z),a(x)) = 0 ol = Cr ulo. (76)
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From the proof of Theorem 10, for 0 < € < 12077( ) there exists 0 < 6(¢) < M, so that for (h,a) €

Cs(e), (T V2T o (h(x), a(x)) is positive definite. So, on this set Cs(e), By (h(x), a(x)) is also cer-
tainly pOblthe definite. So, B, (h(z),a(x)) satisfies the conditions of Lemma 20, so we can conclude that
Amax(Bz(h(x), a(x))) < tr B (h(x ) a(x)). We can compute an upper bound on tr B, (h(x), a(z)). We note
that for (h, o) € Cs(e), a(z) > M;—6(¢) for all z € X because a*(x) > M; by Lemma 9 and ||a—a*||o < 6(¢).
So, we have that

tr B, (h(x),a(z)) = Z iz - fiw + Z fﬁ +Epy \_, [("(Y = h(2))]
ie{1,2} ie{1,2y %
1

Ca,l,5(e)

< 2Cp,u(ca,u + ) + CL,u~

We arrive at the second inequality by recalling the definition of Cp, from Assumption 3, C, , from (26),
Ca,,s from (30), and Cp,, from Assumption 4. So, we have that

1
627)+fcim)zg. (77)

)

B, (h(x), a(2)) % (2Cpu(Cau +

Combining the constants from (76) and (77), we have that for (h, a) € Cs()
I 'V2Ty . (h(z), a(z)) + (T = T B,(h(z), a(z)) < ke do Yz € X,

where ko is defined as in (34). Thus, we conclude that Ep [L};(h(X),a(X),Y)] is ka-smooth in (h, a)
on Cs(). As, € = 0, 0(e) = 0. So, Cy1,5(c) = Ca,- This implies that xy . — k2 as the radius of the || - ||o-ball
shrinks.

C.11 Proof of Lemma 12

We note that ©,, is a convex subset of ©. By Lemma 7, the population RU risk is strictly convex on ©.
So, it is strictly convex on ©,,, which means that it has at most one minimizer on ©,,. In addition, by an
analogous argument as the proof of Lemma 6, the population RU risk has at least one minimizer on 6,,
Combining these two facts, it has a unique minimizer on ©,, called 6;,.

C.12 Proof of Theorem 13

In this proof, we use the following lemma.
Lemma 28. Define m,, : © — ©,, to be the projection of 8% onto ©,,. Under Assumptions 1, 2,5,
[T (0%) = 0% L2(py,2) = 0.
Proof in Appendiz D.11.

To simplify notation, let L(f) = Ep [Li;(0(X),Y)] . For the sake of contradiction, assume that 6}, does
not limit to 8*. This means that there exists d; > 0 such that for every m € N, there is A,, > m such that

1107, — 0%[|2(py,x) > 01

We have that 6* € ©,, C ©. In addition, 8* € © by Lemma 5. By the strict convexity of the population
RU risk on © (Lemma 7), for some € > 0, we have that

L(0a,) > L(0%) +¢

because by strict convexity, ||0 — 0*||p2(p, x) > 01 implies that L(6) > L(0*) + € for some € > 0.
Note that L(f) is continuous at 6*, so there exists d2 > 0 such that [|0 — 6*|[z2(py,x) < 02 implies that
|L(0) — L(0*)| < e. Since 6* is the unique minimizer of the population RU risk, we have that L(0) < L(6*)+e€
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in particular. Since m,,(0*) — 6, there exists M € N such that ||7m,,(0*) — 0*|[12(py,x) < 02 for m > M. By
continuity of the population RU risk, we have that

L(mm(0%)) < L(B*)+€ for m > M. (78)
In addition, there exists Ay; > M so that |[0% =~ — 0%||2(py x) > 0, implying that
L(0%,,) > L(0") +e.

However, this is a contradiction because 67 is by definition the unique minimizer of the population RU
risk over © 4,,, but we find that 74,,(0*) € O4,, satisfies

L(may (07)) < L(04,,)-

Thus, we must have that [|0;, — 0*||12(py,x) — 0 as m — oc.

C.13 Proof of Lemma 14

The goal of the proof is to verify that the condltlons of Lemma 16 hold so that we can conclude that
Oy, n exists with probability approaching 1 and 0m N 0r,. First, we note that over the sieve space O,,,
the population RU risk is uniquely minimized at 6, by Theorem 12. To check the second condition, we
observe that for m sufficiently large, 6%, € Int(@m) because 8% — 6* by Theorem 13 and 6* = (h*,a*)
where 0 < M; < o*(z) < M, for all x € X. Furthermore, it follows from the first part of Theorem 2 that
0 — LL,(6(z),y) is convex, which implies that the empirical risk Ep [Lry(8(X),Y)] is also convex. Third,
by the Weak Law of Large Numbers, we have the following pointwise convergence

Ep [Lhy(0(X),Y)] & Ep [Liy(0(X),Y)] .

