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Abstract. We provide optimal solutions to an institution that has dual goals of di-
versity and meritocracy when choosing from a set of applications. For example,
in college admissions, administrators may want to admit a diverse class in addi-
tion to choosing students with the highest qualifications. We provide a family of
choice rules that maximize merit subject to attaining a diversity level. We study the
desirable properties of choice rules in this family and use them to find all subsets
of applications on the diversity-merit Pareto frontier. In addition, we provide two
novel characterizations of matroids.

1. Introduction

To see high merit and be unable to raise it to office, to raise it
but not to give such promotion precedence, is just destiny.

-Confucius

Meritocratic systems in which goods and political power are given to people
based on qualifications rather than their wealth or social status have been idealized
since ancient times. The Chinese philosopher Confucius argued that those who
govern should do so because of merit, not because of inherited status. The Han
dynasty adopted Confucianism and implemented civil service examinations to se-
lect and promote government officials (Dien, 2001). The Greek philosopher Plato,
in his book The Republic, stated that the wisest should rule, and hence rulers shall
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be philosopher kings. A system based on meritocracy, however, may increase eco-
nomic inequality and social and political dysfunction, the so-called meritocracy trap
(Markovits, 2019). To decrease the inequities that exist between different groups
in society, affirmative action and diversity policies have been implemented world-
wide (Sowell, 2004). Therefore, in practice, it is crucial to find a balance between
meritocracy and diversity.

In this paper, we find optimal subsets of applications to an institution that is
not only interested in choosing applications with the most merit but also having
a diverse group. The institution ranks applications according to merit. For exam-
ple, applicants may take an exam to determine how qualified they are. American
universities rank students using SAT scores and other criteria. Meanwhile, the di-
versity of a group is given by an index defined as a function of traits that applicants
have. The type of a student specifies the student’s traits and may include informa-
tion about gender, race, ethnicity, socioeconomic status, and disability status.

Our focus is on choice rules that select a subset of each possible set of applications.1

We study a family of choice rules that maximize the merit of the selected group
subject to attaining a diversity level. To do so, we start with an extreme member
of this family that maximizes diversity first and then merit among the most di-
verse groups. Even though this rule can be defined in very general environments,
it may lack basic desirable properties, which may make its implementation infeasi-
ble. Indeed, some institutions, such as universities, get thousands of applications
every year. For example, in fall 2020, the average number of applications for the ten
colleges in the US that received the most applications was 84,865.2 Therefore, the
choice rule must be implementable in a computationally efficient way, and its out-
come should not depend on the order in which applications are evaluated, which
is the path-independence property of a choice rule (Plott, 1973).3 To this end, we
define the diversity choice rule as follows. In the first step, we find distributions of
applicant types that maximize diversity. In the second step, we choose applications
one by one using the merit ranking as long as the set of chosen applications has a

1Choice rules are one of the most basic primitives of economics (e.g., Mas-Colell et al. (1995)
and Kreps (2023)).

2See https://tinyurl.com/uv6h3jsh for statistics from the U.S. News & World Report.
3Path independence is equivalent to the conjunction of the substitutes condition and a mild con-

sistency axiom standard in matching theory. See the proof of Theorem 2 in Appendix B.

https://tinyurl.com/uv6h3jsh
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distribution smaller than an optimal distribution found in the first step.4 By con-
struction, the diversity choice rule always finds a set of applications that maximizes
diversity. However, because it is myopic in the second step, it does not necessarily
maximize the merit of the chosen set among diverse sets. To address this problem,
we consider a restriction on the diversity index under which it lexicographically
maximizes diversity and merit, and is computationally fast.

We use a concept of concavity on functions with discrete domains introduced
by Murota and Shioura (2003), and we call it ordinal concavity.5 Roughly, ordinal
concavity requires that, when two different distributions are made closer to each
other, either the value of the diversity index strictly increases on at least one side or
the value of the diversity index remains the same on both sides. Ordinal concavity
is weaker than the two standard concavity notions used in a field of mathematics
known as discrete convex analysis: M-concavity and M\-concavity.6 While these
two are cardinal, ordinal concavity is an ordinal notion, as it only depends on com-
parisons of values that the diversity index takes.

When the diversity index is ordinally concave, the diversity choice rule maxi-
mizes merit among all sets of applications that attain the optimal diversity level,
and its outcome can be constructed in polynomial time (Theorem 1). To prove the
first part, we show that the collection of maximal distributions among optimal ones
identified in the first step is well-behaved: Specifically, it satisfies a notion of dis-
crete convexity called M-convexity (Lemma 3).7 Furthermore, the myopic addition
of contracts in the second step is equivalent to the outcome of a procedure in the
combinatorial optimization literature known as the greedy algorithm on a matroid
that we construct (Lemmas 4 and 5).8 The computational efficiency proof has two
main parts. In the first part, we establish the maximizer-cut theorem, which allows
us to dissect the domain of feasible distributions in the search for an optimal distri-
bution (Theorem 5). Using this result, we construct the domain-reduction algorithm
that allows us to find an optimal distribution efficiently. In the second part, we

4A distribution ξ is smaller than distribution ξ′ if every coordinate of ξ′ is greater than or equal
to the same coordinate of ξ.

5Murota and Shioura (2003) introduce SSQM (semi-strict quasi M-concavity) as an ordinal im-
plication of M-concavity. M-concavity is a cardinal notion, and it has a weaker variant called M\-
concavity. Analogous to weakening M-concavity to M\-concavity, SSQM\-concavity is the natural
counterpart of SSQM-concavity. Our ordinal concavity is equivalent to SSQM\-concavity.

6See Appendix A for the definitions of M-concavity and M\-concavity.
7See Section 5.2 for the definition of M-convexity.
8See Section 5.1 for the definitions of the greedy algorithm and matroids.
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construct a modified version of the diversity choice rule, which is more computa-
tionally tractable than our original definition, and show that finding an outcome of
the diversity choice rule takes quadratic time in the number of applications.

A desirable property of choice rules is path independence. Path independence
states that applications can be viewed in batches in any order without changing
the final outcome, an appealing property to institutions that receive many applica-
tions. Furthermore, it guarantees the existence of a desirable matching in two-sided
matching markets.9 We show that the diversity choice rule is path independent
when the diversity index is ordinally concave (Theorem 2). In most matching clear-
inghouses, the deferred-acceptance algorithm of Gale and Shapley (1962) is used
to assign applicants to institutions. This algorithm produces a desirable matching
when institution choice rules satisfy path independence, and it is strategy-proof
for applicants when institution choice rules further satisfy the law of aggregate de-
mand (Hatfield and Milgrom, 2005). The law of aggregate demand requires that
the number of applications that are chosen weakly increases when there are more
applications (in the sense of set inclusion) to choose from. The diversity choice rule
does not necessarily satisfy the law of aggregate demand even when the diversity
index is ordinally concave. However, if the diversity index is also size-restricted con-
cave, then the diversity choice rule satisfies the law of aggregate demand (Theorem
3). Size-restricted concavity was recently introduced by Yokote et al. (2022); we
provide a generalization of it to more general domains.

Next, we consider the family of choice rules that maximize merit subject to
achieving a certain (exogenously given) level of diversity. We first observe that
when the diversity index is capped at a level, the diversity choice rule for the modi-
fied index maximizes merit subject to attaining the diversity level. Therefore, every
choice rule in this family has the same desirable properties like the diversity choice
rule when the modified indices are ordinally concave. We provide a characteriza-
tion of diversity indices such that the modified diversity index for every diversity
level is ordinally concave (Proposition 2). Using this family, we provide the trace
algorithm that finds all subsets of applications on the diversity-merit Pareto frontier
and show that the trace algorithm is pseudo polynomial, which means that the time
complexity is polynomial in the largest integer present in the input data (Theorem

9See, for example, Chambers and Yenmez (2017) who study two-sided matching markets with
path-independent choice rules.
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4).10 The trace algorithm is useful for an institution that has the dual goals of maxi-
mizing diversity and merit, as it presents the institution with all alternatives on the
diversity-merit Pareto frontier.

One special case of our model is when the university has a utility function over
sets of contracts.11 In this particular case, the diversity choice rule maximizes di-
versity on subsets of a set of available applications. An immediate corollary of
Theorem 2 is that when the utility function over sets of applications satisfies ordi-
nal concavity, the choice rule constructed by maximizing the utility function sat-
isfies path independence.12 In Yokote et al. (2022), we show the reverse direction
that if a choice rule is path independent, then there exists an ordinally concave
utility function such that the choice from any set of contracts is equal to the sub-
set that maximizes the utility function among all subsets. In other words, every
path-independent choice rule can be rationalized by an ordinally concave utility
function. Therefore, there is a sense in which ordinal concavity is necessary for the
path-independence property.

Our results apply to markets where institutions have two distinct goals that may
conflict with each other. We state the model in terms of the main application of
college admissions, where universities admit students to maximize the merit of the
incoming class as well as its diversity. Other applications include school choice,
hiring by public institutions or private firms, and auctions with distributional goals
(e.g., procurement auctions and spectrum license auctions).

Our paper is related to the recent literature on market-design problems with
distributional objectives. In practice, distributional objectives are typically imple-
mented by reserving a number of positions for target groups. In the market-design
literature, reserves are introduced and analyzed by Hafalir et al. (2013), Ehlers et
al. (2014), and Echenique and Yenmez (2015). Distributional objectives play an im-
portant role in matching problems with regional constraints (Kamada and Kojima,
2015, 2017, 2018, 2020). Another matching market with distributional constraints
is interdistrict school choice (Hafalir et al., 2022b). Unlike these papers, we do not
focus on a particular policy but model it as a function on distributions that satisfies

10For this result, we assume that the diversity index takes integer values. Any ordinally con-
cave diversity index can be replaced with another diversity index that takes integer values and is
ordinally concave without changing the diversity choice rule.

11This can be modeled as a special case of our model as follows: All agents have different types,
and the diversity index takes distinct values on different distributions. Therefore, the diversity
choice rule is uniquely determined by the first step that maximizes diversity.

12See Murota and Yokoi (2015) for a similar result under a set of different assumptions.
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ordinal concavity. In a recent work, Hafalir et al. (2022a) study the implementa-
tion of distributional policies in a constrained efficient mechanism and introduce
pseudo M\-concavity.13 Like us, they also represent the distributional policy as a
function, but their research question is the existence of constrained efficient mech-
anisms, whereas we focus on the desirable properties of institutional choice rules.
In another recent work, Kumano and Kurino (2022) study matching markets with
adjustable capacities and introduce a new concept of stability.

The most closely related paper in terms of motivation to the current work is
Imamura (2020), who introduces axioms to compare meritocracy and diversity of
choice rules and uses these axioms to characterize choice rules with reserves and
quotas. Another related paper is Kojima et al. (2018), who study two-sided match-
ing markets with agents that have M\-concave utility functions and show the exis-
tence of stable matchings in a variety of matching problems with constraints based
on properties of M\-concave utility functions. Choice rules with reserves and quo-
tas can be modeled as special cases of our diversity choice rule by choosing the ap-
propriate diversity index (see Example 2 in Section 3.1.) We also provide two novel
characterizations of matroids (Lemma 1 and Proposition 3) that may be helpful in
other work.

In operations research, Chen and Li (2021) study parametric maximization
problems using ordinal concavity.14 They show that the optimal solution is non-
increasing in the parameters when the objective function is ordinally concave, and
illustrate when ordinal concavity is preserved. Chen and Li (2021) analyze neither
choice rules nor matching problems.

Discrete convex analysis is relatively new in economic theory. Murota (2016)
provides an excellent review with some applications in economics. In addition
to the papers mentioned above, see, for example, Paes Leme (2017), Kojima et
al. (2020a,b), Candogan et al. (2021), and Kushnir and Lokutsievskiy (2021). We
substantially contribute to this literature by establishing results for economics in
general and market design in particular (and also by introducing new notions of
concavity, such as the notions of pseudo M\-concavity+ and semistrict pseudo M\-
concavity).

