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ABSTRACT
As automated decision making and decision assistance systems be-
come common in everyday life, research on the prevention or mit-
igation of potential harms that arise from decisions made by these
systems has proliferated. However, various research communities
have independently conceptualized these harms and proposed inter-
ventions. The result is a somewhat fractured landscape of literature
focused generally on ensuring decision-making algorithms “do the
right thing.” In this paper, we compare and discuss work across two
major subsets of this literature: algorithmic fairness, which focuses
primarily on predictive systems, and ethical decision making, which
focuses primarily on sequential decision making and planning. We
explore how each of these settings has articulated its normative con-
cerns, the viability of different techniques for these different settings,
and how ideas from each setting may have utility for the other.

ACM Reference Format:
Anonymized for Submission. 2023. Fairness and Sequential Decision Mak-
ing: Limits, Lessons, and Opportunities. In Proceedings of ACM Conference
(Conference’17). ACM, New York, NY, USA, 16 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The social and ethical implications of different technologies have
long been the object of study for scholars outside of computer sci-
ence, and recently many computer scientists have taken up this
broader agenda under a variety of names. In particular, two largely
independent communities have evolved from established fields of
computer science. The study of algorithmic fairness that has emerged
at the FAccT conference and its predecessors is heavily influenced
by the field of machine learning and focuses on predictive systems,
while the study of ethical decision making1 has attracted primar-
ily researchers from classical artificial intelligence and focuses on
sequential decision making. Nominally, these groups have similar
goals: to produce predictive or decision-making systems that “do the
right thing.” However, many key ideas from ethical decision-making
have not yet percolated into the fairness literature, and many im-
portant concepts from fair prediction are not yet common in ethical
decision making. This paper is an effort to bridge this gap.

1The term “ethical decision making” has (unsurprisingly) been used to describe a variety
of research, including symbolic planning and system verification. Here, we use it to
refer to work on ethical concerns arising from sequential decision making systems.
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Unlike predictive systems, which consider decisions indepen-
dently and one at a time (known as myopic decision making), se-
quential decision-making systems consider sequences of potential
actions, allowing them to evaluate the long-term effects of taking
a particular set of actions before they are made. Many real-world
problems, such as autonomous driving, power grid management,
wildfire fighting, military engagement, disaster relief, and inventory
logistics, both fundamentally affect people’s safety and access to
resources and require sequential reasoning as they cannot be solved
adequately via myopic decision making. However, although prob-
lems such as autonomous driving sometimes motivate the fairness
literature [87, 88, 108, 140, 166, 233, 240], fairness conceptual-
izations and methods have largely been developed for predictive
rather than sequential decision-making systems. Moreover, despite
the fairness literature’s acknowledgement of the long-term effects
and sequential nature of many high-stakes decisions [41, 62, 74,
81, 82, 107, 110, 119, 162, 172, 177, 194, 212, 213, 221], includ-
ing education and college admissions [7, 113, 182], recidivism risk
prediction [67, 167], predictive policing [54], child and homeless
welfare [75, 208], clinical trials [61], and hiring [37, 163], work on
these settings rarely engages problem formulations or approaches
developed for sequential decision making, or attempts to conceptu-
alize and address ethical concerns beyond fairness, such as those
emerging from the ethical decision making literature.

Our paper makes the following contributions. We begin by intro-
ducing a foundational and widely-used sequential decision-making
model, the Markov decision process (MDP), from which many
special-case models are derived. We cover problem formulation,
solution methods, and key assumptions and properties (§2). We then
examine how ethical concerns have been conceptualized within the
ethical decision-making and fairness literatures (§3), examine the
sequential decision-making model pipeline (§4), introduce some of
the measurements (§5) and mitigations (§6) common in the ethical
decision-making literature, and discuss some current challenges and
state-of-the-art techniques for ethical decision making.

Throughout, we offer observations following three general themes.
First, we draw comparisons between conceptualizations, measure-
ments, and mitigations proposed in the fairness and ethical decision
making literatures to highlight where insights and methods from
fairness may or may not be appropriate for ethical decision mak-
ing, and vice versa. We draw two conclusions. 1) some techniques
and methods do not or will not work and are not transferable for
fundamental reasons; 2) other concepts have potential for adoption,
and fairness researchers would benefit from considering a broader
array of solutions, including some sequential decision-making tech-
niques. Second, inspired by the fairness literature’s analyses of ma-
chine learning pipelines, we draw attention to aspects of sequential
decision-making pipelines that represent opportunities for future
analysis. We argue that fairness researchers may be uniquely posi-
tioned to study sequential decision-making systems in their native
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deployments and the accompanying sociotechnical nuance and con-
tribute to ethical decision making research. Finally, we highlight
some problem formulations and techniques developed for ethical
decision making that may offer advantages for fairness research.

2 BACKGROUND ON SEQUENTIAL
DECISION MAKING

A Markov decision process (MDP) is a general sequential decision-
making model2 that enables an agent3 to make a sequence of deci-
sions in fully observable, stochastic environments [21] and has been
used in many decision-making problems, such as search and res-
cue [99, 201], extraterrestrial exploration [91, 183], and autonomous
driving [20, 262, 263]. An MDP describes a decision-making prob-
lem using four attributes: (1) a set of states that represent different
possible scenarios, (2) a set of actions that can be performed by
the agent, (3) a transition function that gives the probability of
reaching a given state when the agent performs a particular action in
its current state, and (4) a reward function that gives the immediate
utility of performing a particular action in its current state. At each
time step the agent performs an action in a state, receives a reward
based on the reward function, and transitions to a successor state
based on the transition function. MDPs satisfy a key property, called
the Markov property, that holds that the outcome of any action
only depends on the current state. That is, the agent’s prior states
and actions do not matter. The solution to an MDP is the optimal
policy, the mapping from states actions that maximizes the value
function. The value function is defined over all states and represents
the expected cumulative reward the agent would earn if it executed
the optimal policy from each state.

Formal Definition: An MDP is a tuple, ⟨𝑆,𝐴,𝑇 , 𝑅⟩, where: 𝑆
is a finite set of states; 𝐴 is a finite set of actions; 𝑇 (𝑠, 𝑎, 𝑠 ′) is a
transition function that represents the probability of reaching state 𝑠 ′

after performing action 𝑎 in state 𝑠; and 𝑅(𝑠, 𝑎) is a reward function
that represents the immediate reward gained by performing action 𝑎

in state 𝑠. At each time step, the agent performs an action 𝑎 in a state
𝑠, experiences reward 𝑅(𝑠, 𝑎), and transitions to a successor state
𝑠 ′ with probability 𝑇 (𝑠, 𝑎, 𝑠 ′). The agent either repeats these steps
forever (infinite horizon) or until a deadline (finite horizon).

A solution to an MDP is a policy 𝜋 : 𝑆 → 𝐴, where 𝜋 (𝑠) = 𝑎

indicates that the agent should perform action 𝑎 when in state 𝑠. For
a given policy 𝜋 (𝑠), its value function 𝑉 𝜋 (𝑠) describes the value of
each state 𝑠 with respect to the policy 𝜋 (𝑠). In particular, the value
function 𝑉 𝜋 (𝑠) describes the expected cumulative reward that the
agent would earn starting in state 𝑠 and executing policy 𝜋 (𝑠), until
reaching the horizon:

𝑉 𝜋 (𝑠) = 𝑅(𝑠, 𝜋 (𝑠)) + 𝛾
∑
𝑠′∈𝑆

𝑇 (𝑠, 𝜋 (𝑠), 𝑠 ′)𝑉 (𝑠 ′).