Thus, Ep [Lry(0(X),Y)] and Ep [LLy(0(X),Y)] satisfy the conditions of Lemma 16. So, we have that O
exists with probability approaching 1 and ém,n LN 0r,.

C.14 Proof of Theorem 15
The main goal of this proof is to show that the following theorem applies to our setting.

Theorem 29 (Chen [2007], Theorem 3.2). Let Z; be distributed i.i.d. following a distribution P. Let 6* € ©
be the population risk minimizer

0* = argminEp [(0, Z;)] .
9co

Let 0,, be the empirical risk minimizer given by
IR I )
- ; 10n, Z:) < inf = "1(0,Z;) + Op(e2).

0€0, N “

Let || -|| be a norm on © such that ||0,, — 6*|| = op(1). Let F,, = {1(0, Z;) —1(6*, Z;) - ||0 — 6*|| < 6,60 € ©,,}.
For some constant b > 0, let

6n:inf{5e(0 \ﬂ?/ \/H[ +%,fn,||-||)dwg1},

where Hy(w, Fn,|| - ||;) is the L™ (P) metric entropy with bracketing of the class F,.
Assume that the following conditions hold.

1. In a neighborhood of 6%, E[1(0, Z;) — 1(0*, Z;)] < ||0 — 0*]|>.

2. There is C7 > 0 s.t. for all small e > 0

sup Var [[(0, Z;) — 1(0%, Z;)] < Cyé%.
0€60,.:/10—0*||<c
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3. For any 6 > 0, there exists a constant s € (0,2) such that

sup 1106, Z;) — 1(0%, Z;)| < 6°U(Z;)
0€0,,:]|0—0+||<5

with E [U(Z;)Y] < Cy for some v > 2.
Then ||0, — 0*|| = Op(e,), where
€, = max{d,, inf [|0" — 0|}
0€O,,

We will use the following lemmas to show that the conditions of the above theorem are satisfied for our
setting.

Lemma 30 (Chen and Shen [1998], Lemma 2). For § € A2(X), we have that ||0]|ec < 201_%”%%,){)7
where X\ is the Lebesgue measure.
Lemma 31. Under Assumptions 2, 4 5, 6, for any h € AP(X), there exists L(X,Y) such that
|L(h(x),y) — L(ht(2),))| < L(z,y) - |h(z) — b (2)],
where sup,cx Epy [L(z,Y)? | X =] <M < oco. Proof in Appendiz D.12.
For the metric, we will use || - ||z2(py,x). Since any function § € © only depends on X, || - |[z2(py x) =

Il - llz2(P,xxy). From Theorem 13, Lemma 14, we have that 0,, 5 6* with respect to the L?(Px, X) norm.

SO, HQ* — en‘|L2(pxx) = OP(I).

First, we note that our observed data (X;,Y;) is i.i.d.

We aim to verify the second condition. We note that by Theorems 10 and 11, the population RU risk is
strongly convex and smooth in a || - ||so-ball about the minimizer 8*. We note that all 6 in this || - ||o-ball
about 6* also must lie in a || - ||2(py x)-ball about 8*. So, in a L?(Px, X)-neighborhood of 6*, we have that

Ep [Liy(0(X),Y)] = Ep [Liy (07(X),Y)] <110 = 07[|Z2(py )

We aim to verify the third condition. First, we show the following three intermediate results.

Ep [(L(h(X),Y) = L(ht(X),Y))?] S |Ih = hil[Zapy 2)- (79)
Ep [((X) = ap(X))?] < |l = af |72 (py 2 (80)
Ep [(L(MX),Y) = a(X))+ = (L(hi(X),Y) = af:(X))4)*] S 110 = 0[[Z2(py x)- (81)

(79) can be shown by apply Lemma 31.
Ep [(L(h(X),Y) = L(h$(X),Y))?] = Ep [L(X,Y)? - (W(X) — ht-(X))?]
=Epy [Epy [LIX,Y)? - (R(X) = hi(X))* | X = z]]
< SHEEPYW [L(x,Y)? | X =] - [|h = hitllZ2(py )

fAS

= ||h — hf“”%"’(Px,X)'

=

—
Qo
=)

=

(80) is true by definition. So, we proceed to show (81). We use (79
Ep [(L(MX),Y) = a(X))+ = (L(hi(X),Y) = af (X))4)?
<Ep [(L(MX),Y) — a(X)) = (L(A1(X),Y) = af (X))
=Ep [(L(MX),Y) = L(~1(X),Y)) — ((X) — o (X))
< 2Ep [(L(h(X),Y) = L(h{(X),Y))*] + 2Ep [(a(X) — af(X))?]
S b= hpl122pye vy + lla = a2 (py 2

=10 — 9*||%Q(PX,X)'
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Now, we consider 0 € B, where

BE = {9 S @n ‘ ‘|9—9*||L2(va_x) < 6}.