We introduce our model in the next section. We study the diversity choice rule in
Section 3 and its generalization, which maximizes merit subject to attaining a given

13Pseudo M\-concavity and ordinal concavity are logically independent. Some of our results, but
not all, also hold under pseudo M\-concavity.

14Following Murota and Shioura (2003), they refer to the condition as SSQM\-concavity.
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diversity level, and the trace algorithm in Section 4. In Section 5, we provide two
new characterizations of matroids and the proof sketch of Theorem 1. In Section
6, we conclude the paper. We present comparisons of discrete concavity notions
in Appendix A and the proofs of our main results in Appendix B. We introduce
another notion of concavity called semi-strict pseudo M\-concavity and present the
remaining proofs and examples in Appendix C.

2. Model

2.1. Agents, Distributions, and Types. Let C denote a finite set of academic
schools (or colleges/divisions) in a university and S a finite set of students apply-
ing to the university. Each school represents a major or program that students can
apply to. For example, when students are admitted only as “undecided” without
specifying a major or program, the set C is a singleton.

There exist a finite set T of student types and a type function τ : S → T that
specifies a type τ(s) ∈ T for each student s ∈ S . A type specifies diversity-related
student traits that the university cares about. For example, it can specify gender,
race, ethnicity, disability status, veteran status, nationality, and socioeconomic sta-
tus.

Each application is represented by a contract specifying a school, a student, and
the terms of admissions that may include financial aid information. The set of all
contracts is finite and denoted by X . The university has a merit ranking � of con-
tracts, which is a strict preference relation (linear order) over X .15 The correspond-
ing weak preference is denoted by �, that is, for each x, y ∈ X , x � y if x = y or
x � y.

Let contracts in X = {x1, . . . , x|X|} ⊆ X and X ′ = {x′1, . . . , x′|X′|} ⊆ X be enumer-
ated such that,

for each i, j ∈ {1, . . . , |X|}, i < j =⇒ xi � xj, and

for each i, j ∈ {1, . . . , |X ′|}, i < j =⇒ x′i � x′j.

Then, X merit dominates X ′ if |X| ≥ |X ′| and, for each i ∈ {1, . . . , |X ′|}, xi � x′i.

15Applications that are strictly less preferred than having an empty seat for the university are
dropped from X . Thus, without loss of generality, we assume that the university strictly prefers
each application in X to having an empty seat.



8 HAFALIR, KOJIMA, YENMEZ, AND YOKOTE

A distribution ξ ∈ Z|C|×|T |+ is a vector such that the entry for school c ∈ C and
type t ∈ T is denoted by ξtc.16 The entry ξtc is interpreted as the number of stu-
dents of type t ∈ T assigned to school c ∈ C at ξ. For a set of contracts X ⊆ X ,
ξ(X) ∈ Z|C|×|T |+ denotes the distribution induced from X so that ξtc(X) denotes the
number of contracts between students of type t ∈ T and school c ∈ C inX . For each
distribution ξ ∈ Z|C|×|T |+ , ||ξ|| denotes the sum of coordinates of ξ. There may be fea-
sibility constraints on distributions, such as capacity constraints for schools. The
set of feasible distributions is denoted by Ξ0 ⊆ Z|C|×|T |+ . We assume that the zero
vector is in Ξ0. For each school c ∈ C and type t ∈ T , let χc,t denote the distribution
where there is one type-t student at school c and there are no other students.

There exists a diversity index f : Ξ0 → R+.17 The diversity index measures
how good a distribution of students is in terms of a diversity goal. Therefore, if
f(ξ) ≥ f(ξ′), then it means that distribution ξ is at least as good as distribution ξ′

in terms of the diversity goal.
Two remarks on the diversity index are in order. First, our analysis only depends

on the ordinal content of f and not on the cardinal values it takes. Therefore, a
diversity index f and any strictly increasing transformation of f are equivalent for
our purposes.18 Second, we allow for indifferences, i.e., f can take the same value
at different distributions. This is a natural assumption in practice because school
authorities often introduce coarse distributional goals rather than strict ordering
over distributions. We offer concrete examples in Section 3.1.19

2.2. Choice Rules. Given a set of applications, the university must determine
which subset of applications to accept. Accordingly, we assume that the univer-
sity is endowed with a choice rule that governs its admissions policies.

16Z+ is the set of non-negative integers including zero.
17R+ is the set of non-negative real numbers including zero.
18A function g : R → R is strictly increasing if, for each x, y ∈ R such that x > y, we have

g(x) > g(y). We say that a function h : Ξ0 → R+ is a strictly increasing transformation of f if, for
each ξ ∈ Ξ0, h(ξ) = g(f(ξ)) where g is a strictly increasing function.

19In the literature on matching theory, a standard approach for addressing the indifference issue
is to break ties and create a linear order. In the context of balancing diversity and merit, tie-breaking
is not appropriate because indifferences of diversity leave room for merit to be taken into account.
Consider two sets of contracts X and X ′ such that (i) they are equally desirable in terms of diver-
sity (i.e., f(ξ(X)) = f(ξ(X ′))) but (ii) X merit dominates X ′. In this case, we should choose X
rather thanX ′. Tie-breaking might lead to an undesirable choice. Furthermore, several real-life ap-
plications with reserves and quotas have ties naturally. Finally, even when the diversity index takes
distinct values, the choice rule that maximizes merit subject to attaining a given diversity level does
not differentiate between diversity values above the threshold level.
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Definition 1. A choice rule is a function C : 2X → 2X such that, for each X ⊆ X ,

C(X) ⊆ X and ξ(C(X)) ∈ Ξ0.

A choice rule must be such that the distribution of a chosen set is feasible.20 Next,
we consider a highly desirable property of choice rules.

Definition 2. A choice rule C satisfies path independence if, for each X,X ′ ⊆ X ,

C(X ∪X ′) = C(C(X) ∪X ′).21

Path independence guarantees that applications can be viewed in batches in any
order without changing the final outcome, thereby implying that the university
is applying consistent admissions policies regardless of the sequence or composi-
tion of the batches that are considered during the admissions process. Therefore,
it is a desirable property in college admissions (and other applications). Path in-
dependence is equivalent to the conjunction of the substitutes condition and a mild
consistency axiom routinely used in matching theory.22

Definition 3. A choice ruleC satisfies the law of aggregate demand if, for eachX,X ′ ⊆
X ,

X ⊇ X ′ =⇒ |C(X)| ≥ |C(X ′)|.23

The law of aggregate demand states that when a university gets more applica-
tions, the number of chosen applications cannot decrease.

20It is possible that X ⊆ X contains two contracts associated with the same student. We do
not impose the assumption that C(X) chooses at most one contract per student because it is not
necessary for practical purposes. In Theorem 2, we show that our new choice rule C satisfies path
independence, under which the deferred-acceptance algorithm results in a stable matching where
each student signs at most one contract. It is also worth mentioning that students in the U.S. can
submit at most one application to most universities.

21Plott (1973) introduces path independence as an axiom of rationality in a model of social choice.
See Chambers and Yenmez (2017) for an application of path independence in a matching context.

22See the proof of Theorem 2 for the definitions of these two notions.
23Hatfield and Milgrom (2005) introduce the law of aggregate demand in a matching market

with contracts. Alkan and Gale (2003) calls this property size monotonicity in a matching context
without contracts.
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In the context of assigning students to schools in a centralized clearinghouse,
path independence guarantees that the most commonly used method, the deferred-
acceptance algorithm, works well, e.g., it produces the student-optimal stable match-
ing; and if the law of aggregate demand is also satisfied, it is strategy-proof (Hatfield
and Milgrom, 2005).24

3. A Lexicographic Approach to Diversity and Merit

In this section, we introduce a choice rule that lexicographically maximizes diver-
sity first and merit second, and establish some further desirable properties of this
choice rule. In Section 4, we generalize this admissions policy so that the university
maximizes merit subject to attaining a diversity level.

3.1. Diversity Choice Rule. In the following choice rule, we first maximize the
diversity index among subsets of any given set of contracts to be consistent with
the discussion after the algorithm. Then we choose contracts one by one according
to their merit ranking as long as the chosen set of contracts can be completed to a
subset of contracts maximizing diversity.
Diversity Choice Rule Cd.

Input: Let X be a set of contracts.
Step 1: Find the set of distributions in {ξ : 0 ≤ ξ ≤ ξ(X)} that maximize the

diversity index f and denote it by Ξ∗(X). Set X0 = ∅ and k = 0.
Step 2: If there exist x ∈ X \ Xk and ξ ∈ Ξ∗(X) such that ξ(Xk ∪ {x}) ≤ ξ,

then choose such a contract xk+1 of highest merit, let Xk+1 = Xk ∪ {xk+1},
and go to Step 3. Otherwise, go to Step 4.

Step 3: Add 1 to k and go to Step 2.
Step 4: Return Xk and stop.

The algorithm ends at a finite index k since the number of contracts is finite.
By construction, the diversity choice rule always produces an outcome that max-

imizes diversity. However, Step 2 of the diversity choice rule is myopic in choosing
contracts, so it need not produce an outcome that maximizes merit among diverse
sets. To address this problem, we make the following assumption on the diversity
index.

Let χ∅ denote the distribution with zero entries.
24In this context, only students are strategic agents. Therefore, a direct revelation mechanism is

strategy-proof if, for each student, reporting their true preference ranking over schools is a weakly
dominant strategy.
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Definition 4. The diversity index f : Ξ0 → R+ is ordinally concave if, for each ξ, ξ̃ ∈ Ξ0

and (c, t) ∈ C×T with ξtc > ξ̃tc, there exists (c′, t′) ∈ (C×T )∪{∅} (with ξt′c′ < ξ̃t
′

c′ whenever
(c′, t′) 6= ∅) such that

(i) f(ξ − χc,t + χc′,t′) > f(ξ), or
(ii) f(ξ̃ + χc,t − χc′,t′) > f(ξ̃), or
(iii) f(ξ̃ + χc,t − χc′,t′) = f(ξ̃) and f(ξ − χc,t + χc′,t′) = f(ξ).

Each condition in the definition above not only imposes the stated inequality or
equations, but also that the arguments of f are in the domain Ξ0.25

To give the intuition for ordinal concavity, let us consider a special case when
there are only one school and one type. Hence, a distribution specifies how many
students are assigned to the university. For simplicity, take Ξ0 = Z+. Consider
ξ, ξ̃ ∈ Z+ such that ξ > ξ̃. Since the distributions have only one coordinate, ordinal
concavity implies that either

(i) f(ξ − 1) > f(ξ), or
(ii) f(ξ̃ + 1) > f(ξ̃), or
(iii) f(ξ − 1) = f(ξ) and f(ξ̃ + 1) = f(ξ̃).

In words, when we move from ξ and ξ̃ towards each other by one, either the value
of f increases on at least one side or the value of f stays the same on both sides. For
example, if f is a concave or strictly increasing (or decreasing) function on the real
line, then its restriction on integers is ordinally concave. It is also satisfied when f
represents a single-peaked preference relation.

When there are more schools and types so that distributions are multidimen-
sional, moving closer to each other may mean either moving in one direction as in
the one-dimensional case above, or it may mean the existence of another dimension
so that from one distribution, we remove one in one direction and add one in the
other direction and we do the opposite operations on the other distribution.

Our first result shows that, when f is ordinally concave, the diversity choice rule
lexicographically maximizes diversity first and merit second in a computationally
efficient way.

25As we discuss in the Introduction ordinal concavity has been studied in operations research.
However, to our knowledge, it is new to the economics literature. In Appendix A, we show that
ordinal concavity is weaker than M-concavity and M\-concavity.
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Theorem 1. Suppose that the diversity index f is ordinally concave.26 Then, for each set
of contracts X ⊆ X ,

(i) Cd(X) maximizes the diversity index f among subsets of X ,
(ii) Cd(X) merit dominates each subset of X that maximizes the diversity index f , and

(iii) Cd(X) can be calculated in O(|C| × |T | × |X|2), assuming f can be evaluated in a
constant time.