Typically, the expected cumulative reward is discounted to balance
the value of immediate rewards with the value of future rewards:
that is, the discount factor is often 𝛾 ∈ [0, 1) in infinite horizon

2MDPs and their variants occupy the vast majority of the AI and planning literature that
uses the term “sequential decision making”.
3We use the terms “agent” (the preferred term in classical AI research) and “system” (a
more general, catchall term) interchangeably to describe collections of processes which
can take actions in the world, such as a robot. We use the term “model” to describe a
decision-making or predictive model specifically, removed from the larger system in
which it operates.

MDPs and 𝛾 = 1 in finite horizon MDPs. Along with balancing
rewards gained in the present and rewards gained in the future, a
discount factor 𝛾 < 1 provides guarantees that the value function of
an infinite horizon MDP converges to finite values. The goal of the
agent is to find the optimal policy 𝜋∗ (𝑠) that maximizes the value—
the expected cumulative reward—of each state 𝑠 until reaching the
horizon:

𝑉 ∗ (𝑠) = max
𝑎∈𝐴

[
𝑅(𝑠, 𝑎) + 𝛾

∑
𝑠′∈𝑆

𝑇 (𝑠, 𝑎, 𝑠 ′)𝑉 ∗ (𝑠 ′)
]
.

Finally, given the optimal value function 𝑉 ∗ (𝑠), the optimal policy
𝜋∗ (𝑠) can be calculated in the following way:

𝜋∗ (𝑠) = arg max
𝑎∈𝐴

𝑉 ∗ (𝑠) .

There are two main approaches to solving MDPs, depending on
whether or not the reward function and transition function of the
MDP are known. In problems in which both functions are available,
an agent can use planning methods to directly calculate an effective
policy by computing the optimal value of each state and then the op-
timal action [21]. More specifically, these methods typically involve
calculating the optimal value function and then the optimal policy
by using dynamic programming or linear programming. However, in
problems in which either or both of these functions are unavailable,
an agent can use reinforcement learning methods to gradually learn
an effective policy by performing actions and observing rewards
to estimate the optimal value of each state and then the optimal
action [235]. That is, all reinforcement learning is built upon MDPs
and their variants. In particular, these methods usually involve es-
timating the optimal value function and then the optimal policy by
interleaving greedy actions with exploratory actions.4

Example: Consider a power plant that supplies power to sev-
eral neighborhoods. The goal of the power plant is to balance three
potentially competing objectives: it must (1) supply power to each
neighborhood as cheaply as possible, (2) avoid outages, and (3) re-
duce excess power that is stored in its battery network and dissipates
gradually. Armed with the MDP framework, we can formally rep-
resent the decision-making problem of the power plant as an MDP
⟨𝑆,𝐴,𝑇 , 𝑅⟩.

In particular, suppose the plant can supply a maximum of 𝑅

kilowatts (kW) to a set of neighborhoods 𝑁 where each neigh-
borhood 𝑁𝑖 demands 𝐷𝑖 kW. The plant incurs a cost of 𝐶 ≥ 0
per kW generated and charges each neighborhood a price 𝑃 ≥ 𝐶

per kW. It also incurs a cost 𝐸 ∝ 𝑅 − 𝐷 for generating excess
power. We assume the power plant either meets all or none of
the power demand 𝐷𝑖 kW for a given neighborhood 𝑁𝑖 : that is,
the plant supplies either 𝐷𝑖 or 0 kW to neighborhood 𝑁𝑖 . Thus,
our set of states 𝑆 = 𝐸 × 𝑃 × 𝐷1 × · · · × 𝐷 |𝑁 | × 𝐹1 · · · × 𝐹 |𝑁 |
where 𝑃 = {LOW, NORMAL, HIGH} is the current price of power,
𝐷𝑖 is the current power demand for the neighborhood 𝑁𝑖 , and
𝐹𝑖 = {FULFILLED, UNFULFILLED} is the current fulfillment sta-
tus of the neighborhood 𝑁𝑖 , reflecting whether or not the current
power demand 𝐷𝑖 is met.

4Although we do not discuss many solution methods in this work, many, such as
value iteration [21], RTDP [19], Monte Carlo tree search [44], Q-learning [256], and
SARSA [56] have proven to be effective across a variety of applications, including
Atari [179], chess [226], and StarCraft [250].
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The plant has two ways to control load: it can increase or decrease
the price 𝑃 in order to keep total demand 𝐷 = 𝐷1 + 𝐷2 + · · · + 𝐷 |𝑁 |
close to, but below, the maximum rate 𝑅. However, if 𝐷 > 𝑅, the
power plant can also terminate supply to neighborhoods 𝑁 ⊂ 𝑁 . The
set of actions is thus 𝐴 = {⊕, ⊖} × P(𝑁 ), where ⊕ and ⊖ increase
and decrease the current price of power 𝑃 and the powerset P(𝑁 ) is
every combination of neighborhoods for which power can be shut
down.

The transition function 𝑇 (𝑠, 𝑎, 𝑠 ′) represents how the probability
of the power demand of each neighborhood varies with the current
price of power. The reward function 𝑅(𝑠, 𝑎) represents the relative
cost of service interruptions, charging a price of power higher than
the cost of power generation, and having to store excess power in
a battery network. A non-myopic model like an MDP is obviously
preferable to a classifier in this decision-making scenario since the
outcome of a given action has both some uncertainty as well as some
impact on possible subsequent actions.

Frontiers of Sequential Decision Making: A substantial body
of work focuses on solving MDPs efficiently given that the computa-
tional complexity of solving them “blows up” with the size of their
states and actions. This problem is colloquially referred to as the
curse of dimensionality in AI literature. To provide some background,
we highlight three common approaches to solving MDPs approxi-
mately. Approximate programs estimate the optimal value function
and then calculate the optimal policy for that estimated optimal
value function by using approximate forms of dynamic program-
ming [27, 204] or linear programming [103, 171, 200, 203]. Replan-
ning methods generate a policy for a subset of states (called a partial
policy) and then generate a new partial policy whenever a state is en-
countered for which the partial policy is undefined [202, 230, 267],
enabling the solver to reason only about the most likely states. Fi-
nally, abstraction methods build an abstracted MDP to reduce the
size of its state and action spaces and then solve for the optimal policy
of the abstracted MDP [34, 70, 85, 96, 158, 188, 189, 211, 216, 268],
retaining relevant details and condensing those less important. In
practice, approximate MDP solvers may employ various combina-
tions of these approaches.