We aim to show that Varp [Lyy(0(X),Y) — Ly (6*(X),Y)] < €2 when ||0 — 6*||12(py,x) < €.
Varp [Lpy(0(X),Y) = Ly (0°(X), V)]
< Ep [(Lhy(0(X),Y) = Ly (07(X), Y))?]
< 3Ep [(L(H(X), Y) = L(E(X), )] +3Ep [(a(X) — af (X))?]
+3Ep [(L(h(X),Y) — a(X))+ — (L(h{(X),Y) = o (X))+)?]
S NP = hillZepy 2y +lla = afllZa g ) + 10 = 0772 (py 2
SN0 = 0711Z(py 2

The second line comes from the Cauchy-Schwarz inequality and the second last line comes from (79), (80),
and (81). This prove the third condition.
Finally, we verify the fourth condition. We consider 8 € Bs, where

Bs = {0 €0, | |0 —0"[|72(py x) < 0}

Using a similar argument as in the previous condition, we apply Lemma 31.

Ly (0(2). ) — Lho (0" @).9)| S |L(@,y) - (h(z) — h*(@)| + |a(z) — a* () (2)
< Eo 16— ] (83)
< \L(,y)l- 110 - 0°1135, (84)
S |L(oy)| 110 - 01570, 2 (85)

Since Assumption 5 holds, we can apply Lemma 30 to see that for § € O, ||0]|oc < ||9||2’;J(’; where X is the
Lebesgue measure. This gives (84). Under Assumption 7,110 =02y, x) X |10 —0'[|L2(), which gives (85).
Therefore, the fourth condition holds with s = 2p+d and U(X;,Y;) = |L(X;,Y;)|- So, by Theorem 29, we

have that [|0,, — 0*||12(py,x) = Op(max{d,,infoco, |[0 — 0"||L2(Px,x)})-
Let F, = {Liy(0(X:),Ys) = Ly (07 (X0), Vi) < |0 =07 || 22 Py x) < 0,0 € ©n}. Let Hy(w, Fu, ||| £2(py 1))
be the L?(Px, X)-metric entropy with bracketing of the class F,.
Since in our setting, we satisfy the fourth condition of Theorem 29 with s =

2p
2p+d>’
d
Hy(w, Fo, || - ||2) < log N(w' 35, 0,, || - |12 (py x))-

Recall that ©,, is the sieve space without truncation. We note that the covering number of ©,, is upper
bounded by the covering number of ©,,, so we have that

d  ~
H[](w’fn’ || ’ HQ) < IOgN(’LUH_?P,@n, || ’ ||L2(PX7X))'

For the finite-dimensional linear sieves, such as those in Example 2 and 3 without truncation, we have
that

4 ~ = 1
10gN(w1+2p7@n, H . HLQ(Px,X)) 5 dlm(@n) log(a)

from Van de Geer and van de Geer [2000]. Then, we have that

1 L A 1 /dim(©,), 1
s [ AN E 1 i € 5 PO 105
We realize that
5 = dim(©,,) logn
"N e
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We note that ©,, = H,, x A,. We have that dim(0,,) = 2J% = O(J%). Plugging this in, we have that

5, = /J,‘flogn'
n

Now, we can bound the approximation error infoee, ||0* —0||12(py,x). Since the truncation of the sieve space
is a contraction map to the true minimizer, we have that

0 107 bl ) < inf (16 =)l < OL7),

n

where the last inequality follows from Timan [2014]. So, we can set J,, = (= )ﬁ Thus, we have that

logn
||é o G*HLQ(PXJ() — OP((loin) 2p+d)'
dQx (=)

Finally, we can also show that for Q x < Px, if sup,cx dPx (1) < C for some C' < 0o, then the same rate
of convergence holds. We have that

16 = 0%ll12@.2) = (B [(0u(@) — 0°(2))%] )

= (EPX [(én(x) — 0 (@))*- ZS);((?)} >%
< (Br [0 -0 @] ) (s | 2D’

= Hén - 0*||L2(QX,X) : \/5
o (117)),

D Proofs of Technical Lemmas

D.1 Proof of Lemma 3

Let h* € L*(Qx, X) be the solution to (7). Let the function A be minimizer of (13) at every z. Since h
solves (13) for every x € supp(Qx),

sup  Egy [L(B(X),Y) | X = az} < sup By [LO(X),Y) | X =a].
QEeSr(P,Qx) QEeSr(P,Qx)

Given any marginal distribution @ x, we can marginalize over X to see that

EQX

s Egy, [L(M(X),Y) | X|| <Eqy |  sup Egylx[uh*(m,ynx:x]].
Qy|x:Q€eSr(P) Qy|x:Q€eSr(P)

Based on our definition of Sr(P,Qx), we note that for any h € L?(Qx, X)
sup  Eqg[L(h(X),Y)] =Eq, sup EqQ, x [L(M(X),Y) | X]| .
QEeSr(P,Qx) Qy | x:QESr(P,Qx)

Thus, we have that

sup B [L(H(X),Y)| < sup  Eo[L(h(X),Y)].
QEeSr(P,Qx) QEeSr(P,Qx)

Finally, by definition of h* we must also have that

s Eq[L("(X),Y)] < swp  Eq[L(h(X),Y)].
QeSr(P,Qx) QeSr(P,Qx)

These last two inequalities yield the desired equivalence.