We prove the result in Appendix B and provide a proof sketch in Section 5.3.
Next, we provide examples of ordinally concave diversity indices. The first is a
simple illustrative example that we use throughout the paper. Subsequent exam-
ples are more practical and motivated by “reserves” in various forms.

Example 1. Suppose that there are three students of different types and one school,
say c. There is only one contract between each student and the university. Denote
these contracts by x, y, and z. The university has a capacity of two, so Ξ0 = {ξ :

||ξ|| ≤ 2} is the set of feasible distributions.
Let the diversity index f be defined as follows:

f(ξ(∅)) = 0, f(ξ({x})) = 1, f(ξ({y})) = 1, f(ξ({z})) = n,

f(ξ({x, y})) = 1, f(ξ({x, z})) = 5, and f(ξ({y, z})) = 5

where n ≥ 5.27 To see that f is ordinally concave, we need to consider different
cases depending on the value of ξ in the definition. Here, we only consider the
first of several cases for illustration, namely the case with ξ = ξ({x, y}), whereas in
Appendix C, we provide a full proof.

Let ξ = ξ({x, y}). Let t ∈ T be the type of the student associated with contract
x and t′ ∈ T be the type of the student associated with contract z. If ξ̃t′c = 0, then
ξ̃ = ξ(∅) or ξ̃ = ξ({y}). For ξ̃ = ξ(∅), we have f(ξ̃ + χc,t) > f(ξ̃). Therefore,
condition (ii) in the definition of ordinal concavity is satisfied. For ξ̃ = ξ({y}),
we have f(ξ − χc,t) = f(ξ) and f(ξ̃ + χc,t) = f(ξ̃). Therefore, condition (iii) in the
definition of ordinal concavity is satisfied. If ξ̃t′c = 1, then ξ̃ = ξ({z}) or ξ̃ = ξ({y, z}).
For both values of ξ̃, f(ξ−χc,t +χc,t′) > f(ξ), which means that condition (i) in the
definition of ordinal concavity is satisfied.

26By inspection of the proof, one can verify that the conclusions of parts (i) and (ii) of the result
hold under a weaker condition than ordinal concavity. More specifically, these conclusions hold if
one of the conditions in the definition of ordinal concavity holds when f(ξ) = f(ξ̃).

27We consider different values of n in the subsequent sections to illustrate different results.
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In the second example, we consider settings in which a number of seats are re-
served for each student type at each school.

Example 2 (Saturated Diversity). For each school c ∈ C and type t ∈ T , let rtc ∈ Z+ be
the number of reserved seats for type-t students at school c. Suppose that Ξ0 = {ξ ∈
Z|C|×|T |+ |

∑
(c,t)∈C×T ξ

t
c ≤ q} for some q ∈ Z+; namely, Ξ0 is the set of distributions

satisfying a capacity constraint. Then, for each ξ ∈ Ξ0,

f s(ξ) =
∑

(c,t)∈C×T

min{ξtc, rtc},

is an ordinally concave function.

As noted in the Introduction, reserves have been studied in the literature and
employed in school choice programs in the real world, e.g., in Chile (Correa et al.,
2019) or India (Sönmez and Yenmez, 2022).28

The next example generalizes reserves so that the marginal value of each type of
student at every school is non-increasing.

Example 3 (Marginally Decreasing Diversity). For each school c ∈ C and type t ∈ T ,
let gc,t be a univariate concave function. Suppose that Ξ0 is defined as in Example
2. Then, for each ξ ∈ Ξ0,

fm(ξ) =
∑

(c,t)∈C×T

gc,t(ξ
t
c)

is an ordinally concave function.

Marginally decreasing diversity allows for the marginal value of an additional
student of a given type to depend on the number of other admitted students of the
same type. The case of saturated diversity is a special case in which the marginal
value is positive and constant up to reserves and then drops to zero. The additional
flexibility of marginally decreasing diversity allows admission offices to make a
more nuanced tradeoff between students of different types than saturated diversity.

We further generalize the example so that diversity also depends on the number
of minority students at the university level.

Example 4 (University Diversity). LetM ⊆ T be a set of minority types. For each
school c ∈ C and type t ∈ T , let gc,t be a univariate concave function. Likewise, let h
be a univariate concave function. Suppose that Ξ0 is defined as in Example 2. Then,

28See also Aygün and Turhan (2017, 2020) for affirmative action in India.
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for each ξ ∈ Ξ0,

fu(ξ) = h

 ∑
(c,t)∈C×M

ξtc

+
∑

(c,t)∈C×T

gc,t(ξ
t
c)

is an ordinally concave function.

In Appendix A, we show that the diversity indices defined in Examples 2-4 satisfy
ordinal concavity (see Proposition 4 and the subsequent paragraph).

3.2. Path Independence and the Law of Aggregate Demand. In this section, we
investigate further desirable properties of the diversity choice rule. We first estab-
lish the following result.

Theorem 2. Suppose that the diversity index f is ordinally concave. Then the diversity
choice rule Cd satisfies path independence.

Even though the diversity choice rule satisfies path independence when the di-
versity index f is ordinally concave, it need not satisfy the law of aggregate demand.
We show this claim simply by providing an example. Let Cd be the diversity choice
rule corresponding to the diversity index in Example 1 when n > 5 for a merit rank-
ing of contracts. ThenCd({x, y, z}) = {z} andCd({x, y}) = {x, y} show thatCd does
not satisfy the law of aggregate demand because |Cd({x, y, z})| < |Cd({x, y})|.

To get the law of aggregate demand, we introduce an additional concavity as-
sumption.

Definition 5. The diversity index f : Ξ0 → R+ is size-restricted concave if, for each
ξ, ξ̃ ∈ Ξ0 with ||ξ|| > ||ξ̃||, there exists (c, t) ∈ C × T with ξtc > ξ̃tc such that

(i) f(ξ − χc,t) > f(ξ), or
(ii) f(ξ̃ + χc,t) > f(ξ̃), or
(iii) f(ξ − χc,t) = f(ξ) and f(ξ̃ + χc,t) = f(ξ̃).

This condition was originally introduced by Yokote et al. (2022) for functions
defined over {0, 1}|C|×|T |.29 We generalize it to functions over Z|C|×|T |+ . Like ordinal
concavity, this condition starts with two given distributions and imposes that the
function value either goes up when one of the distributions is made closer to the
other one or the function values stay the same when both distributions are made

29In Yokote et al. (2022), we consider a combinatorial choice problem without student types and
prove that ordinal concavity and size-restricted concavity are necessary for the induced choice rule
to satisfy path-independence and the law of aggregate demand; see Theorem 2 therein for a formal
statement.
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closer to each other. Different from ordinal concavity, size-restricted concavity re-
quires that the first distribution has a larger sum of coordinates than the second
distribution and, furthermore, when distributions are made closer only a single
coordinate changes.

In Example 1, when n > 5, size-restricted concavity fails. To see this, let ξ =

ξ({x, y}) and ξ̃ = ξ({z}). Then, ξtc > ξ̃tc holds if χc,t = ξ({x}) or χc,t = ξ({y}). If
χc,t = ξ({x}),

f(ξ − χc,t) = f(ξ({y})) = 1 = f(ξ({x, y})) = f(ξ), and

f(ξ̃ + χc,t) = f(ξ({x, z}) = 5 < n = f(ξ({z})) = f(ξ̃),

showing that neither conditions of (i)-(iii) of size-restricted concavity holds. The
same conclusion follows whenχc,t = ξ({y}). One can verify that size-restricted con-
cavity holds when n = 5. Other examples in Section 3.1 also satisfy size-restricted
concavity; see the discussion after Proposition 4 in Appendix A.

Assuming size-restricted concavity of the diversity index, in addition to ordinal
concavity, delivers the law of aggregate demand for the diversity choice rule.30

Theorem 3. Suppose that the diversity index f is ordinally concave and size-restricted
concave. Then the diversity choice rule Cd satisfies the law of aggregate demand.

We note that a choice rule satisfies path-independence and the law of aggregate
demand if, and only if, for each X ⊆ X and x ∈ X \X , one of the following holds:

(i) Cd(X ∪ {x}) = Cd(X),
(ii) Cd(X ∪ {x}) = Cd(X) ∪ {x}, or
(iii) Cd(X ∪ {x}) = (Cd(X) ∪ {x}) \ {y} for some y ∈ Cd(X).

4. Maximizing Merit Subject to a Diversity Level

A university administration may want to maximize merit of an incoming fresh-
man class subject to attaining a given diversity level instead of lexicographically
maximizing these two objectives. In this section, we introduce a family of choice
rules, parameterized by the diversity level, that achieves this goal. Using this fam-
ily, we provide an algorithm that produces the diversity-merit Pareto frontier.

30Theorem 3 also holds under an alternative assumption that f is ordinally concave and monotone;
see the discussion after the proof of Theorem 3.
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4.1. Maximizing Merit Subject to a Target Diversity Level. Let λ ∈ R+ be a target
diversity level. If the diversity level is achievable for a given set of applications, then
the goal is to choose a subset that maximizes merit subject to attaining the diversity
level. Otherwise, if the diversity level is not achievable, then the goal is to maximize
diversity first and merit second as in the diversity choice rule in Section 3.1.

Key to our analysis is to formulate a new diversity index so that the diversity
choice rule developed in the previous section for the new index maximizes merit
subject to achieving the diversity level. Specifically, consider the following modifi-
cation of the original diversity index f , denoted as fλ: for each ξ ∈ Ξ0,

fλ(ξ) = min{f(ξ), λ}.

Therefore, fλ : Ξ0 → R+ is the diversity index that flattens the top part of the diver-
sity index f by λ. For each X ′ ⊆ X , f(ξ(X ′)) ≥ min{f(ξ(Cd(X))), λ} is equivalent
to ξ(X ′) ∈ arg max

ξ∈Ξ0

fλ(ξ), so our goal is to choose X ′ ⊆ X that maximizes merit

subject to ξ(X ′) being an optimum of fλ. This is exactly what the diversity choice
rule does when it is defined using the diversity index fλ, which we denote by Cd

λ.
For example, if λ ≥ f(ξ(Cd(X)), then Cd

λ(X) = Cd(X). If λ = 0, then Cd
λ maximizes

the merit ranking subject to attaining a feasible distribution in Ξ0.
If fλ is ordinally concave, then the desirable properties of Cd established in The-

orems 1 and 2 hold for Cd
λ as well. Unfortunately, ordinal concavity of f does not

necessarily imply ordinal concavity of fλ; see Example 5 in Appendix C. To guar-
antee that fλ is ordinally concave for each λ, we explore other concavity conditions.

Definition 6 (Hafalir et al. (2022a)). The diversity index f : Ξ0 → R+ is pseudo
M\-concave if, for each ξ, ξ̃ ∈ Ξ0 and (c, t) ∈ C × T with ξtc > ξ̃tc, there exists (c′, t′) ∈
(C × T ) ∪ {∅} (with ξt′c′ < ξ̃t

′

c′ whenever (c′, t′) 6= ∅) such that

min{f(ξ), f(ξ̃)} ≤ min{f(ξ − χc,t + χc′,t′), f(ξ̃ + χc,t − χc′,t′)}.

Pseudo M\-concavity is similar in spirit to ordinal concavity in the sense that
both conditions require the value of f to increase when ξ and ξ̃ move toward each
other (recall the interpretation of Definition 4). One can check that the first two
statements in Theorem 1 also hold under pseudo M\-concavity.
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Pseudo M\-concavity of f is logically independent of ordinal concavity of f ,31 but
it is related to ordinal concavity of fλ for each λ ≥ 0.

Proposition 1. If fλ is ordinally concave for each λ ≥ 0, then f is pseudo M\-concave.