In addition to work on solving MDPs efficiently, there are many
MDP extensions that can represent different classes of decision-
making problems. Here we focus on MDPs, a model for decision-
making problems in which the current state can be directly observed.
However, there are many decision-making models with different
forms of expressiveness for decision-making problems with different
properties. For example, for problems in which the current state is
not directly observed by the agent, requiring the agent to manage a
belief over the current state, we can use a partially observable MDP
(POMDP) [130]. For problems in which the agent must find the
shortest path from a start state to a goal state, we can use a stochastic
shortest path problem (SSP) [145]. For problems in which multiple,
decentralized agents must coordinate, we can use a decentralized
MDP (DecMDP) [25]. There are many other MDP flavors, but they
also suffer from the curse of dimensionality, often so much so that
they require specialized approaches to solve efficiently.

Fairness in Sequential Decision-Making Systems: Recently,
there have been arguments for using MDPs to model decisions tradi-
tionally handled by supervised learning [113, 272]. However, there

are relatively few efforts at producing fairness definitions consis-
tent with the definition of an MDP, such as Wen et al. [258], who
use constrained MDPs to express fairness constraints for a subclass
of MDPs with separable reward and transition functions. Here, ex-
pected reward (value) plays an analogous role to the loss function
in supervised learning. Some surveys also highlight the temporal
nature of the many decisions AI systems make, but focus primarily
on allocative tasks, stopping short of expanding these problems to
encompass the types of sequential decision-making models most
often deployed by embodied AI systems [274].

One class of MDPs that is relatively well-studied, however, is the
multi-armed bandit problem [40]. In this problem there is a set of
arms (actions), each yielding a different reward according to an un-
known distribution. The objective is to determine the arm to pull that
maximizes expected cumulative reward. Formally, the multi-armed
bandit problem is a class of MDPs in which the agent performs a
single action instead of a sequence of actions. Here, recent work
has offered models and algorithms for introducing different notions
of fairness [175]. Joseph et al. [126, 127, 128] initiated this line
of research by introducing a meritocratic definition of fairness that
ensures that a better arm is always favored over a worse arm despite
uncertainty over each arm’s expected reward. Then, extending this
work to each arm’s reward distribution instead of its expected re-
ward, Liu et al. [164] offered a method for ensuring that two arms
are pulled roughly the same number of times if they satisfy a no-
tion of similarity based on these reward distributions. Moreover, in
the context of fairness constraints, there has been a range of meth-
ods for ensuring that each arm is selected a minimum number of
times [57, 58, 64, 157, 197]. Finally, as a way to reason about group
fairness, Schumann et al. [220] offered a method for partitioning
the arms into different sensitive groups based on protected features,
such as race, age, and socio-economic status, that are in turn picked
from according to a given definition of fairness. However, while
these works examine fairness in the context of multi-armed bandits
and have led to encouraging results, it remains challenging to extend
these ideas to MDPs because MDPs are a strict generalization of
multi-armed bandits in which the agent must optimize over a se-
quence of actions instead of a single action, and each action affects
state transitions.

3 CONCEPTUALIZATIONS
In this section, we briefly examine how the fairness and ethical
decision-making literatures have conceptualized their work. Fairness
is an essentially contested construct [120, 123], and fairness in pre-
dictive systems, though generally centered on unequal exposure of
certain people to potential system failures, has been conceptualized
in a variety of ways, among them individual and group fairness.
Individual fairness requires that similar individuals be treated sim-
ilarly [76], whereas group fairness requires that different groups
be treated similarly. As Jacobs and Wallach [123] explain, debates
about individual versus group fairness, as well as debates about the
right definitions of individual and group fairness, reflect an array of
“different theoretical understandings” of what constitutes fairness.
For example, some definitions of group fairness reflect concerns that
predicted scores should have the same meaning for people from dif-
ferent demographic groups, while others reflect concerns that errors

3
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experienced by people of different groups should be comparable
[123].

Despite these differences and the substantial debate they have
engendered, conceptualizations of algorithmic fairness reflect some
general patterns. For example, most fairness operationalizations for-
mally represent only decision subjects; other stakeholders impacted
by system predictions, such as business owners trying to make hir-
ing decisions or the dependents of someone eligible for parole, are
rarely represented. Much of the fairness literature has focused on
settings where systems might withhold resources or opportunities
from some people, such as recidivism [12], hiring [163, 217], and
education [113, 173, 182], rather than settings where systems might
represent some people unfavorably.56 These focuses reflect, as Hoff-
mann [116] writes, “liberal anti-discrimination discourses in the law,
which have historically sought to address injustices in the distribu-
tion and exercise of important rights, opportunities, and resources
in domains like voting, housing, and employment.” In addition to
anti-discrimination law, conceptualizations of fairness often draw
on political philosophy, particularly theories of distributive justice
[30, 114, 135]. Critiques of the fairness literature have observed
that it may leave assumptions about what constitutes fairness unex-
amined [123], treat fairness as a self-evidently appropriate framing
[23], or place too much faith in a fairness framing’s ability to address
structural concerns [116]. Work addressing the ethical implications
of predictive systems from perspectives other than fairness has also
emerged, including analyses of systems’ underlying logics and so-
ciohistorical contexts [232], how systems reproduce power relations
[139, 180], the values and incentives of the disciplines producing
systems (e.g., machine learning) [32], and the labor upon which
systems rely [122].

By contrast, within the ethical decision-making literature, con-
cerns about system outputs manifest from two distinct scenarios.
First, how might a sequential decision-making system cause harm
due to an inadequate decision-making model? For example, if the
decision-making model from §2 had only two options for price,
HIGH and LOW, customers may be charged more than necessary
in scenarios where the optimal action is to set the price to NOR-
MAL instead of HIGH, since the decision-making model does not
recognize this as a possibility. Similarly, if the number of neigh-
borhoods used to model an area decreases, then some people may
be left without power even when not strictly necessary since the
agent cannot make more fine-grained decisions. Note that the fix for
both of these examples is to make a more complex, and therefore
more expensive, decision-making model. Second, how should the
system behave when faced with a decision for which there is no
obviously good outcome, or a high degree of risk? For example, if
the power management agent must cut power to a neighborhood,
how should it decide which neighborhood to cut? Some of the first
ethical decision-making proof-of-concept systems were focused on
military applications where there was potential for lethal use of
force [13–15]. This application provides a context of rules for the
moral conduct of warfare, studied extensively by ethicists and moral

5Barocas et al. [17] and Crawford [66] refer to these as allocative and representational
harms, respectively.
6This is not to say, of course, that there has not been ample work examining the latter,
for example Sweeney [238] on discrimination in online ads and Noble [193] on search
engines’ reproduction of racial and gender stereotypes.

philosophers, which influence the way many scholars view ethical
decision making today.

Ethical decision-making systems are considered ethical when
their behavior aligns with a set of rules for acting, either learned
or prescribed. These sets of rules are devised under the assumption
that systems which follow those rules will minimize harm. This con-
ceptualization sits in stark contrast to that of the fairness literature,
where many fairness definitions are expressed in terms of relative
failure rates or unevenly distributed system error.7 In some sense,
strict adherence to a set of rules for acting sets a much higher stan-
dard for agent behavior, though in practice expressive, effective, and
general rule sets are exceedingly difficult to generate. Justification
for this strategy often comes from moral philosophy, where ethical
theories are broadly understood to provide such rules for acting. Sev-
eral major ethical theories have been used to motivate autonomous
systems where an agent is, morally speaking, required, permitted, or
prohibited from taking specific actions in specific states depending
on whether that action in that scenario violates the rules of the eth-
ical theory. These theories include Act Utilitarianism [9, 100, 143],
Kantianism [117, 206, 259], Virtue Ethics [148, 190, 236], Norm-
based systems [89, 134], The Veil of Ignorance [156, 186], Divine
Command Theory [42], The Golden Rule [186], and Prima Facie
Duties [10, 236] among others. In addition to these applied works,
there have been many more theoretical pieces examining when and
why particular ethical frameworks ought to be used [83, 98, 115,
161, 198, 205, 206, 247, 266, 278]. However, these systems are still
largely imagined, and we are not aware of any real-world systems
yet in operation, in contrast to “fair” predictive systems which we
know operate in a variety of public settings already.