41



D.2 Proof of Lemma 4

Let T be any set with nonzero measure with respect to @ x. Then 7 must also have nonzero measure with
respect to Py because Qx < Px. Since h solves (13) for every = € supp(Px), we have that

sip  Bgy [L(X)Y) | XeT| < sup  Egy [L((X)Y)| X €T]
Qv |x:QEST(P,Qx) Qv |x:QESr(P,Qx)

for any h € L?(Qx,X) and any set 7 with nonzero measure with respect to Qx. This is sufficient to show
that h} is a solution to (7) for any Qx < Px.

D.3 Proof of Lemma 20

We note that the eigenvalues of a 2x2 matrix must satisfy
A — (tr A)A + det A = 0.

Since tr A > 0 and det A > 0, the minimum eigenvalue is given by So,

trA— /(trA)? —4det A
)\min(A) = B .

Let = tr A and y = /(tr A)2 — 4det A. Note that y < z because det A > 0. Then we have that

Nnin(A) = Ty 2 — o2 > 2 —y? _ 2 —y? _ detA'
2 20z +y) ~ 2x+x) 4z tr A
In addition, we have that
A1113‘)((14) = x;y < x;—x =z =trA.

D.4 Proof of Lemma 21

Since H is Gateaux differentiable with derivative equal to H ,’La, we aim to show that, for any h, h,a,a,
(Hj, o (hya) — H}, (0,0), (h—h,a—a)) >0

to establish strict convexity. Without loss of generality, we assume that (iL, @) = (0,0). Define the Gateaux
derivative of F' and G in (h,a) to be F,;w G;La’ respectively. Let the Gateaux derivative of G with respect
to h be G},. We have that

<H}/L,a<h’ a) - Hllz,a(oa O)? (h’ a)> = <F,§7a(h, a) + G;z,a(hv a) - F}/L,a(07 0) - ?ua(ov O)’ (h7 a)>
= <Fi/z,a(hv a) - Filz,a(ov 0)7 (ha a)> + <G;z(hv a) - G;’L((J? O)a h>

Note that G does not depend on «a, so the Géateaux derivative is G, (h, «) = G.,(0,0) = 0. Since F is jointly
convex in (h, ) and G is strongly convex in h and does not depend on «, both terms above are nonnegative.
If h #£ 0, then we have that

<H;L,a(h’ Oé) - Hl/z,a(07 0)7 (h’a O{)> > <G/h(h7 Oé) - G/h(07 0)7 h’)
> pu|R|f* > 0,

where the last line follows follows from G’s strong convexity in h. If h = 0 and «a # 0, then we have that

<H}/L,O[(h7 a) - H}/z,a(o’ O)’ (ha a)> = <Hllz7a(07 a) - H}/L,Oé(o’ 0)7 (07 a))
= <Fi/L,a(07 a) - F]{L,Ot(()’ 0)7 (Oa a)>
>0,

where the last inequality follows due to the strict convexity of F in «. Thus, H is strictly convex in (h, ).
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D.5 Proof of Lemma 22

We have that 7% ,(c) = —Ep, ,_, [('(Y —¢)]. In addition, 775 (c) = Ep,_, [("(Y —¢)]. So, T1, is twice
differentiable in c. In addition, we realize that

Ep [Lyu, (MX),Y)] =Epy [Epy ., [Lrua(h(X),Y)]]
=T 'Ep, [Tx1(h(X))].

D.6 Proof of Lemma 23

First, we compute the first derivatives of T3 ;(c, d). Second, we compute the second derivatives of T3 ,(c, d)
when d > 0. Finally, we show that T3 ; can be used to express Ep [LEU,?,(h(X), a(X),Y)].
Computing derivatives for the d < 0 case is straightforward. When d < 0, we have that

TISC,:E(C7 d) = _EPY|X [E/(Y - C) ‘ X = ‘T]
Ty (c,d) = —1.