Unfortunately, the converse of Proposition 1 does not hold; see Example 6 in Ap-
pendix C. To guarantee the equivalence to ordinal concavity of fλ for each λ ≥ 0,
we strengthen pseudo M\-concavity as follows.

Definition 7. The diversity index f : Ξ0 → R+ is pseudo M\-concave+ if, for each
ξ, ξ̃ ∈ Ξ0 and (c, t) ∈ C × T with ξtc > ξ̃tc, there exists (c′, t′) ∈ (C × T ) ∪ {∅} (with
ξt
′

c′ < ξ̃t
′

c′ whenever (c′, t′) 6= ∅) such that

min{f(ξ), f(ξ̃)} ≤ min{f(ξ − χc,t + χc′,t′), f(ξ̃ + χc,t − χc′,t′)}.

Moreover,

(A) If f(ξ) > f(ξ − χc,t + χc′,t′) and f(ξ̃) = f(ξ̃ + χc,t − χc′,t′) hold, then there exists
(c′′, t′′) ∈ (C × T ) ∪ {∅} (with ξt′′c′′ < ξ̃t

′′

c′′ whenever (c′′, t′′) 6= ∅) such that

f(ξ̃) < f(ξ̃ + χc,t − χc′′,t′′).

(B) If f(ξ̃) > f(ξ̃ + χc,t − χc′,t′) and f(ξ) = f(ξ − χc,t + χc′,t′) hold, then there exists
(c′′, t′′) ∈ (C × T ) ∪ {∅} (with ξt′′c′′ < ξ̃t

′′

c′′ whenever (c′′, t′′) 6= ∅) such that

f(ξ) < f(ξ − χc,t + χc′′,t′′).

By the displayed weak inequality in the definition, the if-clause of (A) is true
only if f(ξ) > f(ξ̃) and that of (B) is true only if f(ξ̃) > f(ξ). Hence, the if-clause
concerns the case when the higher value of f decreases and the lower value of f
remains the same when ξ and ξ̃ move towards each other. In such a case, pseudo
M\-concavity+ requires that there is another coordinate (c′′, t′′) for which the lower
value of f strictly increases as indicated by the displayed strict inequality.

One might find the definition of pseudo-M\-concavity+ complicated. In Appen-
dix C, we introduce a new condition that implies pseudo M\-concavity+ and is more
easily interpretable due to its analogy to the notion of quasi-concavity, an important
assumption on utility functions in the analysis of markets with continuous com-
modities. In the subsequent analysis, we focus on pseudo M\-concavity+ because

31The diversity index in Example 5 satisfies ordinal concavity but violates pseudo M\-concavity.
The diversity index in Example 6 satisfies pseudo M\-concavity but violates ordinal concavity. These
examples are presented in Appendix C.
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it allows us to establish an equivalence result and accommodate a canonical diver-
sity index given in Section 3, as formalized below.

Proposition 2. Function fλ is ordinally concave for each λ ≥ 0 if, and only if, f is pseudo
M\-concave+.

Now we present two diversity indices that are pseudo M\-concave+.

Claim 1. The diversity index f in Example 1 is pseudo M\-concave+.

Claim 2. The saturated diversity f s in Example 2 is pseudo M\-concave+ if Ξ0 = {ξ ∈
Z|C|×|T |+ |

∑
(c,t)∈C×T ξ

t
c ≤ q} for some q ∈ Z+.

Claim 2 implies that the analysis of this section is applicable to the choice rule of
a single school with saturated diversity and a capacity constraint. In Appendix C,
we provide proofs of Claims 1 and 2 as well as a counterexample to Claim 2 when
Ξ0 is not given as in the statement. We note that the diversity indices in Examples
3 and 4 violate pseudo M\-concavity+.

We obtain the following corollary by combining Proposition 2 and Theorem 1.

Corollary 1. Suppose that the diversity index f is pseudo M\-concave+. Then, for each
λ ≥ 0 and set of contracts X ⊆ X ,

(i) Cd
λ(X) maximizes the diversity index fλ among subsets of X . In particular, if λ ≤

f(ξ(Cd(X))), then Cd
λ(X) attains diversity level of at least λ.

(ii) Cd
λ(X) merit dominates each subset X ′ of X with f(ξ(X ′)) ≥ λ, and

(iii) Cd
λ(X) can be calculated in O(|C| × |T | × |X|2) time, assuming f can be evaluated

in a constant time.

Hence, if f is pseudo M\-concave+, then Cd
λ maximizes merit subject to attaining

a diversity level of at least λ, and its outcome can be constructed in quadratic time
in the number of contracts. Under the weaker notion of pseudo M\-concavity, the
first two parts of Corollary 1 continue to hold because pseudo M\-concavity of f
implies that, for each λ, fλ satisfies pseudo M\-concavity. Recall that the first two
statements in Theorem 1 continue to hold under pseudo M\-concavity.

4.2. Diversity-Merit Pareto Frontier. A university administration may not have a
particular target level of diversity in mind but may want to know the diversity-merit
Pareto frontier and choose the incoming class from the Pareto frontier. Therefore,
identifying the Pareto frontier is important, especially for institutions that do not
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have a target diversity level. In this section, we provide an algorithm to find the
diversity-merit Pareto frontier by using the choice rule developed in Section 4.1.

For a given set of applicationsX , we define the diversity-merit Pareto frontier of X ,
P(X), as follows:

P(X) = {Y ⊆ X : 6 ∃Z ⊆ X s.t. Z 6= Y, Z merit dominates Y, and f(ξ(Z)) ≥ f(ξ(Y ))}.

Throughout this section, we assume that the diversity index f takes integer val-
ues.32 We introduce a new algorithm that traces the diversity-merit Pareto frontier.
The algorithm takes a set of contracts X ⊆ X as input and produces a collection of
subsets of X .
Trace Algorithm.

Input: Let X be a set of contracts.
Step 1: Set k = 0, λ0 = 0, and X0 = ∅.
Step 2: Let Xk+1 = Xk ∪ {Cd

λk
(X)}. If Cd

λk
(X) = Cd(X), go to Step 4. Other-

wise, set λk+1 = f(Cd
λk

(X)) + 1 and go to Step 3.
Step 3: Add 1 to k and go to Step 2.
Step 4: Return Xk+1 and stop.

Since the number of contracts is finite, the diversity index f can take only a finite
number of values. Therefore, the algorithm ends at some finite k because Cd(X)

maximizes the diversity index among subsets of X , and it merit dominates any
subset with a diversity index of ξ(Cd(X)) (Theorem 1).

Let α be the maximum value that the diversity index f takes. The main result of
this section is the following.

Theorem 4. Suppose that f is pseudo M\-concave+. Then, for each X ⊆ X , the trace
algorithm outcome is the diversity-merit Pareto frontier P(X). The time complexity of the
algorithm is O(α× |C| × |T | × |X|2), assuming f can be evaluated in a constant time.

Hence, the trace algorithm finds all subsets of the set of applications that gener-
ate the diversity-merit Pareto frontier. The computational part states that the trace
algorithm is pseudo polynomial in the sense that the time complexity is polynomial in
the largest integer present in the input data describing the matching problem. We

32We make this assumption for expositional simplicity of the computational part. Alternatively,
we can assume that f takes real values as in the preceding sections and that we know in advance
the minimum difference between values of f . Our algorithm defined below works by changing the
diversity cutoff λ over the set of possible function values instead of over integers.
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observe that the first part of the result that the trace algorithm finds the diversity-
merit Pareto frontier also holds under pseudo M\-concavity. We illustrate the trace
algorithm in Example 7 in Appendix C.

5. Key Mathematical Results and Proof Sketch of Theorem 1

In this section, we present key mathematical results used in our proofs which
may be of independent interest. Then, we sketch the proof of Theorem 1.

5.1. Matroids and the Greedy Rule. Here, we first follow Oxley (2006) to intro-
duce some basic definitions. Then we provide two novel characterizations of ma-
troids.

A matroid is a pair (X ,F) where X is a finite set of contracts and F is a collection
of subsets of X that satisfies the following three properties.

I1: ∅ ∈ F .
I2: If X ∈ F and X ′ ⊆ X , then X ′ ∈ F .
I3: IfX,X ′ ∈ F and |X| < |X ′|, then there is x ∈ X ′\X such thatX∪{x} ∈ F .

SetX is called the ground set of the matroid. Every set inF is called an independent
set. An independent set is called a base if no proper superset of it is independent.
I3 implies that all bases of a matroid have the same cardinality. In addition, the set
of bases B is characterized by the following two properties.

B1: B is non-empty.
B2: IfX,X ′ ∈ B and x ∈ X \X ′, then there is x′ ∈ X ′ \X such that (X \{x})∪
{x′} ∈ B.

More precisely, if (X ,F) is a matroid, then the set of its bases satisfies B1 and B2;
moreover, if a collection of subsets B satisfies B1 and B2, then there exists a matroid
of which B is the set of bases. The stronger version of B2 where the implication is
(X \ {x})∪ {x′} ∈ B and [(X ′ \ {x′})∪ {x} ∈ B also holds (Brualdi, 1969). We next
consider a weaker version of B2 that we call B2’.

B2’: If X,X ′ ∈ B and x ∈ X \X ′, then there are x′ ∈ X ′ \X and Y ∈ B such
that (X \ {x}) ∪ {x′} ⊆ Y .

That is, we weaken the condition B2 by requiring (X \ {x})∪{x′} is only a subset of
an element of B.

In the next lemma, we provide a new characterization for the set of bases of a
matroid.



DESIGN ON MATROIDS 21

Lemma 1. Let B be a collection of subsets of X . Then B is the collection of bases of a
matroid on X if, and only if, B1 and B2’ hold.

As already mentioned, it is well known that B1 and B2 provide a characterization
for the set of bases. In our proof, we show that B1 and B2’ imply B2. Therefore, B1
and B2’ provide another characterization of the set of bases, which is easier to check
than B1 and B2 since B2’ is weaker than B2. We use this characterization in our
proofs, and we note that this is a novel characterization that may be of independent
interest and prove useful elsewhere.

The following is a well-known algorithm, referred to as the greedy algorithm in
the combinatorial-optimization literature. To define it, we assume that there exists a
weight function on the set of contracts that assigns a distinct real number to every
contract. By changing the set of available contracts, we get a well-defined choice
rule. Therefore, we refer to it as the greedy rule.
Greedy Rule.

Input: Let X ⊆ X and F be a collection of subsets of X .
Step 1: Set X0 = ∅ and k = 0.
Step 2: If there exist x ∈ X\Xk and Y ∈ F such thatXk∪{x} ⊆ Y , then choose

such a contract xk+1 with the highest non-negative weight, let Xk+1 = Xk ∪
{xk+1}, and go to Step 3.33 Otherwise, go to Step 4.

Step 3: Add 1 to k and go to Step 2.
Step 4: Return Xk+1 and stop.

When (X ,F) is a matroid, the greedy rule produces an independent set that max-
imizes the total weight among all independent sets that can be chosen. We next
provide a new characterization of matroids using properties of the greedy rule.

Proposition 3. Let F be a nonempty collection of subsets of X . The following statements
are equivalent.

(1) (X ,F) is a matroid.
(2) For all weight functions on X , the greedy rule satisfies path independence.
(3) For all weight functions on X , the greedy rule satisfies path independence and the

law of aggregate demand.

33A more common definition of the greedy rule requires Xk ∪ {x} ∈ F instead of the existence
of Y ∈ F withXk ∪{x} ⊆ Y . Clearly, that definition is equivalent to the present definition if (X,F)
satisfies I2, and hence in particular, if it is a matroid.
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If (X ,F) is a matroid, then the greedy rule satisfies path independence (Fleiner,
2001) and the law of aggregate demand (Yokoi, 2019). Therefore, (1) implies (3).
Furthermore, (3) implies (2) trivially. In our proof, we show that if the greedy rule
satisfies path independence for all weight functions on X , then (X ,F) is a matroid
using our matroid characterization above (Lemma 1), completing the proof.