3.1) Conceptualizations of ethical behavior for sequential decision-
making systems are shaped by models’ increased capacity for
reasoning. Unlike predictive models, sequential decision-making
models allow a system to reason explicitly about the effects of its ac-
tions, including long-term consequences. Thus, sequential decision-
making systems are generally conceptualized as systems that act—
and enact change—in the world, shaping what it means for a these
systems to behave ethically. This represents a fundamentally differ-
ent perspective on a system’s role within its sociotechnical context
compared to predictive systems [5, 265]. For example, many dis-
cussions of ethical decision making focus on long-term behavior
[186, 236], whereas many conceptualizations of fairness incorporate
no notion of either a system’s future decisions or the downstream
consequences of those decisions. Recently, welfare, which gener-
ally measures holistic outcome effects, rather than error rates, has
been proposed as an alternative measure [87, 118, 131], bringing
evaluation ethea in ethical decision making and fairness slightly
closer. Specifically, framings using welfare allow detailed longitu-
dinal analyses previously scarce in fairness literature, and suggest
conceptualizations of predictive systems in their contexts of use
rather than as standalone systems.

3.2) While concerns in ethical decision making are rarely ar-
ticulated in terms of fairness, fairness may nevertheless offer a
useful lens for evaluating the outcomes of deployed sequential
decision-making systems. For example, the MDP given in §2 may

7Raji et al. [209] observe that fairness research may often neglect to ask whether systems
function in the first place.
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be more likely to interrupt service to neighborhoods with a particular
demographic. We will discuss potential underlying causes and inter-
vention strategies in later sections, but here we simply highlight that
at a high level, fairness-type audits of such a system could potentially
detect this type of behavior and that research on how to do these
types of audits for sequential decision-making systems is absent
from the literature. Similarly, research addressing if and when fair-
ness is the right construct for analyzing sequential decision-making
system outcomes is also absent.

4 SYSTEM DEVELOPMENT
In this section, we examine common prediction and sequential
decision-making pipelines, cover some important differences—including
system inputs and outputs, how expert knowledge is encoded, and
informatic assumptions—and discuss what these differences suggest
as objects of analysis for future research. Predictive systems have
two components: data and a function approximator. The goal is to
learn a function that can predict some hidden variable using data. Ide-
ally, the data is accurately labeled, representative of the deployment
setting, and plentiful enough to train a model. These assumptions
of course may not all be met by development or deployment condi-
tions, and while these are common topics of research in the broader
machine learning community, fairness researchers have also pro-
posed methods for handling flawed data [16, 47, 55, 170, 255], out
of training distribution data [227, 241], and efficient learning [228].

4.1) By contrast, the product of a sequential decision-making
system is a policy that when executed results in a sequence of
actions taken in the world. Instead of function approximators, se-
quential decision-making systems use planners. Often, these plan-
ners produce provably optimal policies, meaning that, with respect
to its model, the agent maximizes its cumulative expected reward.
The existence of a policy instead of a set of i.i.d. decisions means
that understanding system behavior is more contextual and not al-
ways possible with the same statistical measures. Because policies
represent situation-dependent prescriptions for actions, analyzing
a policy requires inspecting the action that would be prescribed by
the policy for every state. This represents a major departure from
aggregate measures of monitoring behavior.

4.2) When designing a decision-making model, developers hy-
pothesize about the structure and value of unseen data, rather
than extracting patterns from existing data. In other words, de-
velopers write down what they think is (or will be) true about the
world [39, 218]. For example, when specifying the reward function,
they decide the relative utility of outcomes; when enumerating the
state space, they forecast the importance and availability of different
data. Therefore, the most important and most fallible assumption in
sequential decision making is that the model is faithful enough to the
dynamics of the real world to support effective decision making. For
example, if the transition function representing changes in demand
is not perfect, then there may be scenarios when the agent’s ac-
tions are optimal with respect to the model, but not the real world.8

Problems may also arise from under-specified state spaces, as in

8It is possible to learn or refine the transition and reward functions from data. Reinforce-
ment learning is used to learn the transition function by sampling actions and inverse
reinforcement learning is used to learn the reward function by observing sequences of
state-action pairs from an agent running a policy.

the power grid example from §3. Adding more state factors or in-
creasing their domains creates exponentially and polynomially more
states, respectively. This tradeoff between model descriptiveness
and computational tractability is not present in predictive systems
since typically defining the desired classes or the meaning of the
numerical output is not a fundamentally intractable problem.9

While tricky to get right, the practice of crafting models has sev-
eral advantages compared to learning from data alone. The ability to
provide an initial model of the world, even if refined using data, is
useful as it allows developers to encode knowledge and model feed-
back effects that otherwise may be difficult to learn. Thus, developers
spend considerable effort in creating decision-making models that
are as compact and descriptive as possible, and experts are highly
valued for their ability to design tractable, accurate models. Often,
these models also require specific domain expertise, and while there
are some cases in which data may be gathered to enhance model
building or, most often, to improve the transition function, generally
data is not available for the task at hand, and in some cases relevant
data may be unavailable altogether.

4.3) The designs of states, actions, and rewards are obvious
objects of analysis for decision-making models. The process of
defining the state and action spaces and reward functions can be
thought of as a structured way of encoding expert domain knowl-
edge. Through implicit assumptions about how the world works,
the purpose of the system, the source of data, or the responsibility
of the agent for certain outcomes, developers encode expert knowl-
edge about decision-making scenarios. This knowledge is not only
important, but required, in order to make problems manageable
computationally. However, it is also through these mechanisms that
decisions are made which may cause harm.

For predictive systems, expert knowledge is often exploited via
careful curation and selection of data, or through choosing the spaces
of inputs and outputs (labels, classes, or target variables). The space
of outputs is typically driven by the task. It may map directly from
a description of the decision to be made, such as whether a manu-
factured part passes a quality control test, or it may correspond to
a component of a larger decision-making task, such as calculating
recidivism risk for determining bail. The set of inputs is often more
difficult to determine and has historically attracted more attention in
the fairness literature [141] than in the ethical decision-making liter-
ature. First, we note that all features are proxy data for the variable
of interest; all inputs to such predictive models are pieces of data
that modelers believe either cause, or at the very least correlate with,
the variable of interest. Choices of inputs and features create two
concerns. First, from an engineering perspective, the choice of inputs
can be somewhat of a “dark art,” and even with the advent of deep
learning it is still often challenging to understand if a function is
challenging to learn because of uninformative features or some other
phenomenon. Second, including data that is unlikely to be causal and
may be correlated with data protected under non-discrimination law
can lead to concerns that labels are being assigned due to protected
attributes. This is especially difficult when there are proxy vari-
ables that correlate with both the variable of interest and protected
variables.