Now, we consider the d > 0 case. To compute the derivatives of
T3 .(c,d) = Ep, y (LY —¢) = d)IU(Y —¢) >d) | X = 1],

we first identify when the condition ¢(Y —¢) > d is satisfied. The strong convexity of ¢ given by Assumption
2 implies that ¢ is strictly increasing on y > 0 and ¢ is strictly decreasing on y < 0. We define 61_1 to be the
inverse of £(y) on y > 0. We define £; ! to be the inverse of £(y) on y < 0. By the Inverse Function Theorem,

we have that
1 1

(; ) (2) = W

We note that ¢7'(z) > 0, and £(y) strictly increasing on y > 0, so £/(£7'(2)) > 0. By (86), we have that
(¢71)(2) > 0. This means that ¢;! is strictly increasing on its domain. By an analogous argument, we have
that (¢;1)(2) < 0 and £; ' is strictly decreasing on its domain.

Based on the results above, we realize that for d > 0,

i=1,2. (86)

{yeRly-—o>df={yeR|y—c> L (A}U{yeR]|y—c< 1 (d)
Thus, we can rewrite 15 ;(c, d) for d > 0 as follows
Ts4(c,d) = Ey|x=; [(L(Y =) = IY — e > {7(d)] + Eyjx= [(L(Y =) = DIY —c < £ (d))] .
Now, we can compute the derivatives of T3 ;(c,d) on d > 0 as follows.

Ty (c,d) =Epy  [-1- 1Y —c) > d) | X =z
=Epy x_, [-1- 1Y —c> 671 (d)] +Epy  [-1- 1Y —c < £3(d)) | X = 2]
= —Pr(Y>c+/0d) | X =2) —Pr(Y <c+6,5d) | X =)
= —1+ Pyx=a(c+£(d) = Pyix=a(c+ 5 (d)).

Another way to express Tg , = —Pr({(Y —¢) > d|X = z).
We realize that

lim T¢ (c,d) = =14 Py|x—yz(—¢) — Pyx—p(—c) = =1 = lim T¢ (c,d),
Jim T3, (c, d) + Py|x=2(—¢) = Py|x=s(—0) Jm T5,(c,d)

so T3 ;(c, d) is differentiable at d = 0. Also,

T3 . (c,d) = —Ep, (Y —)I({(Y —c) >d) | X = x]
= —Ep, [((Y —¢) Y —c>(71(d)] —Ey|x—y [('(Y —¢) Y —c < l;'(d) | X = z]
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We realize that
lim 75, (c,d) = —Ep, (Y —c)| X =2 = lim T5 ,(c,d),
d—0+ ? d—0— ’

so T3 ;(c,d) is differentiable with respect to c.
Second, we compute the second derivatives of T5 ,(c,d) when d > 0. It is straightforward to see that

T3 (¢,d) = py|x=a(c+ €' (d)) = py|x=a(c + {3 ' (d)).
In addition, we have that

1 1

el =prixesle G5O gy ~prixesle 610D gy
1
= R (1)) R———
ie%;}py'x D) @)

The second line follows because ({3 ' (y)) < 0. Finally, we compute T5% (c, d). First, we recall T ,(c, d) from
Lemma 23 and simplify it as follows.

T5 ,(c,d) = —Ep,  [('(Y = )L(U(Y = ¢) > d) | X = ]
=—Epy [('(Y =LY > 67 (d)+¢) | X =z] —Ep,, [('(Y = )I(Y < £;(d) +¢) | X = z]

oo (d)+c
_ / Oy — py xms(y)dy — / C(y - py xms (y)dy
7 (d)+c —00

oo (5 (d)
= —/ ( )f’(y)pnxzx(y + c)dy — / U (Y)py | x=2(y + c)dy.
i (d —o

Now, we compute T5¢ (¢, d) by differentiating with respect to ¢ and applying integration by parts.

oo Y/ 1(d)
TS (e, d) = /@ WPy x5 + )y — / @)Wy + )y

1 — 00

S [ prixey s )
4

6D S

05 (d) ') ,
<[ el + O )dy)

— 00 — 00

(5/ Y)py | x=2(y + )

- (ﬂ’(y)pwx:z(y +¢)

oo

= U @D py i (@) )+ [ g PN+ O @)y

251 (d)
- él(egl(d))pwx:m(gz_l(d) +c) + / Py x=2(y + )" (y)dy

— 00
(oo}

(T (d)py | x =2 (67 (d) +¢) + /+Zl(d) Py|x=2 (W)l (y — c)dy

e+t (d)
(5 )Py xma (6 (d) + ) + / Py ix—e ()0 (y — €)dy

— 00

ST pyx=a(tH(d) + ) + Epy [V = )IU(Y —¢) >d) | X = a].
ie{1,2}

Thus, when d > 0, T3 (¢, d) is twice differentiable in (¢, d).
Lastly, we find that

Ep [LEU,Zi(h(X)r a(X), Y)]
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= =T71)-Ep[(((Y - h(X)) - a(X

N—
N—
ul

= (T =T7Y) - Epy [Ep, , [0V~ h(X)) — a(X)); | X]]
_r-r.E {EHXKKYMXDQMWMKYMXD>MXM a(X) >0
_ .