5.2. Convexity for Discrete Sets. We use two notions of convexity for discrete sets.
See Murota (2003) for intuition and details. The first one is M-convexity.

Definition 8. A set of distributions Ξ is M-convex if, for any ξ, ξ̃ ∈ Ξ and (c, t) ∈ C ×T
with ξtc > ξ̃tc, there exists (c′, t′) ∈ C × T with ξt′c′ < ξ̃t

′

c′ such that

ξ − χc,t + χc′,t′ ∈ Ξ and ξ̃ + χc,t − χc′,t′ ∈ Ξ.

The second convexity notion is a weakening of M-convexity.

Definition 9. A set of distributions Ξ is M\-convex if, for any ξ, ξ̃ ∈ Ξ and (c, t) ∈ C×T
with ξtc > ξ̃tc, then there exists (c′, t′) ∈ (C×T )∪{∅} (with ξt′c′ < ξ̃t

′

c′ whenever (c′, t′) 6= ∅)
such that

ξ − χc,t + χc′,t′ ∈ Ξ and ξ̃ + χc,t − χc′,t′ ∈ Ξ.

Given a set of distributions Ξ and a distribution ξ ∈ Ξ, we say that ξ is maximal
in Ξ if there exists no ξ′ ∈ Ξ \ {ξ} such that ξ′ ≥ ξ. Therefore, the set of maximal
distributions in Ξ is given by {ξ ∈ Ξ|@ξ′ ∈ Ξ such that ξ′ ≥ ξ and ξ′ 6= ξ}.

The following lemma shows that a similar relation to the one between indepen-
dent sets and bases also holds between M\-convex sets and M-convex sets.34

Lemma 2. The set of maximal distributions in an M\-convex set is M-convex.

5.3. Sketch of the Proof of Theorem 1. In Theorem 1, ordinal concavity matters
in two ways: to choose a set that maximizes merit among diverse sets and to make
this selection computationally tractable.

The first statement in Theorem 1 that the diversity choice rule outcome maxi-
mizes diversity among all subsets of the set of applications follows by construction.
Therefore, we discuss the proofs for the second and third statements. We provide a
high-level explanation of our proofs and also illustrate each step of the construction
in the diversity choice rule using Example 1.

34Theorem 2.3 in Fujishige (2005) proves that the set of maximal elements in an integral g-
polymatroid is an integral base polyhedron. An integral g-polymatroid is a convex hull of an M\-
convex set, and an integral base polyhedron is a convex hull of an M-convex set. One can prove
Lemma 2 by using this result. In Appendix C, we provide an independent proof.
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Fix a set of contracts X ⊆ X . The proof that Cd(X) maximizes merit among
all subsets of X that maximize diversity has three main steps and uses discrete
convexity notions as well as matroid theory.
Step 1: The set of maximal distributions in Ξ∗(X) is an M-convex set.

First, we study the structure of Ξ∗(X) that we find in the diversity choice rule
construction. We show that if the diversity index f is ordinally concave, then Ξ∗(X)

satisfies M\-convexity. Since the diversity choice rule produces an outcome that is
maximal in Ξ∗(X), we focus on maximal distributions in Ξ∗(X). By Lemma 2, the
set of maximal distributions in an M\-convex set is M-convex; therefore, the set of
maximal distributions in Ξ∗(X) is M-convex (Lemma 3).

Consider Example 1. Let n = 5 and X = {x, y, z}. For the first step, we max-
imize f on Ξ0 = {ξ : ||ξ|| ≤ 2} and get Ξ∗(X) = {ξ({z}), ξ({x, z}), ξ({y, z})},
which is an M\-convex set. The set of maximal distributions in Ξ∗(X) is equal to
{ξ({x, z}), ξ({y, z})}, which is an M-convex set.
Step 2: Let F(X) ≡ {X ′ ⊆ X|ξ(X ′) ≤ ξ for some ξ ∈ Ξ∗(X)}. (X,F(X)) is a
matroid.

Next, we consider subsets of X that have a distribution less than or equal to a
distribution in Ξ∗(X), and, hence, these sets have a distribution less than or equal
to a maximal distribution in Ξ∗(X). F(X) is the collection of such sets. Depending
on the merit ranking, the diversity choice rule can produce any maximal set inF(X)

because in Step 2 of the diversity choice rule construction contracts are chosen so
that the outcome has a maximal distribution in Ξ∗(X). Therefore, the structure
of maximal sets in F(X) plays a crucial role. We show M-convexity of the set of
maximal distributions in Ξ∗(X) implies that the maximal sets in F(X) satisfy the
base axioms B1 and B2’, which we use in Lemma 1 to characterize the set of bases
of a matroid, so (X,F(X)) is a matroid (Lemma 4).

In Example 1, when n = 5 and X = {x, y, z}, the set of maximal distributions in
Ξ∗(X) is equal to {ξ({x, z}), ξ({y, z})}. Therefore, the collection of maximal sets in
F(X) is equal to {{x, z}, {y, z}}, which satisfy the base axioms. Hence, (X,F(X)) =

(X, {∅, {x}, {y}, {z}, {x, z}, {y, z}}) is a matroid.
Step 3: The greedy rule on (X,F(X)) produces Cd(X).

Finally, we show that the greedy rule on matroid (X,F(X)) produces Cd(X)

(Lemma 5). Thus, Cd(X) is a base of the matroid (X,F(X)). Gale (1968) shows
that the greedy rule outcome merit dominates any independent set. Therefore,
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Cd(X) merit dominates any set in F(X), which includes subsets of X that maxi-
mize diversity.

In Example 1, when n = 5 and X = {x, y, z}, the greedy rule on (X,F(X))

may produce {x, z} and {y, z} depending on the relative merit ranking of x and y.
Therefore, if x � y, then the diversity choice rule produces {x, z}, and, if y � x,
then the diversity choice rule produces {y, z}.

The proof of the third statement in Theorem 1 works in two main steps. In the
first step, we generalize a technique used in discrete convex analysis to our setting
to find a distribution that maximizes the diversity index. Step 1 of the diversity
choice rule involves the problem of finding a distribution in Ξ∗(X), i.e., a maximizer
of f(ξ) subject to 0 ≤ ξ ≤ ξ(X). Clearly, checking all distributions is computation-
ally hard because the size of the domain depends exponentially on the number
of colleges and types (recall Ξ0 ⊆ Z|C|×|T |+ ). We instead generalize the so-called
domain-reduction algorithm to our setting.

We illustrate the algorithm in Example 1. Let n = 5 and X = {x, y, z}. Since
|C| × |T | = 3, we identify Z|C|×|T |+ with Z3

+ and assume that ξ({x}) = (1, 0, 0),
ξ({y}) = (0, 1, 0), and ξ({z}) = (0, 0, 1). The algorithm starts from ξ = (0, 0, 0)

and iteratively updates ξ until it reaches a maximizer of f . In every iteration, we
identify a direction d ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} in which f(ξ + d) is maximized.
By the definition of f ,

f((0, 0, 0) + d) =

1 if d = (1, 0, 0) or (0, 1, 0),

5 if d = (0, 0, 1).

The maximum function value is attained when (0, 0, 0) moves toward the direction
d = (0, 0, 1), so we update ξ = (0, 0, 0) to ξ + d = (0, 0, 1). Importantly, d = (0, 0, 1)

being a solution to the maximization problem implies that there exists a maximizer
ξ∗ of f with ξ∗ ≥ (0, 0, 1) due to the maximizer-cut theorem (Theorem 5) that we
establish for ordinally concave functions.35 In words, we can “cut off” distributions
that have zero as their third coordinate and reduce the set of distributions we search
for from {ξ : ξ ≥ (0, 0, 0)} to {ξ : ξ ≥ (0, 0, 1)}.

35We verify the maximizer-cut theorem in the current example. The maximizers of f are
(0, 0, 1)(= ξ({z})), (1, 0, 1)(= ξ({x, z})), (0, 1, 1)(= ξ({y, z})),

showing that there exists a maximizer with the third coordinate being one (each maximizer satisfies
the condition).
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The algorithm terminates when ξ does not increase in any direction, which is
interpreted as ξ locally maximizing diversity. We prove that local maximization
implies global maximization, i.e., the final distribution ξ is a global maximizer and,
hence, included in Ξ∗(X) (Lemma 9).36 At each iteration, the number of directions
that we search for is |C| × |T |. Furthermore, since the domain for maximization
is restricted to {ξ : 0 ≤ ξ ≤ ξ(X)} and shrinks in every iteration, the number
of iterations is at most ||ξ(X)||, which is bounded by |X|, a linear function of the
number of applications. Hence, the domain-reduction algorithm finds a maximizer
in O(|C| × |T | × |X|).

The domain-reduction algorithm finds one maximizer, but Step 2 of the diversity
choice rule searches for all maximizers. It turns out that the process of checking all
maximizers can be simplified to checking only local distributions around a maxi-
mizer (Lemma 11), which is more computationally tractable. Building upon this
finding, we develop a modified version of the diversity choice rule and show that
the new choice rule produces the same outcome as the original one (Lemma 12)
and can be calculated in O(|C| × |T | × |X|2).

6. Conclusion

When institutions hire workers or admit students, they often have dual objec-
tives of diversity and meritocracy that may conflict with each other. In this con-
text, we have identified a family of institutional choice rules with appealing prop-
erties. First, the choice rules maximize merit subject to attaining a diversity level in a
computationally efficient manner. Second, they satisfy path-independence, which
guarantees that the chosen set of applicants does not depend on the order of se-
lection. Finally, a subclass of those choice rules satisfy the law of aggregate de-
mand. The latter two properties guarantee that there exists a stable and strategy-
proof matching mechanism. We have also introduced the trace algorithm to find
the diversity-merit Pareto frontier. We anticipate that our results will be useful in
markets where there are dual objectives, such as diversity and meritocracy.

We assume that the diversity of a group of agents is measured by an index satisfy-
ing ordinal concavity, a notion of discrete concavity that we introduce. Since ordinal
concavity allows the greedy algorithm to be effectively used in discrete optimiza-
tions problems faced in economics, operations research, and computer science),

36This implication is reminiscent of the same property under the standard concavity for univari-
ate continuous functions. In the formal proof, we show that the final distribution ξ is a maximal
distribution in Ξ∗(X) (Lemma 10).
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our novel notion and its desirable properties may prove useful in other applica-
tions in the future.

Lastly, our analysis has highlighted an intimate connection between the theo-
ries of discrete convexity and matroids. For instance, we have provided two novel
characterizations of matroids, which are important results by themselves. More-
over, we introduced and analyzed different concavity notions such as pseudo M\-
concavity+.37 We envision that those concavity notions may prove useful in other
studies.
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Appendix A. Concavity Notions for Discrete Functions

There are two notions of concavity for discrete functions that are commonly used
in discrete mathematics. The first one is the following.

Definition 10. A function f is M-concave if, for each ξ, ξ̃ ∈ Ξ0 and (c, t) ∈ C × T with
ξtc > ξ̃tc, there exists (c′, t′) ∈ C × T with ξt′c′ < ξ̃t

′

c′ such that

f(ξ − χc,t + χc′,t′) + f(ξ̃ + χc,t − χc′,t′) ≥ f(ξ) + f(ξ̃).

A weaker version of M-concavity is also used.

Definition 11. A function f is M\-concave if, for each ξ, ξ̃ ∈ Ξ0 and (c, t) ∈ C × T with
ξtc > ξ̃tc, there exists (c′, t′) ∈ (C ×T )∪{∅} (with ξt′c′ < ξ̃t

′

c′ whenever (c′, t′) 6= ∅) such that

f(ξ − χc,t + χc′,t′) + f(ξ̃ + χc,t − χc′,t′) ≥ f(ξ) + f(ξ̃).

Even though our ordinal concavity is an ordinal concept, M-concavity and M\-
concavity both depend on the cardinal values that the diversity index takes. Fur-
thermore, both M\-concavity and M-concavity imply ordinal concavity.