9While increasing the number of classes does increase the data required to learn robust
models, a larger space of class labels alone does not make the problem computationally
intractable.
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Sequential decision-making systems offer analogous choices, cor-
responding to the choice of state and action spaces and the reward
function. The action space, like the space of labels, is typically more
straightforward to conceive and less controversial, since it simply
represents the capabilities of the agent. For example, there are a
limited number of commands an autonomous car can give its motors
and thus it is usually clear what is appropriate and what is not.10 The
choice of state factors, on the other hand, creates two concerns. First,
from an engineering perspective, the tradeoff between computational
tractability and expressive decision-making power is hard to get right.
While the complexity of solving an MDP is polynomial in the size of
the state space, the size of the state space scales exponentially with
respect to the number of state factors. This often severely limits the
number of state factors that an agent can use for decision making.
The creation of state spaces that are small enough to solve policies
for, but also do not obfuscate important nuance by abstracting away
important details of the situation, is also something of a “dark art.”

From an ethical perspective, both the state space as well as the
reward function may be poorly designed and cause harm. For ex-
ample, given a transition function that describes the true probability
of a power shortage in a certain neighborhood, the MDP may make
a decision to cut power or raise rates in order to balance the load
of the entire network. This true probability may be accurate, and
the MDP may be taking the optimal action with respect to both its
model and the real-world application, but this probability may also
be influenced by societal forces, like neglect of local infrastructure,
that correlate with a sensitive attribute, such as race. Behaving in
accordance with certain ethical norms may create need for additional
state factors beyond those required to complete the task. If this ad-
ditional detail is not encoded in the state space, the resultant policy
will not be able to distinguish between scenarios where multiple
actions are roughly equivalent with respect to the task but have dras-
tically different ethical implications. An important corollary to this
is that fairness is usually not useful as an optimization constraint
since protected attributes are typically not encoded in the state space.
Moreover, while well-designed MDPs only use state factors that
are important to making decisions for the task and omit data not
related to the decision, such as sensitive attributes, there may still be
insidious correlations.

Even given a descriptive and compact state space, designing a
decision-making agent that behaves ethically requires a reward func-
tion. The reward function presents another unique challenge in that
it implicitly combines and homogenizes all possible outcomes onto
the same numerical scale. Thus in a regular MDP, no matter how
large and descriptive the state space, all good and bad outcomes,
regardless of how they might be measured and who or what they
might affect, are converted into the same “unit.” Setting aside de-
bates about whether this is even possible to do in a principled man-
ner [144, 222, 257], this still challenges developers and creates a
potential source of error. Finally, although the true transition func-
tion is fixed given the state and action spaces, and thus not usually
considered a design choice, most MDPs do not have perfectly accu-
rate transition functions and inaccurate transition estimates can also
lead to undesired behavior.

10This is less clear in systems that use hierarchies of sequential decision-making systems
[105], but the vast majority of real-world applications do not abstract sequential decision
making to more than one level.

4.4) Design processes for decision-making models often lack
scrutiny. As with prediction, the “dark art” of the design process,
particularly regarding choice of state factors, means it is gener-
ally not a topic of discussion in the research community, let alone
available for public scrutiny. Much of the design process is done
by instinct, relying on domain experts, and is not well-codified or
written down. Reasons behind decisions are often not available via
publications or other documents, and the final models, if believed to
be interpretable in their own right, may be taken as self-evidently ap-
propriate and therefore under-inspected. This pattern is exemplified
here [68, 69, 138], where the relevant variables are simply stated
without further explanation or justification. Because of the proof-of-
concept nature of most existing work on ethical decision making, the
pattern of implicit justification extends to this research as well. Most
works do not use metrics based on specific attributes and instead
examine how to specify high-level abstract rules. In these cases, the
justification for these omissions is that the particulars of the state
factors or rewards are simply placeholders used to study the effect of
the rule, for example [71, 246, 248, 261]. However, as researchers
begin designing systems for more specific applications and with
intention to deploy them, this justification will need to be critically
examined.

These observations suggest a number of research questions. For
example, for a particular decision-making model, which stakehold-
ers are explicitly modeled? What kinds of approximations of the
world are common, and what assumptions underpin them? Whose
domain expertise is solicited? Are model aspects borrowed from
one application to another, or developed afresh? How does model
design take into account the larger systems that models participate
in? We are not aware of research that explicitly studies processes
related to the design and development of sequential decision-making
systems, although there are substantial bodies of adjacent literature
on interpretability [43, 178, 199, 243], explainability [26, 129, 187],
and on participatory design generally [159, 168, 174].

5 SYSTEM EVALUATION AND
MEASUREMENT

Ideals regarding how a system ought to behave in the abstract are
only as good as our ability to show, either theoretically or empiri-
cally, that they will adhere to these ideals when deployed. Research
on operationalizing fair or ethical behavior makes up a significant
percentage of papers published at FAccT and similar conferences.
Here, we examine different metrics, tools, and strategies employed
by researchers in fairness and ethical decision making.

For predictive systems, measuring fairness means operationaliz-
ing some conceptualization of fairness, typically by statistically
analyzing a system’s performance over one or more groups of
users [120]. These measurements might look for predictive par-
ity [2, 53, 73], error rate balance [121, 276], or anti-classification
[125, 132, 270], and are often focused on counterfactual analysis,
either at the group [77, 150, 231] or individual level [125, 185].
Evaluating predictive systems with these measures requires access
to the predictive model, and either real-world data or high-quality
simulated data. When data is readily available, only a computer
capable of running the model is required for evaluation. Whether
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these measures ultimately track the quality of the outcomes for users,
however, is still an open question [97].

5.1) Sequential decision-making systems must be deployed
to fully evaluate them. While predictive systems are similar in
that some harms may only be evident in deployment, when the
system is viewed holistically in its social context, researchers can at
least take measures of fairness absent a deployed system. However,
shortcomings of decision-making models are nearly impossible to
uncover without an agent operating in the real world, taking actions,
affecting its environment, and encountering real-world data from
the resultant states. Thus, the only way to systematically understand
harmful outcomes is to deploy, which is expensive, time-consuming,
and often unsafe. To emphasize, most policies are optimal with
respect to their model and thus abide by constraints of their model.
However, assumptions made by the model may not reflect the real
world and thus lead to unintended behavior.

5.2) Sequential decision-making models are often embedded
in larger systems. Often, MDPs are part of a larger system, such
as a robot [6, 45, 154, 234], and it may be challenging to write a
reward function that represents its high-level task, which may be a
mixture of several objectives. Thus, we often evaluate these decision-
making models using a task-based metric [6, 50, 151, 219, 229]. For
example, consider a robot running a policy for loading boxes into
a truck. We can compare policies generated by different decision-
making models, regardless of how their reward functions represent
the task, simply by counting the number of boxes loaded into the
truck. This seems simple, but is often the most costly and tedious
experiment to run since it requires a fully functioning system, and
makes predicting the ethical impact of different interventions even
more challenging. Given the high costs and risks associated with the
process, how might we safely approach system evaluation for ethical
concerns, and how might we incentivize doing so?