Ery .y (Y = h(X)) — a(X)) o(X) <0

= (L =T HEpy [Ts.x (h(X), u(X))].

D.7 Proof of Lemma 24

Now, define a symmetric 2 x 2 matrix A, (c,d) where

Az 1i(e,d) = Té‘:‘fc(c, d) — Ele:w [("(Y — ) I(4(Y —¢) > d)] + Cri-Pr(d(Y —c)>d| X =)
Az 20 (c,d) = ng (c,d)
Az,l? (Cv d) = T?ii,cz (C7 d)v

where F is the distribution over /(Y — c) where Y follows Py|x—,. Under Assumption 2, we have that £ is
Cy -strongly convex, so

By x=s [("(Y = )I(l(Y —¢) > d)] = Cp; - Pr(f(Y —¢) > d|X =x) > 0.

Thus, we have that

Pl ) = [P 00 =0 =CLOO > ] 0
_ [ny_w ('Y =) I(l(Y —¢) >d)] = Cr;Pr({(Y —¢)>d| X =x) 0
0 0
=0
So,
V2T, (c,d) = Au(c,d). (87)

We can also define a symmetric 2 X 2 matrix B, (c,d) where
BZL’,ll(C7 d) = Tg";(c, d) + IEy|X:r [@”(Y — C)H([(Y - C) S d)]
Bw,22 (C7 d) = ng:r(ca d)
Bw,lQ(ca d) = T;;(C, d)
Under Assumption 2, we have that ¢ is strongly convex, so
Ey|x=s [l"(Y = c)I(l(Y —¢) < d)] > Cpy - Pr(l(Y —¢) < d|X =) > 0.
Thus, we have that

Eyx—s [("(Y = )IU(Y —¢) <d)] 0

B.(c,d) — VT3 . (c,d) = 0 0

= 0.

So,
V2T ,(c,d) < By(c,d). (88)

Combining (87) and (88) yields the desired result.
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D.8 Proof of Lemma 25

Let L(h,a) = Ep [Liy(h(X),(X),Y)]. First, we verify Gateaux differentiability with respect to a. We
show that the directional derivative of L(h, a) with respect to « in the direction ¢ exists for all ¢ € L?(Px, X).
We note that the directional derivative with respect to a in the direction ¢ is given by

L(h, o0+ 6¢) — L(h, o)

L (hya; ) = li :
ol a5 ¢) = lim 9

We simplify the numerator as follows
L(h,a+6¢) — L(h,«)
=Ep [Lrua((a+00)(X))] +Ep [Liy s(h(X), (a +09)(X),Y)]
—Ep [LEU,z(a(Xm —Ep [L£U73(h(X),a(X),Y)]
=0(1-T7) Ep, [¢(X)] + (L = T71) - Epy [Ta,x (h(X), (@ + 06) (X)) — Tz, x (h(X), (X)) -
The first line follows because only the second and third term of the RU loss depend on «. The second line

follows by Lemma 23. We analyze the second term on the right side of the above equation. We note that by
Lemma 23, the map T3 ,(c, d) is differentiable with respect to ¢, d. So,

i Tralh(z), (@) + 06(2)) = Ty (h(a), a())
0—0+ 0

= T3, (h(z), a(x))o().

Therefore, we have that

Lo(hyai¢) = lim (1-T71). w
Epy [To.x (h(X), a(x) + 06(X)) — Ty x (h(X), a(X))]

lim (I — T !
+ plim, ( ) 7

=(1-T7Y - Epy [¢(X)]+ T =T71) - Ep, [T5x (A(X), a(X))$(X)]
=Ep, (1 =T+ @ =T T x (h(X), (X)) - (X)] -

Since the directional derivative of L(h,«) with respect to o and in the direction ¢ exists for all ¢ € A, then
L(h,a) is Gateaux differentiable in a.

We use a similar technique to verify Géateaux differentiability with respect to h. We show that the
directional derivative of L(h,«a) with respect to h in the direction 1 exists for ¢ € H. We recall that the
directional derivative of L(h,a) with respect to h in the direction % is given by

L (h o) = lim 2R H000) = L(hya)

0—0t 0 ' (89)

We simplify the directional derivative in (89) as follows.