Proposition 4. If a function is M\-concave, then it is ordinally concave. There exists an
ordinally concave function that is not M\-concave.

The diversity indices defined in Examples 2-4 satisfy M\-concavity (see page 140
of Murota (2003)).38 Therefore, by Proposition 4, they also satisfy ordinal concavity.

M\-concavity of f implies the following condition (see Murota and Shioura
(2018)): for each ξ, ξ̃ ∈ Ξ0 with ||ξ|| > ||ξ̃||, there exists (c, t) ∈ C × T with ξtc > ξ̃tc
such that

f(ξ − χc,t) + f(ξ̃ + χc,t) ≥ f(ξ) + f(ξ̃).

One can easily verify that this condition is stronger than size-restricted concavity.
Hence, the diversity indices defined in Examples 2-4 satisfy size-restricted concav-
ity.

38These diversity indices satisfy M\-concavity if Ξ0 is an M\-convex set (recall the definition in
Section 5.2), which is true if Ξ0 is given by the set of distributions satisfying a capacity constraint as
in the examples.
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Appendix B. Main Proofs

In this section, we include the proofs of our main result.
For each contract x ∈ X , the school associated with the contract is denoted by

γ(x) ∈ C and the student associated with the contract is denoted by σ(x) ∈ S.

Proof of Lemma 1. The collection of bases of a matroid satisfies B1 and B2. Fur-
thermore, B2 implies B2’. Therefore, the collection of bases of a matroid satisfies B1
and B2’. To finish the proof, we need to show that B1 and B2’ imply B2.

Suppose, for contradiction, that B2 does not hold. Then, there exist X1, X2 ∈ B
and x1 ∈ X1 \X2 such that for each x ∈ X2 \X1 we have (X1 \ {x1})∪ {x} 6∈ B. B2’
implies that there exist x2 ∈ X2 \X1 and Y ∈ B such that (X1 \ {x1}) ∪ {x2} ⊆ Y .
Note that we also have (X1 \ {x1}) ∪ {x2} 6∈ B since x2 ∈ X2 \ X1 and, therefore,
we can take x = x2 in (X1 \ {x1}) ∪ {x} 6∈ B. Furthermore, since B2’ implies that
there cannot be two sets in B such that one is a proper subset of the other, X1 is not
a subset of Y . Therefore, x1 /∈ Y because otherwiseX1 would be a proper subset of
Y .

LetZ = Y \(X1\{x1}). ThenZ = Y \X1 sinceY does not include x1. Furthermore,
x2 ∈ Y and x2 /∈ X1 imply that x2 ∈ Z.

Now let X∗1 = Y and X∗2 = X1. We have

(i) X∗1 , X
∗
2 ∈ B,

(ii) X∗1 \X∗2 = Y \X1 = Z, and
(iii) X∗2 \X∗1 = X1 \ Y = {x1}.

By B2’, since x2 ∈ X∗1 \ X∗2 = Z, there exists y ∈ X∗2 \ X∗1 = {x1} such that (X∗1 \
{x2}) ∪ {y} ⊆ Y ′ for some Y ′ ∈ B. However, y = x1 implies (X∗1 \ {x2}) ∪ {y} =

(Y \ {x2}) ∪ {x1} ⊇ X1. Since Y ′ ⊇ X1 and Y ′, X1 ∈ B, B2’ implies that Y ′ = X1.
Hence,

X1 = Y ′ ⊇ (Y \ {x2}) ∪ {x1},

which implies that Y = (X1\{x1})∪{x2} because, by construction, Y ⊇ (X1\{x1})∪
{x2} and x1 /∈ Y . This is a contradiction since (X1 \ {x1}) ∪ {x2} /∈ B and Y ∈ B.
Hence, B1 and B2’ imply B2. Therefore, B1 and B2’ provide a characterization of
the collection of bases of a matroid. �

Proof of Theorem 1. We first prove parts (i) and (ii) using the following lemmas.

Lemma 3. Suppose that the diversity index f is ordinally concave. For each set of contracts
X ⊆ X , the set of maximal distributions in Ξ∗(X) is M-convex.
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Proof of Lemma 3. Let ξ, ξ̃ ∈ Ξ∗(X) be two distinct distributions, c ∈ C a school, and
t ∈ T a type such that ξtc > ξ̃tc. By ordinal concavity, either (i)

f(ξ − χc,t) = f(ξ) and f(ξ̃ + χc,t) = f(ξ̃)

or (ii) there exist school c′ ∈ C and type t′ ∈ T with ξt′c′ < ξ̃t
′

c′ such that

f(ξ − χc,t + χc′,t′) = f(ξ) and f(ξ̃ + χc,t − χc′,t′) = f(ξ̃).

If (i) holds, then ξ − χc,t ∈ Ξ∗(X) and ξ̃ + χc,t ∈ Ξ∗(X). Otherwise, if (ii) holds,
then ξ − χc,t + χc′,t′ ∈ Ξ∗(X) and ξ̃ + χc,t − χc′,t′ ∈ Ξ∗(X). Therefore, Ξ∗(X) is an
M\-convex set.

We finish the proof by using Lemma 2: M\-convexity of Ξ∗(X) implies that the
set of maximal distributions in Ξ∗(X) is M-convex. �

Recall the definition of F(X) ≡ {Y ⊆ X|ξ(Y ) ≤ ξ for some ξ ∈ Ξ∗(X)}.

Lemma 4. Suppose that the diversity index f is ordinally concave. For each set of contracts
X ⊆ X , (X,F(X)) is a matroid.

Proof of Lemma 4. We show that the maximal sets in F(X) satisfy B1 and B2’, which
together with Lemma 1 implies that they are the bases of a matroid. SinceF(X) sat-
isfies I2,F(X) is the collection of subsets of the bases, which implies that (X,F(X))

is a matroid (see Theorem 1.2.3 of Oxley (2006)). Since X is a finite set, Ξ∗(X) is
nonempty. Therefore, B1 is satisfied.

We now show B2’. Let X1 and X2 be two distinct maximal sets in F(X). Then,
by construction, ξ(X1) and ξ(X2) are maximal distributions in Ξ∗(X). We consider
two cases in the rest of the proof.

In the first case, for each school c ∈ C and type t ∈ T , ξtc(X1) = ξtc(X2). Since
X1 6= X2, |X1\X2| > 0. Then, for each x1 ∈ X1\X2, there exists x2 ∈ X2\X1 such that
γ(x1) = γ(x2) and τ(σ(x1)) = τ(σ(x2)). Therefore, ξ((X1\{x1})∪{x2}) = ξ(X1) and
so f(ξ((X1\{x1})∪{x2}) = f(ξ(X1)), which implies that (X1\{x1})∪{x2} ∈ F(X).
Therefore, B2’ is satisfied.

In the second case, there exist school c ∈ C and type t ∈ T such that ξtc(X1) >

ξtc(X2). Since ξ(X1), ξ(X2) ∈ Ξ∗(X) and the set of maximal distributions in Ξ∗(X) is
an M-convex set (Lemma 2), there exist school c′ ∈ C and type t′ ∈ T with ξt′c′(X1) <

ξt
′

c′(X2) such that ξ(X1)−χc,t +χc′,t′ ∈ Ξ∗(X) and ξ(X2) +χc,t−χc′,t′ ∈ Ξ∗(X). Since
ξtc(X1) > ξtc(X2) and ξt

′

c′(X1) < ξt
′

c′(X2), there exist x1 ∈ X1 \ X2 and x2 ∈ X2 \ X1
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such that γ(x1) = c, τ(σ(x1)) = t, γ(x2) = c′, and τ(σ(x2)) = t′. Therefore,

ξ((X1 \ {x1}) ∪ {x2}) = ξ(X1)− χc,t + χc′,t′ ∈ Ξ∗(X),

which implies that (X1 \ {x1}) ∪ {x2} ∈ F(X). Therefore, B2’ is satisfied.
In both cases, we have shown B1 and B2’ and (X,F(X)) is a matroid. �

Lemma 5. Suppose that the diversity index f is ordinally concave. Then, for each set of
contracts X ⊆ X , the greedy rule on matroid (X,F(X)) produces Cd(X) when the set of
available contracts is X .39

Proof of Lemma 5. We show by induction that Cd and the greedy rule choose the
same set of contracts for each index k used in the definitions of both choice rules
and terminate at the same index. LetXk be defined as in the construction of Cd(X)

andX ′k be analogously defined for the greedy rule. For k = 0, we haveXk = ∅ = X ′k.
By mathematical induction hypothesis, suppose thatXj = X ′j for each j = 0, . . . , k.
We now show the hypothesis for j = k + 1.

By the induction hypothesis, {x ∈ X \Xk|∃ξ ∈ Ξ∗(X) s.t. ξ(Xk ∪ {x}) ≤ ξ} used
in the construction of Cd is the same as {x ∈ X \X ′k|∃Y ⊆ F(X) s.t. X ′k ∪{x} ⊆ Y }
used in the greedy rule description. Therefore, either both algorithms terminate at
index k and produceXk = X ′k or the same contract x is chosen so thatXk+1 = X ′k+1.
This finishes the proof of the mathematical induction hypothesis.

Therefore, the greedy rule on matroid (X,F(X)) produces Cd(X). �

Now, we finish the proofs of parts (i) and (ii). By Lemma 5,Cd(X) is a base of the
matroid (X,F(X)). Therefore, by construction of F(X), ξ(Cd(X)) ∈ Ξ∗(X), which
means that Cd(X) maximizes the diversity index f among subsets of X . Further-
more, by (Gale, 1968), Cd(X) merit dominates each set in F(X), which includes all
subsets of X that maximizes the diversity index.

We continue with the proof of part (iii). We prove the result in a number of steps.
Step 1: We prove the so-called maximizer-cut theorem for ordinally concave func-
tions.40

39To dfine the greedy rule, we set a weight function in such a way that a contract with a higher
merit has a higher weight.

40The maximizer-cut theorem is originally proved for M-convex functions under the name of
minimizer-cut theorem; see Theorem 6.28 of Murota (2003). We build on Murota’s proof. Roughly
speaking, this theorem states that we can “cut” non-maximizers from the domain containing a max-
imizer of f .
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Lemma 6. Let f be ordinally concave, ξ ∈ Ξ0, (c, t) ∈ (C × T ) ∪ {∅}, and (c′, t′) ∈
(C × T ) ∪ {∅} be such that

f(ξ − χc′,t′ + χc,t) = max
(c̃′,t̃′)∈(C×T )∪{∅}

f(ξ − χc̃′ t̃′ + χc,t).

Then, there exists ξ∗ ∈ arg max
ξ∈Ξ0

f(ξ) with (ξ∗)t
′

c′ ≤ ξt
′

c′ − 1 + (χc,t)
t′

c′ .

Proof of Lemma 6. Let ξ′ = ξ−χc′,t′+χc,t. Suppose, for contradiction, that there does
not exist ξ∗ ∈ arg max

ξ∈Ξ0

f(ξ) with (ξ∗)t
′

c′ ≤ (ξ′)t
′

c′ . Let ξ∗ be an element of arg max
ξ∈Ξ0

f(ξ)

that minimizes the (c′, t′) coordinate. By assumption, we have (ξ∗)t
′

c′ > (ξ′)t
′

c′ . By
ordinal concavity, there exists (c′′, t′′) ∈ (C×T )∪{∅} (with (ξ′)t

′′

c′′ > (ξ∗)t
′′

c′′ if (c′′, t′′) 6=
∅) such that

(1) f(ξ∗ − χc′,t′ + χc′′,t′′) > f(ξ∗) or
(2) f(ξ′ + χc′,t′ − χc′′,t′′) > f(ξ′) or
(3) f(ξ∗ − χc′,t′ + χc′′,t′′) = f(ξ∗) and f(ξ′ + χc′,t′ − χc′′,t′′) = f(ξ′).