5.3) Though imperfect, many proxy measures for policy qual-
ity exist. Here, we understand policy quality as a holistic measure
of the fitness of a policy for a given application, which includes not
only a policy’s efficacy in completing a task, but also whether or not
the actions taken by the agent are appropriate normatively or morally.
A policy’s fitness may be affected by many factors, including the
implicit incentives indicated by the reward function, the accuracy of
the transition function with respect to the real-world dynamics being
modeled, and any additional constraints enforced by the planner.

Exact planners are optimal so we rarely evaluate the planning
algorithm, but rather the decision-making model and its ability to
produce accurate real-world decisions. One common technique is
to simply spot-check the policy at different states where the agent
is balancing competing reward signals to verify it behaves as ex-
pected. A more methodical strategy is to calculate the probability of
reaching a certain bad state if the agent follows the optimal policy
and begins in a given state. For example, we could compute the
probability that neighborhood 𝑁𝑖 experiences a service interruption
during the next year. This type of analysis can uncover some policy
errors, but is limited due to (1) the difficulty in enumerating all bad
states or outcomes and (2) humans’ poor intuition for likelihoods
of different events. In short, sanity checking policies in this way is
time-consuming and prone to error.

Moving towards in situ evaluation, there are several methods
for evaluating policies that rely on the ability to simulate deploy-
ments. One basic method is to simulate the agent executing a policy
many times and calculate the variance in performance in an effort to
understand its reliability. A more principled method, with a predic-
tion analog, is to test the performance of the policy under a variety
of transition functions, or “possible worlds,” typically in terms of
the total reward earned. For example, we may be uncertain about
whether our transition function correctly represents the probability
of change in demand following a change in price action—that is,
whether our model correctly captures the relative probabilities of
different events—and the robustness of our policy to potential er-
rors in the model. This is similar to some predictive settings where
training, testing, and validation data sets represent different distribu-
tions of data [184]. MDPs which are solved assuming a distribution
over transition functions are called robust MDPs [22, 192]. There
is also a large body of related work on “safe” policies or “safe”
learning, where “safety” has been defined in terms of behavioral con-
straints [215, 252], policy ergodicity [181], risk metrics [86, 214],
and the probability of improving a policy [242].

Finally, one important difference between prediction problems
and sequential decision problems is that when deployed, predictive
models generally cannot know whether the result of their inference
is correct. By contrast, sequential decision-making systems always
know that the chosen action was optimal in expectation with respect
to the model. Moreover, they can immediately observe the reward
for a given outcome, even if it is unexpected. What is unknown is
whether the optimal decision with respect to the model is also the
optimal decision for those affected by the decision. Of course, the
reward may not be perfectly aligned with preventing harms, but the
ability to examine performance longitudinally is a powerful benefit
nonetheless.11

5.4) Methodical evaluation of sequential decision-making sys-
tems for ethical behavior is an open problem. We are not aware
of rigorous empirical research on harms produced by deployed se-
quential decision-making systems, including basic questions such
as “Who is harmed?” The question is more often framed in terms of
rules violations, but even these studies are not common due to the
more theoretical nature of most existing research and lack of access
to sequential decision-making systems. Although there are many
methods for evaluating policies with respect to their decision-making
models, ethical decision-making researchers are almost completely
in the dark when it comes to understanding the impact of their
agents on the world outside the model. We view this as a critical
shortcoming in existing research.

5.5) Currently, auditing sequential decision-making systems
poses a serious logistical challenge to researchers. In order to
audit most sequential decision-making systems, an auditor would

11We should note for completeness that there are many approximate techniques for
solving sequential decision-making problems. When evaluating these techniques, for a
fixed decision-making model, directly measuring the value function can often provide
a signal as to the quality of the resultant policy with respect to the task since all value
functions are upper bounded by the value function induced by the optimal policy—the
policy we would get if we used an exact planner. Even better is measuring the actual
cumulative reward experienced by the agent using simulation or data collected from a
deployment. However, if the model is changed in any way, including the discount factor,
these comparisons cannot be run across models. This is because changes to rewards,
transition probabilities, or the discount factor can change the scale of the optimal value
function, producing different upper bounds and therefore preventing fair comparison.
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require the physical agent, the agent’s policy, and any supporting
software that connects the two, such as algorithms for determining
states from data and controllers for executing actions specified by the
policy. For example, auditing decision making in an autonomous car
would require the car and its entire software stack in order to verify
how it behaves in different scenarios. This is a significant obstacle for
researchers interested in transparency and accountability. Moreover,
since these systems are often functioning as part of a larger system,
it can be difficult for the public or regulators to even know where
systems are deployed. Academic [260] or community audits, such
as audits of commercial image cropping algorithms [33, 63], are
challenging if not impossible.

6 MITIGATIONS
Often, the goal is to modify, augment, or in some other way inter-
vene in the decision-making process of an existing system in order
to ensure that it behaves fairly or ethically. In this section, we ex-
amine common interventions, including data augmentation, reward
modification, optimization formulation, and system integration. For
predictive models one of the simplest interventions is to collect or
generate more data (data augmentation), under the assumption that
as more samples are acquired the training set will improve its ap-
proximation of the true distribution and the model will learn a more
accurate, representative function [196, 210, 223, 249, 264, 275].
This practice works well if data deficiency is the only reason for poor
performance. In many cases, the problem is not the amount of data
but the quality of the data. Specifically, there are often artifacts in
the data, such as correlations between attributes like race or gender
and the target variable, that we do not want our predictive model to
learn. One way to mitigate this is to try to balance the data set to
remove these correlations within the data by adding new data points
or editing existing ones (data curation) [49, 51, 155].

Data-based interventions present challenging tradeoffs. For exam-
ple, gathering sensitive data may be required to ensure a balanced
data set with respect to certain attributes, or verify a model meets
certain fairness criteria. However, doing so raises privacy concerns
[60, 79, 207] as well as accuracy concerns when sensitive attributes
are not readily available or easily identifiable [95]. Moreover, many
researchers have rightly pointed out that common operationaliza-
tions of race, gender, and other socially constructed concepts may in
fact be more harmful than helpful [101, 136]. Nonetheless, this is
often the only data available to these systems. There is somewhat of
a paradox in wanting to avoid sensitive attributes influencing predic-
tions and reifying certain categories, but requiring these attributes in
order to verify these criteria [11].

Beyond data augmentation and curation, often collectively re-
ferred to as “pre-processing,” fairness researchers have also intro-
duced methods for mitigation known as in-processing [52, 254] and
post-processing [52]. In-processing methods generally involve either
modifying the predictive loss function, such as by using constraints
[76, 93, 94, 106, 110, 137, 150, 152, 224, 269, 270] or regularization
[3, 4, 24, 28, 29, 72, 125, 133], or adaptively re-weighting training
examples [124, 147]. They may also apply constraints to latent repre-
sentations within the classifier via disentanglement [142, 165, 195],
contrastive learning [59, 146, 244, 277], or adversarial learning
[38, 78, 80, 169, 237, 253, 271]. These methods can work well, but

often can have complications arising from multiple or unknown
sensitive attributes, conflicting or differential desired definitions of
fairness, and decrease in interpretability.