L(h+ 6y, a) — L(h, )

Ly (h,a;¢) = lim

_ ?E_;OELE,U,l((h + ZWX), Y) — Liy 1 (M(X),Y)]
+ Jim, Ep [Liy 3((h -?— 0¢)(X), a(X)é Y) — Liyy 3 (A(X), a(X), V)]
— lm Epy [T1.x (W(X) + 919&(X)) — T x(M(X))]
Epy [T5 x (M(X) + 0¢(X), (X)) = Ts x (M(X), a(X))]

lim (T —T!
+ i, ( ) 7

=Epy [(071 T7 x (W(X)) + (0 = T71) - T3 x (A(X), (X)) - (X)] -
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The first line follows because only the first and third terms of the RU loss depend on h. The second line
follows because of Lemma 22 and Lemma 23. The third line follows from the differentiability of T} ., 75,
which is given by Lemmas 22 and 23. Since the directional derivative of L(h,a) with respect to h and in
the direction v exists for all 1) € L?(Px, X), and the directional derivative can be expressed as a continuous
linear function (given the inner product on L?(Px, X)), then L(h, ) is Gateaux differentiable in h.

We can compute second derivatives of L(h,a) on C by applying Lemma 22 and Lemma 23. Note that
Ts . is twice-differentiable when d > 0. For (h,a) € C, we have that a(z) > 0. We note that the restriction
of C to the coordinate that corresponds to h is L?(Px,X). Let A’ be the resitrction of C to the coordinate
that corresponds to a. In the following result, we consider 11,1 € L*(Px,X) and ¢1,¢2 € A’. We find
that

(B o b1, ) = LY 4 (hy o ap1, o) + L3y (hy a5 901, 12)

=" Ep, [TF5% (M) (X)¢2(X)] + (L = T HEp, [T5% (M(X), a(X))¢1 (X)2(X)] -
/}Za(ha Q; 1#1, ¢1) = g,h(x(h’a Q; wh ¢1)
= (0 =T HEp, [T5% (h(X), a(X))¢h1 (X)é1(X)] -
Lga(h) a; ¢1a ¢2) = Lg,aa(ha ;g ¢17 ¢2)
= (0 =T HEp, [T5% (h(X), a(X))¢1 (X)d2(X)] -

D.9 Proof of Lemma 26

Define Ly (h,o) =Ep [LgUyl(h(X)7 Y)]. From Lemma 25, we have that Ly (h, ) is twice Gateaux differen-
tiable in h with

Tn(hyas9,9) = T Epy [TE5% (M(X)) - (¥(X))?].
>T71 Crallvllie i, pyy
for ¢ € L?(Px,X). The last line follows from Assumption 2, where we assume that £ is strongly convex.

Thus, we have that Ep [Liy, (h(X),Y)] is T=! - Cp -strongly convex in h.

D.10 Proof of Lemma 27

Let Lg(h,a) = Ep [L£U73(h(X),a(X),Y)} . By Lemma 25, we have that Ep [L£U73(h(X),a(X),Y)} is
Gateaux differentiable in o with

Ly o(h,a;0) = (T =T71) - Ex [T5 x (h(X), a(X)) - 6(X)] -

We aim to verify the strict convexity of a — Ep [Lyy 3(h(X),a(X),Y)] via Lemma 27. So, we must
show that for a1, as € A that differ on a set of positive measure, we have that

Epy [(T5x (M(X), 01(X)) = T3 x (h(X), 02(X)) - (a1(X) = a(X))] > 0.

From Lemma 23, we have that

d ZT), T a\T
T8 (h(e), ale)) = {ts,m( ).a(@) a(@)>0

where
t . (h(2), a(x)) = =1+ Py|x—s(h(z) + ;' (a(x))) = Py|x=o(h(z) + £ " (a(x))).

By the definition of 61_1,62_1 from Lemma 23, we have that
0 (al2) > 6 (a(2)).
Under Assumption 3, we have that Py |x—, is strictly increasing, so

Py x4 (h(z) + 67 (a(2))) = Pyix=o(h(z) + £ ' (a(2))) > 0,
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which implies that

tg’w(h(x),oz(x)) > —1. (90)
Under Assumption 2, E;l is strictly increasing and £5 !is strictly decreasing. We realize that if oy (z) > ago(z),
then

Pyix—a (h(2) + 67 (01(2)) > Pyixa (h(2) + 67 (02(2)))

Py (h(2) + 657 (01(2))) < Py x—a(h(z) + 65 (02(2)),
t5 .2 (h(2), a1 (2)) > 15 . (h(@), az(z)). (91)

Let D ={z € X | a1(x) # az(z)}. Now, we compute

Epy [(T5 x (h(X), 01(X)) = T5 x (h(X), 02(X)) - (a1 (X) = a2(X))] (92a
= Ep, [(T5x (h(X), 01(X)) = T5 x (M(X), a2(X)) - (a1(X) — aa(X))(D)] (92b
=Ep, [((t5,x (h(X), a1 (X)) — 1§ x (h(X), a2(X))) - (a1(X) — @2(X)) - I(Sa,0 N Saz0 N D) (92¢
+Epy [(t5 x (h(X), 01(X)) + 1)(@1(X) = a2(X)) - I(Sa,,0 N S5, 0 N D)] (92d
+Epy [(=1 =15 x (A(X), 02(X)))(@1(X) = a2(X)) - 1(S5, o N Saz0 N D)] - (92e
The first line holds because (T4, (h(z), o1 (z)) — T37m(h(x),a2(x)) - (a1(x) — az(z)) = 0 on D°. The decom-
position into (92c), (92d), (92¢) holds because Ty, (h(x), o1 (z)) — T, (h(x), a2(x) = 0 when a4 (z) < 0 and
" (gnfeov've have that a1, ag € A and D has positive measure, we can show that P(Sg, (NS5, ¢ND) < P(D).