If condition (3) holds, then ξ∗−χc′,t′+χc′′,t′′ ∈ arg max
ξ∈Ξ0

f(ξ) and (ξ∗−χc′,t′+χc′′,t′′)t
′

c′ <

(ξ∗)t
′

c′ , a contradiction to the choice of ξ∗. Condition (1) is impossible because ξ∗ ∈
arg max
ξ∈Ξ0

f(ξ). If condition (2) holds,

f(ξ − χc′′,t′′ + χc,t) = f(ξ′ + χc′,t′ − χc′′,t′′) > f(ξ′) = f(ξ − χc′,t′ + χc,t),

a contradiction to the choice of (c′, t′). �

Lemma 7. Let f be ordinally concave, ξ ∈ Ξ0 with ξ /∈ arg max
ξ∈Ξ0

f(ξ), and (c, t), (c′, t′) ∈

(C × T ) ∪ {∅} be such that

f(ξ − χc′,t′ + χc,t) = max
(c̃′,t̃′)∈(C×T )∪{∅}

max
(c̃,t̃)∈(C×T )∪{∅}

f(ξ − χc̃′,t̃′ + χc̃,t̃).

Then, (c, t) 6= ∅ or (c′, t′) 6= ∅ holds.

Proof of Lemma 7. Suppose, for contradiction, that (c, t) = (c′, t′) = ∅, i.e.,

f(ξ) = max
(c̃′,t̃′)∈(C×T )∪{∅}

max
(c̃,t̃)∈(C×T )∪{∅}

f(ξ − χc̃′,t̃′ + χc̃,t̃).

Let ξ∗ be an element of arg max
ξ∈Ξ0

f(ξ) that minimizes
∑

(c̃,t̃) |(ξ∗)t̃c̃ − ξ t̃c̃|. Since ξ /∈

arg max
ξ∈Ξ0

f(ξ), there exists (c′′, t′′) ∈ C×T with (ξ∗)t
′′

c′′ 6= ξt
′′

c′′ . Suppose that (ξ∗)t
′′

c′′ > ξt
′′

c′′

(the other case (ξ∗)t
′′

c′′ < ξt
′′

c′′ can be handled analogously). By ordinal concavity,
there exists (c′′′, t′′′) ∈ (C × T ) ∪ {∅} (with ξt′′′c′′′ > (ξ∗)t

′′′

c′′′ if (c′′′, t′′′) 6= ∅) such that
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(1) f(ξ∗ − χc′′,t′′ + χc′′′,t′′′) > f(ξ∗) or
(2) f(ξ + χc′′,t′′ − χc′′′,t′′′) > f(ξ) or
(3) f(ξ∗ − χc′′,t′′ + χc′′′,t′′′) = f(ξ∗) and f(ξ + χc′′,t′′ − χc′′′,t′′′) = f(ξ).

If condition (3) holds, then ξ∗ − χc′′,t′′ + χc′′′,t′′′ ∈ arg max
ξ∈Ξ0

f(ξ) and

∑
(c̃,t̃)

|(ξ∗ − χc′′,t′′ + χc′′′,t′′′)
t̃
c̃ − ξ t̃c̃| <

∑
(c̃,t̃)

|(ξ∗)t̃c̃ − ξ t̃c̃|,

which is a contradiction to the choice of ξ∗. Condition (1) is impossible because ξ∗ ∈
arg max
ξ∈Ξ0

f(ξ). If condition (2) holds, we obtain a contradiction to the assumption

made in the beginning of the proof. �

Theorem 5 (Maximizer-cut theorem). Let f be ordinally concave, ξ ∈ Ξ0 with ξ 6∈
arg max
ξ∈Ξ0

f(ξ), and (c, t), (c′, t′) ∈ (C × T ) ∪ {∅} be such that

f(ξ − χc′,t′ + χc,t) = max
(c̃,t̃),(c̃′,t̃′)∈(C×T )∪{∅}

f(ξ − χc̃′,t̃′ + χc̃,t̃).

Then, (c, t) 6= ∅ or (c′, t′) 6= ∅ holds and the following statements hold:

(i) If (c, t) 6= ∅ and (c′, t′) = ∅, then there exists ξ∗ ∈ arg max
ξ∈Ξ0

f(ξ) with (ξ∗)tc ≥ ξtc + 1,

(ii) If (c, t) = ∅ and (c′, t′) 6= ∅, then there exists ξ∗ ∈ arg max
ξ∈Ξ0

f(ξ) with (ξ∗)t
′

c′ ≤ ξt
′

c′−1,

(iii) If (c, t) 6= ∅ and (c′, t′) 6= ∅, then there exists ξ∗ ∈ arg max
ξ∈Ξ0

f(ξ) with (ξ∗)tc ≥ ξtc + 1

and (ξ∗)t
′

c′ ≤ ξt
′

c′ − 1.

Proof of Theorem 5. Note that (c, t) 6= ∅ or (c′, t′) 6= ∅ follows from Lemma 7.
Proof of (i): Let ξ′ = ξ + χc,t. Suppose, for contradiction, that there does not exist
ξ∗ ∈ arg max

ξ∈Ξ0

f(ξ) with (ξ∗)tc ≥ (ξ′)tc. Let ξ∗ be an element of arg max
ξ∈Ξ0

f(ξ) that

maximizes the (c, t) coordinate. By assumption, we have (ξ∗)tc < (ξ′)tc. By ordinal
concavity, there exists (c′′, t′′) ∈ (C × T ) ∪ {∅} (with (ξ∗)t

′′

c′′ > (ξ′)t
′′

c′′ if (c′′, t′′) 6= ∅)
such that

(1) f(ξ′ − χc,t + χc′′,t′′) > f(ξ′) or
(2) f(ξ∗ + χc,t − χc′′,t′′) > f(ξ∗) or
(3) f(ξ′ − χc,t + χc′′,t′′) = f(ξ′) and f(ξ∗ + χc,t − χc′′,t′′) = f(ξ∗).

If condition (3) holds, then ξ∗+χc,t−χc′′,t′′ ∈ arg max
ξ∈Ξ0

f(ξ) and (ξ∗+χc,t−χc′′,t′′)tc >

(ξ∗)tc, a contradiction to the choice of ξ∗. Condition (2) is impossible because ξ∗ ∈
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arg max
ξ∈Ξ0

f(ξ). If condition (1) holds,

f(ξ + χc′′,t′′) = f(ξ′ − χc,t + χc′′,t′′) > f(ξ′) = f(ξ + χc,t),

which is a contradiction to the choices of (c, t) and (c′, t′).
Proof of (ii): The proof is similar to that for (i).
Proof of (iii): Let ξ′ = ξ−χc′,t′+χc,t. By Lemma 6, there exists ξ∗ ∈ arg max

ξ∈Ξ0

f(ξ) such

that (ξ∗)t
′

c′ ≤ (ξ′)t
′

c′ ; we assume ξ∗ maximizes (ξ∗)tc among all such vectors. Suppose,
for contradiction, that (ξ∗)tc ≥ (ξ′)tc is not satisfied, i.e., (ξ∗)tc < (ξ′)tc. By ordinal
concavity, there exists (c′′, t′′) ∈ (C × T ) ∪ {∅} (with (ξ∗)t

′′

c′′ > (ξ′)t
′′

c′′ if (c′′, t′′) 6= ∅)
such that

(1) f(ξ′ − χc,t + χc′′,t′′) > f(ξ′) or
(2) f(ξ∗ + χc,t − χc′′,t′′) > f(ξ∗) or
(3) f(ξ′ − χc,t + χc′′,t′′) = f(ξ′) and f(ξ∗ + χc,t − χc′′,t′′) = f(ξ∗).

Suppose that condition (3) holds, which implies ξ∗ + χc,t − χc′′,t′′ ∈ arg max
ξ∈Ξ0

f(ξ).

By Lemma 7, we have (c, t) 6= (c′, t′) and hence (ξ∗ + χc,t − χc′′,t′′)
t′

c′ ≤ (ξ∗)t
′

c′ . To-
gether with (ξ∗+χc,t−χc′′,t′′)tc > (ξ∗)tc, we obtain a contradiction to the choice of ξ∗.
Condition (2) is impossible because ξ∗ ∈ arg max

ξ∈Ξ0

f(ξ). If condition (1) holds,

f(ξ − χc′,t′ + χc′′,t′′) = f(ξ′ − χc,t + χc′′,t′′) > f(ξ′) = f(ξ − χc′,t′ + χc,t),

which is a contradiction to the choices of (c, t) and (c′, t′). �

Two remarks on Theorem 5 are in order.
• Although we assume that Ξ0 ⊆ Z|C|×|T |+ , 0 ∈ Ξ0, and f(ξ) ≥ 0 for each ξ ∈ Ξ0,

neither of these assumptions is used in the proof. Hence, the maximizer-cut
theorem holds for ordinally concave functions more generally.
• Among the three statements (i)-(iii), we use only the first one in the proof

below.
Step 2: We develop a variation of the domain-reduction algorithm that produces a
maximizer of the diversity index that is maximal in the set of maximizers.41 Fix an
ordinally concave f .
Domain-reduction algorithm.

Input: Let X be a set of contracts.

41The domain-reduction algorithm is originally introduced for M-convex functions; see Section
10.1.3 of Murota (2003).
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Step 1: Set ξ0 = 0 and k = 0.
Step 2: Check if

f(ξk) ≤ max{f(ξk + χc̃,t̃) | (c̃, t̃) ∈ C × T , ξk + χc̃,t̃ ≤ ξ(X)}.

If this is the case, then choose a maximizer (ck+1, tk+1) of the right-hand side,
let ξk+1 = ξk + χck+1,tk+1

, and go to Step 3. Otherwise, go to Step 4.
Step 3: Add 1 to k and go to Step 2.
Step 4: Return ξk and stop.

Let k∗ denote the value of k at the end of the algorithm. For each k ∈ {0, . . . , k∗}, let
Ξ0
k = {ξ ∈ Ξ0 | ξk ≤ ξ ≤ ξ(X)} and fk : Ξ0

k → R+ be defined as fk(ξ) = f(ξ) for all
ξ ∈ Ξ0

k. One can verify that ordinal concavity of f is inhereted to fk for each k. We
prove that the algorithm produces a maximal distribution in arg max

ξ∈Ξ0
0

f0(ξ) = Ξ∗(X)

(recall the notation in the definition of the diversity choice rule) by establishing
three lemmas.

Lemma 8. For each k ∈ {0, . . . , k∗}, max
ξ∈Ξ0

k

fk(ξ) = max
ξ∈Ξ0

0

f0(ξ).

Proof of Lemma 8. The proof is by mathematical induction. The claim trivially holds
for k = 0. Suppose that it holds for k − 1. We show the claim for k.
Case 1: Suppose that ξk−1 is a maximizer of fk−1. Then, fk−1(ξk−1 + χck,tk) ≤
fk−1(ξk−1). Together with f(ξk−1 + χck,tk) ≥ f(ξk−1) (which follows from the choice
of (ck, tk)) and f(ξ) = fk−1(ξ) for each ξ ∈ Ξ0

k−1, we obtain fk−1(ξk−1 + χck,tk) =

fk−1(ξk−1). Substituting fk−1(ξk−1 + χck,tk) = fk(ξk), we get fk(ξk) = fk−1(ξk−1). To-
gether with Ξ0

k−1 ⊇ Ξ0
k and the assumption of Case 1, ξk is a maximizer of fk and

max
ξ∈Ξ0

k

fk(ξ) = max
ξ∈Ξ0

k−1

fk−1(ξ). This equality and mathematical induction hypothesis

give us the desired claim.
Case 2: Suppose that ξk−1 is not a maximizer of fk−1.

fk−1(ξk−1 + χck,tk) = f(ξk−1 + χck,tk)

= max
(c̃,t̃)∈(C×T )∪{∅}

f(ξk−1 + χc̃,t̃)

= max
(c̃,t̃)∈(C×T )∪{∅}

fk−1(ξk−1 + χc̃,t̃)

= max
(c̃,t̃),(c̃′,t̃′)∈(C×T )∪{∅}

fk−1(ξk−1 − χc̃′,t̃′ + χc̃,t̃),

where the second equality follows from the choice of (ck, tk) and the last equality
follows from the fact that every distribution in Ξ0

k−1 is greater than or equal to ξk−1.
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By Theorem 5, there exists a maximizer ξ∗ of fk−1 such that ξ∗ ≥ ξk−1 + χck,tk =

ξk, which implies ξ∗ ∈ Ξ0
k. Together with Ξ0

k−1 ⊇ Ξ0
k, we obtain max

ξ∈Ξ0
k

fk(ξ) =

max
ξ∈Ξ0

k−1

fk−1(ξ). This equality and mathematical induction hypothesis give us the

desired claim. �

Lemma 9. ξk∗ ∈ arg max
ξ∈Ξ0

0

f0(ξ).