Post-processing techniques post-hoc transform or calibrate the
outputs of a model to fit a definition of fairness. For example, by
calibrating outputs across different sub-groups [109]. One advantage
of post-processing is that it only requires the predictions and sensitive
attributes and not underlying model, making them applicable to a
wider variety of scenarios.

6.1) Data augmentation and curation are often impractical or
unsafe for sequential decision-making systems. While it is pos-
sible to use data from actual deployments, potentially along with
reinforcement learning, to improve the accuracy of the transition
function with respect to the real world, this is often very costly
and occasionally unsafe. For example, letting the power manage-
ment system from §2 take suboptimal actions in order to gather data
about the true distribution of outcomes (successor states) of raising
or lowering the price of power or shutting off service to different
subsets of neighborhoods jeopardizes the general public’s access to
reliable, fairly priced power. This is clearly not acceptable, even if
the end result is a more accurate transition function and thus a better
decision-making model.

Generally speaking, MDP agents cannot be developed in isolation
with data from elsewhere. The agent itself is required in order to
generate data by interacting with the world—taking actions, record-
ing state, and experiencing reward. Many researchers get around this
problem using simulation, but again, many types of failures may
occur in the real-world that do not show up in simulation, especially
those related to ethical behavior. Thus, real-world deployments are
often a bottleneck for gold-standard evaluation — so much so that
issues of safety when gathering data for MDPs form the primary
motivation for the field of safe reinforcement learning [45, 92, 102].

6.2) Computation constraints limit performance of sequen-
tial decision-making systems. While there is no direct analog of
data augmentation or curation in MDPs, the decision-making mod-
els themselves are often augmented by expanding the state space.
This is done by either adding new state factors or expanding the
domains of existing ones, for example by adding new neighbor-
hood factors which represent subsets of the original neighborhoods
in the power management problem. This delineates some scenar-
ios that were previously considered identical, allowing the agent
to choose different actions under those conditions. By adding new
neighborhoods, the agent has more fine-grained control over service
interruptions and can maintain power to more homes. We may also
add completely new state factors to the MDP, such as the existence
of backup generators in some neighborhoods, that can be used to
modify the reward function so that it reduces penalties for outages
in these neighborhoods since the ultimate impact is reduced. Thus,
larger, more descriptive state spaces often produce more nuanced,
performant policies at the cost of time required to generate a policy.

Generally, in prediction, more computation cannot improve the
estimate of a target variable. This is not so for sequential decision
making. While MDP12 solvers have polynomial complexity in the

12We should emphasize the tremendous volume of work on extending MDPs to other
informatic settings. For example, state factors may not be directly observable [130], such
as when a pedestrian becomes temporarily occluded from the view of an autonomous
vehicle. Their position is unobservable, so the vehicle maintains a belief over the
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number of states, the number of states often grows exponentially
with the number state factors. This presents a challenge as improve-
ments via state space augmentation are limited since adding state
factors orthogonal to the task adds exponential cost [103, 104, 160].
Moreover, additional states which do not map to different actions
increase computational cost without increasing performance. In prac-
tice, decision-making models are often necessarily approximations,
which marginalize (in the computational sense) some variables or
compress different scenarios into the same state representation to
reduce model size and therefore compute load.

6.3) There are no existing, principled methods that can pre-
dict how design decisions regarding the state space or reward
function affect stakeholders in the general case. Although un-
derstanding how changes to a decision-making model may affect
resulting policies is an important part of designing MDPs, even for
specific applications there is essentially no systematic method for
predicting the impact of model changes on all stakeholders. For
example, there is little research on whether decision-making models
exhibit the same problems as predictive models, such as when remov-
ing protected attributes explicitly from the reasoning process does
not prevent differential treatment with respect to those attributes. In
the absence of a general account we therefore see many important
research questions: What resources might be developed to help prac-
titioners understand how to augment their state spaces or modify their
reward functions? How might the research community contribute to
making this process more systematic, such as via checklists or other
design processes? How can practitioners anticipate what kinds of
ethical scenarios must be delineated by the model beyond what is
necessary for the task? By what processes can we reliably uncover
and anticipate such scenarios—without risking stakeholders?

One complicating property for both developers and auditors is that
state factors are not restricted to the data at hand—they may represent
any information the agent can measure or sense once deployed.
In some cases, this prevents models from reproducing historically
biased patterns since unwelcome correlations simply are not present
in the model. However, in other cases it makes correcting issues
identified as disparities between protected classes more difficult as
this data is not directly reasoned about within the model and thus
cannot be directly constrained as it might be with, for example, in-
processing techniques from classification. Simply adding protected
attributes as state factors seems ill-advised since unless these factors
affect the reward or transition functions they will not affect the
reasoning process and will add exponential computational burden.

There remain other questions about what it means for protected
attributes to be part of the reasoning process in sequential decision
making. Even if protected attributes are not represented as state
factors, might some factors still implicitly encode them, or might
reward functions encode harmful patterns? For example, consider
the power grid management agent from §2. The agent, in its effort
to minimize outages, price, and wasted power, may disproportion-
ately restrict access to some neighborhoods. Because neighborhood
boundaries according to the utility infrastructure often correlate

pedestrian’s location and thus a belief over the state of the world. Other specialized
models have been developed for decentralized behavior [25], adversarial scenarios [90],
and hierarchical decision processes [111] among many, many others. These models
vary greatly in their assumptions and complexity, and understanding the feasibility of
different interventions across different models is an open question.

strongly with some demographic attribute, such as race or income,
this policy may therefore disproportionately impact members of
those groups. More generally, we still know little about how sequen-
tial decision-making outcomes may or may not reproduce patterns
of discrimination within different applications.

6.4) As with predictive systems, the most straightforward in-
terventions come with considerable drawbacks. One of the sim-
plest ways developers modify the behavior of MDP agents is by
modifying the reward function, which we call reward modification.
13 Reward modification has no direct analog in prediction, but is
similar in spirit to tweaking a loss function in an asymmetric way
that affects the model’s penalty for incorrect labels on a subset of
cases. The important similarities are that the intervention is local, it
targets a specific behavior, the outcome has no formal guarantees
since it is unknown how the optimization problem will be re-solved
given the new loss or reward function, and that these interventions
require a significant level of expertise, since the practitioner needs
to understand how a given change affects some intermediate compu-
tation which ultimately affects behavior. Thus, reward modification
is necessarily non-methodical. There is no theory that describes how
to specify reward functions in order to generate a particular policy
or behavior for an arbitrary MDP.

While this intervention is often the easiest, it is also the least ef-
fective. Not only is the control over the resultant policy indirect, but
this method also leaves room for many tacit normative assumptions.
In particular, it allows developers to make implicit comparisons
between different types of outcomes due to the reward function
mapping all possible outcomes onto the same “unit.” As the agent
maximizes expected cumulative reward, it inherently balances avoid-
ing negative reward states and visiting positive reward states based
on their respective reward values and the likelihood of reaching those
states. Thus, there is always a future amount of positive reward for
which the agent will accept experiencing a negative reward in the
short term, no matter what real-world scenario that negative reward
represents. This is one reason that decision-making model design is
so difficult, and this problem is no simpler when modifying reward
functions for ethical reasons. That said, in practice this is still the
most popular method for modifying agent behavior.