We consider two cases 1) Sy, 0N D has positive measure and 2) Sy, ¢N.D = (). Suppose Sy, 0N D has positive
measure, then clearly

SH

CAD
/\/—\
_ o D T

P(S5, 0N Sa, 0N D) < P(S;, ND) < P(D).
If Say,0 N D empty, this means that a;(x) < 0 for all z € D. At the same time, we have that for all a € A,

a(x) > 0 for every & € X. So, we must have that a; = 0 on D. We must have that as(z) > 0 on D, because
aq, a must differ on D and aq(z) > 0 for all x € X. So, this means that S,, 0 N D has positive measure, so

P(S5, 0N Sa,0ND) < P(S5, 0N D) < P(D).

So, at least at least one of the sets Sa, 0N Sa,,0N D, Say,0MNSs, 0N D, S, 0MNSay,0N D has positive measure.

Suppose Sa,,0 N Say,0 N D has positive measure. ' WLOG, if ai(z) > az(x), then T§  (h(z),0n(z) —
Tg . (h(z),2(x)) > 0. In addition, if o1 (z) < az(z), then T§  (h(x), a1 (z) — T4, (h(x), az(x)) < 0. Then
(92c) must be positive. We can use a similar argument to verify that (92d) will be positive if Sa, 0NS§, 0N D
has positive measure and (92e) will be positive if S5, ;M Sa, 0 has positive measure. Thus, we conclude that

Epy [(T5 x (h(X), 01(X)) = T5 x (h(X), 02(X)) - (@1(X) = a2(X))] >0

s0 = Ep [Liy 5(h(X),(X),Y)] is strictly convex on A.

D.11 Proof of Lemma 28

Recall thaut~ we defined the sieve with truncation ©,, and sieve without truncation (:)m. In addition, define
Tm : © — O to be the projection of a function 6§ € © onto O .
By Lemma 5, the truncation is a contraction map to the true minimizer, so
T (67) = 07| L2y, 2y < [1Tm (07) — 07 L2(py )

Now, we verify the conditions of Lemma 18 to show that the right side of the above inequality converges to
zero as m — oo. First, we note that © is a Hilbert space (with the L?(Px, X') norm). Second, we note that

7:E-m(e*) = Z<0*7 ¢Z>¢z7
1=1

where {¢;} is an infinite-dimensional basis for ©. Since 7,,(0*) is a partial sum of the Fourier-Bessel series,
we have that 7, (0*) — 0*. This implies that |[m,,(0%) — 0*[|z2(py x), as well.
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D.12 Proof of Lemma 31
First, by the Mean Value Theorem, we have that for any z € R,
()] = 1€'(z) = €O < [¢"(2)] - |2,
where Z is between z and 0. By Assumption 4, [¢"(2)| < Cp 4, so
[€'(2)] < Cru-|2]- (93)
Again, by the Mean Value Theorem, we have that for any h € A2(X) and x € X,
|1L(h(2),y) = L(h*(2), y)| = [€(y — h(z)) = Ly — h*(2))|
=0y = (M=) - h(z) + (1 = A@)) - h*(@)] - [(w) = B* ()] A(w) € [0, 1].

We can define L(z,y) = |¢'(y — (A(z) - h(z) + (1 — XM(z)) - h*(x)))|. Now, we aim to verify that there exists
some 0 < M < oo such that -

supEp,  [L(X,Y)? | X =a] < M.

TeEX

We apply (93).

Epy x [L(2,Y) | X = 2] =Ep,  [(('(Y = (A\(x) - h(z) + (1 = M) - h*(2)) - h*(2))))* | X = ]
=Ep,  [(('(Y = (M) - h(z) + (1 = A(2)) - h* (2))) - h*(2))* | X = z]
=Ep,x [CLu (Y = (@) - h(z) + (1 = X)) - h*(2))) - h*(2))* | X = 2]
SEpy [Y2 | X = x] + h(z)? + h*(2)?

The last two lines follow from Assumption 5 and 6. Assumption 5 gives that h, h* € AZ(z), so |h(x)| < c and
|h*(x)| < c. Assumption 6 gives that sup,c x Ep, , [Y? | X = z] is finite. Thus, sup,cy Ep, , [L(X,Y)? | X =z] <
0.
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