6.5) Behavioral constraints on decision-making systems have
several benefits. Beyond gathering more data, expanding decision-
making models, and modifying loss functions or reward functions,
there are more principled ways to control the behavior of decision-
making systems. Generally, these methods constrain the optimization
processes involved in determining behavior, and the similarities be-
tween techniques devised to produce “fair” and “ethical” behavior
are remarkable. Attempts to train fair predictive models have used
constraints [53], regularization [48, 132], and causal and counter-
factual analysis [35, 36, 65]. These techniques essentially constrain

13In reinforcement learning systems with very sparse reward functions—reward func-
tions where most states have the same value, usually zero—a similar sounding technique
known as “reward shaping” is used to add reward signal to states which represent
progress towards or away from one of the original, sparse reward signals. The idea is
that the agent will learn faster as it has more frequent access to a learning signal. In
the reinforcement learning application there is a lot of concern about executing reward
shaping in a manner which does not alter the optimal policy one would get if they solved
the original MDP using the original, sparse reward function (remember, however, this is
not possible since they do not know the transition function). There are some theoretical
results regarding how this may be done [191], but they do not apply to our case because
we want to change a policy for a known MDP.
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the space of possible functions that the model can learn. In ethi-
cal decision making we typically constrain the space of policies
using domain-specific hand-coded rules [225, 261] or constraints
[134, 186, 236, 248]. MDP agents that use constraints still compute a
policy that maximizes cumulative expected reward, but do so subject
to some constraints on, for instance, how often certain state-action
pairs can occur. These pairs can be enumerated explicitly or identi-
fied via an abstract rule—in the ethical decision-making case, these
are rules for acting. This type of MDP is called a constrained MDP
(CMDP). However, generating the right constraints is difficult, and
is comparable in difficulty to choosing a definition of fairness. There
are no clearly best options, and the right choice in terms of satisfying
as many stakeholders as possible is often context and deployment
specific.

Constraint-based methods are more difficult to design and pro-
gram but have several advantages. First, this is the only method
that guarantees instance-level behavior, although constraints may
also be defined in terms of aggregate or expected behavior such
that individual decisions may not have guarantees. Second, these
methods allow more direct, expressive behavior specification. In-
stead of changing the reward or loss function, or training using an
adversarial agent [253, 273], we can encode precisely how the agent
ought or ought not to behave. Limited only by the expressiveness of
the model, the act of writing constraints also surfaces many norma-
tive assumptions explicitly. Third, these methods offer substantially
greater potential for generalization. Constraints may be formulated
in abstract terms, such as false negative rates or the probability
of violating a norm, allowing their application to many different
decision-making problems. Fourth, although mathematically more
complex, these interventions often operate at a level of abstraction
that can be communicated to non-experts. This is an important bene-
fit since it allows a greater variety of expertise to be consulted in a
given application. While theoretically such constraints have many
advantages, these methods are not frequently deployed due to their
complexity.

6.6) Non-mathematical and auxiliary interventions, such as
human-in-the-loop solutions and explainability, are under-studied
in the ethical decision-making context. Increasing the ability of
users or auditors to understand, interact, or correct automated decision-
making systems is likely to increase the effectiveness of many ex-
isting interventions and perhaps lead to new methods altogether.
Interpretable and explainable AI systems are of course large fields
in their own right; however, there is a relative lack of research on
explainable sequential decision making compared to predictive sys-
tems. Not only is there still foundational algorithmic work to be
done, but there are also open conceptual questions such as how ideas
of actionable recourse [18, 245] or cross-examination [1] might be
applied to this setting. Similarly, human-in-the-loop systems have
been proposed and studied in the sequential decision-making litera-
ture [84, 153, 262], but outside of military research [8, 46, 176, 239],
rarely if ever as problems with explicit ethical consequences.

6.7) Sequential decision-making models are not generally de-
veloped with engagement from the full spectrum of stakehold-
ers. The opportunity that decision-making models and explicit con-
straints allow for leveraging expert knowledge cannot be understated.
However, current practices in academia and industry do not take full
advantage of these benefits in part because they lack exposure to, and

knowledge of, qualitative or participatory processes [159, 168, 174].
By contrast, disciplines such as human-computer interaction have
well-developed approaches for engaging with stakeholders, rang-
ing from user-centered design practices [112] to participatory ap-
proaches, where stakeholders work with researchers in a process of
collective inquiry [251], or where stakeholders participate in system
design and development processes [149].

7 DISCUSSION AND CONCLUSION
Algorithmic fairness interventions are developed for only a subset
of the algorithms deployed in the world. In this paper, we draw at-
tention to sequential decision-making models, which are the subject
of an increasingly rich literature on ethical decision-making, and
describe how interventions for fair or ethical behavior are currently
conceptualized and operationalized across the fairness and ethical
decision-making communities. We further ask: Where might the two
communities benefit from one another? And where might the para-
digm of sequential decision making demand different interventions
than those developed for predictive models?

Towards the first question, we explore how the fairness and ethical
decision-making communities may benefit from knowledge, tools,
and practices emerging from one field or the other. In one direction,
methods for sequential decision making and modes of analysis from
ethical decision making have the potential to advance fairness re-
search given recent calls to examine feedback effects of systems
on stakeholder welfare—two themes that have been researched ex-
tensively by these communities. In the other, the widespread de-
ployment of sequential decision-making systems and the domains
in which they operate (e.g., autonomous driving, power grid man-
agement) makes urgent analyses of these systems—analyses which
the fairness literature is already undertaking for predictive systems.
Here, we imagine analyses of the sequential decision-making model
and the processes by which models are designed; the outcomes of
decision-making systems in terms of which stakeholders are harmed,
particularly the ways in which outcomes might reproduce exist-
ing patterns of injustice; and how choices regarding the design of
decision-making models give rise to particular outcomes. Alongside
these analyses, what processes and resources might we develop to
help anticipate the outcomes of a given model and policy, and sup-
port safe iterative model development, without incurring too much
of the risk inherent to deployment?14 Although sequential decision
making may demand new methods for carrying out these analyses,
we can draw on the lenses—questions about disparities in outcomes
and the processes that produce them—that have emerged from years
of rich discussion in the fairness community.

Nevertheless, decision-making models are in many ways fun-
damentally different from predictive models, and their reasoning
capabilities, design, and deployment will make realizing these goals
difficult. We have illustrated that some of the interventions— con-
ceptualizations of normative concerns and their accompanying mea-
surements and mitigations—that have entered best practice from
the fairness literature may not be applicable to sequential decision
making. Moreover, addressing many questions about the design
processes, modification, and outcomes of these systems would be
prohibitively expensive and likely risky to stakeholders, meaning

14Bird et al. [31] raise a similar question about the risks of autonomous experimentation.

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Fairness and Sequential Decision Making:
Limits, Lessons, and Opportunities Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

that such work is likely to be disincentivized in the private sector.
Complicating efforts, decision-making systems often operate below
the awareness of the public and many regulatory bodies, because
they do not tend to make decisions that directly affect individual
people. Practical efforts to realize these efforts will require a realistic
account of what sequential decision-making systems look like, and
of how well our assumptions about what it takes to make fair, trans-
parent, or accountable predictive systems serve us in this different
setting.
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