Proof of Lemma 9. Suppose, for contradiction, that ξk∗ /∈ arg max
ξ∈Ξ0

0

f0(ξ). By Lemma

8 and Ξ0
k∗ ⊆ Ξ0

0, there exists ξ∗ ∈ Ξ0
k∗ such that ξ∗ ∈ arg max

ξ∈Ξ0
0

f0(ξ) and fk∗(ξk∗) <

fk∗(ξ
∗), which implies f(ξk∗) < f(ξ∗). Assume that (ξ∗)tc > (ξk∗)

t
c (such c and t

exist because ξ∗ > ξk∗ by the definition of Ξ0
k∗). By ordinal concavity of f , there

exists (c′, t′) ∈ (C × T ) ∪ {∅}, with (ξ∗)t
′

c′ < (ξk∗)
t′

c′ if (c′, t′) 6= ∅, such that one of
the inequalities required of ordinal concavity holds. However, because ξ∗ > ξk∗ , it
follows that (c′, t′) = ∅, so we have

(1) f(ξk∗ + χc,t) > f(ξk∗) or
(2) f(ξ∗ − χc,t) > f(ξ∗) or
(3) f(ξk∗ + χc,t) = f(ξk∗) and f(ξ∗ − χc,t) = (ξ∗).

Condition (2) is impossible because ξ∗ ∈ arg max
ξ∈Ξ0

0

f0(ξ). Therefore, condition (1) or

(3) holds. In either case, because ξk∗ + χc,t ≤ ξ∗ ≤ ξ(X), we have

f(ξk∗) ≤ max{f(ξk∗ + χc̃,t̃) | (c̃, t̃) ∈ C × T , ξk∗ + χc̃,t̃ ≤ ξ(X)}.

We obtain a contradiction to the fact that the algorithm terminates when k = k∗. �

Lemma 10. ξk∗ is a maximal distribution in arg max
ξ∈Ξ0

0

f0(ξ).

Proof of Lemma 10. Suppose, for contradiction, that the statement does not hold. By
Lemma 9, ξk∗ ∈ arg max

ξ∈Ξ0
0

f0(ξ). Since it is not a maximal distribution, there exists ξ∗

such that ξ∗ ∈ arg max
ξ∈Ξ0

0

f0(ξ) and ξ∗ > ξk∗ . Assume that (ξ∗)tc > (ξk∗)
t
c (such c and t

exist because ξ∗ > ξk∗). By ordinal concavity of f , there exists (c′, t′) ∈ (C×T )∪{∅},
with (ξ∗)t

′

c′ < (ξk∗)
t′

c′ if (c′, t′) 6= ∅, such that one of the inequalities required of ordinal
concavity holds. However, because ξ∗ > ξk∗ , it follows that (c′, t′) = ∅, so we have

(1) f(ξk∗ + χc,t) > f(ξk∗) or
(2) f(ξ∗ − χc,t) > f(ξ∗) or
(3) f(ξk∗ + χc,t) = f(ξk∗) and f(ξ∗ − χc,t) = f(ξ∗).
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If condition (1) or (2) holds, then together with ξk∗+χc,t ≤ ξ∗ ≤ ξ(X) and ξ∗−χc,t ≤
ξ∗ ≤ ξ(X), we obtain a contradiction to ξk∗ , ξ∗ ∈ arg max

ξ∈Ξ0
0

f0(ξ). Therefore, condition

(3) holds, implying that

f(ξk∗) ≤ max{f(ξk∗ + χc̃,t̃) | (c̃, t̃) ∈ C × T , ξk∗ + χc̃,t̃ ≤ ξ(X)}.

We obtain a contradiction to the fact that the algorithm terminates when k = k∗. �

Step 3: We develop a modified version of the diversity choice rule that produces
the same outcome as the original one and is more tractable from a computational
viewpoint. Fix an ordinally concave f .
Modified Diversity Choice Rule.

Input: Let X be a set of contracts. Let ξ be a maximal distribution in Ξ∗(X).
Step 1: Set X0 = ∅, ξ0 = ξ, and k = 0.
Step 2: Check whether there exists x ∈ X\Xk that satisfies one of the follow-

ing conditions:
(i) ξ(Xk ∪ {x}) ≤ ξk, or
(ii) there exists (c′, t′) ∈ C × T such that ξk + χc,t − χc′,t′ ∈ Ξ∗(X) and

ξ(Xk ∪ {x}) ≤ ξk + χc,t − χc′,t′ , where χc,t = ξ({x}).
If there exists such a contract, then choose the one xk+1 with the highest
merit and let

Xk+1 = Xk ∪ {xk+1},

ξk+1 =

ξk (if (i) holds),

ξk + χc,t − χc′,t′ (if (ii) holds),

and go to Step 3. Otherwise, go to Step 4.
Step 3: Add 1 to k and go to Step 2.
Step 4: Return Xk and stop.

In words, Xk and Rk collect the set of accepted and rejected contracts, respectively.
The process of modifying ξk is motivated by the following lemma.

Lemma 11. Let X ′ ⊆ X , x ∈ X\X ′, and (c, t) ∈ C × T be such that ξ({x}) = χc,t.
Suppose that there exists a maximal distribution ξ in Ξ∗(X) with ξ(X ′) ≤ ξ. Then, the
following implication holds: if there exists a maximal distribution ξ∗ in Ξ∗(X) such that
ξ(X ′∪{x}) ≤ ξ∗, then either (i) ξ(X ′∪{x}) ≤ ξ, or (ii) there exists (c′, t′) ∈ C×T such
that ξ + χc,t − χc′,t′ ∈ Ξ∗(X) and ξ(X ′ ∪ {x}) ≤ ξ + χc,t − χc′,t′ .
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Proof of Lemma 11. We consider two cases.
Case 1: Suppose that ξtc(X ′) < ξtc. Then,

ξtc(X
′ ∪ {x}) = ξtc(X

′) + 1 ≤ ξtc, and

ξ t̃c̃(X
′ ∪ {x}) = ξ t̃c̃(X

′) ≤ ξ t̃c̃ for all (c̃, t̃) ∈ C × T with (c̃, t̃) 6= (c, t).

Thus, (i) holds.
Case 2: Suppose that ξtc(X ′) = ξtc. By the sufficient condition of the implication,
there exists a maximal maximizer ξ∗ in Ξ∗(X) with ξ(X ′ ∪ {x}) ≤ ξ∗. Then,

ξtc + 1 = ξtc(X
′) + 1 = ξtc(X

′ ∪ {x}) ≤ (ξ∗)tc,

which implies ξtc < (ξ∗)tc. By Lemma 3 (M-convexity of the set of maximal distribu-
tions in Ξ∗(X)), there exists (c′, t′) ∈ (C×T ) with ξt′c′ > (ξ∗)t

′

c′ such that ξ+χc,t−χc′,t′
is a maximal distribution in Ξ∗(X). It holds that

(ξ + χc,t − χc′,t′)t
′

c′ ≥ (ξ∗)t
′

c′ ≥ ξt
′

c′(X
′ ∪ {x}),

(ξ + χc,t − χc′,t′)tc = ξtc + 1 = ξtc(X
′) + 1 = ξtc(X

′ ∪ {x}),

(ξ + χc,t − χc′,t′)t̃c̃ = ξ t̃c̃ ≥ ξ t̃c̃(X
′) = ξ t̃c̃(X

′ ∪ {x})

for all (c̃, t̃) ∈ C × T with (c̃, t̃) 6= (c, t) and (c̃, t̃) 6= (c′, t′).

Thus, (ii) holds. �

Lemma 12. The modified diversity choice rule and the (original) diversity choice rule pro-
duce the same outcome.

Proof of Lemma 12. Let Xk be defined as in the construction of the diversity choice
rule and let X ′k and ξk be defined as in the construction of the modified diversity
choice rule. We show by induction that Xk = X ′k and ξk is a maximal distribution
in Ξ∗(X) for each index k used in the definitions of both rules and terminate at the
same index. For k = 0, we have Xk = ∅ = X ′k and, by the definition of the modi-
fied diversity choice rule, ξ0 is a maximal distribution in Ξ∗(X). By mathematical
induction hypothesis, suppose that Xk = X ′k and ξk is a maximal distribution. We
now show the hypothesis for k + 1.

Case 1: Suppose that the diversity choice rule does not terminate when the index
is k. By the induction hypothesis and the definition of the modified diversity choice
rule, ξ(Xk) = ξ(X ′k) ≤ ξk. By the induction hypothesis, ξk is a maximal distribu-
tion in Ξ∗(X). Let xk+1 be such that Xk+1 = Xk ∪ {xk+1}. By the definition of the
diversity choice rule, ξ(Xk ∪ {xk+1}) ≤ ξ∗ for some ξ∗ ∈ Ξ∗(X); let us choose ξ∗ so
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that it is maximal. By Lemma 11, either (i) ξ(Xk ∪ {xk+1}) ≤ ξk, or (ii) there exists
(c′, t′) ∈ C×T such that ξk+χc,t−χc′,t′ ∈ Ξ∗(X) and ξ(Xk∪{xk+1}) ≤ ξk+χc,t−χc′,t′ ,
where χc,t = ξ({xk+1}). It follows that xk+1 satisfies one of the two conditions stated
in Step 2 of the modified diversity choice rule. Suppose, for contradiction, that
X ′k+1 6= X ′k ∪ {xk+1}. Then, by the deifnition of the modified diversity choice rule,
there exists x′ ∈ X\X ′k such that x′ has a higher merit than xk+1 and ξ(X ′k ∪{x′}) ≤
ξ∗∗ for some ξ∗∗ ∈ Ξ∗(X). By the induction hypothesis, we have X ′k = Xk, which
implies x′ ∈ X\Xk and ξ(Xk ∪{x′}) ≤ ξ∗∗. Since x′ has a higher merit than xk+1, we
obtain a contradiction to the fact that xk+1 is chosen when the index of the diversity
choice rule is k + 1. Therefore, X ′k+1 = X ′k ∪ {xk+1} = Xk ∪ {xk+1} = Xk+1, where
the second equality follows from the induction hypothesis. It remains to show that
ξk+1 is a maximal distribution in Ξ∗(X). By Lemma 3 (M-convexity of the maximal
distributions in Ξ∗(X)) and Proposition 4.1 of Murota (2003), every maximal distri-
bution in Ξ∗(X) has the same sum of coordinates. Since ξk is a maximal distribution
(which follows from the induction hypothesis) and ξk and ξk+1 have the same sum
of coordinates (which follows from the definition of the modified diversity choice
rule), ξk+1 is a maximal distribution.

Case 2: Suppose that the diversity choice rule terminates when the index is k.
Then, there does not exist x ∈ X\Xk and ξ ∈ Ξ∗(X) such that ξ(Xk ∪ {x}) ≤ ξ.
Then, for each x ∈ X\Xk = X\X ′k (where the equality follows from the induction
hypothesis), neither (i) nor (ii) in Step 2 of the modified diversity choice rule holds
true. Theorefore, the modified diversity choice rule termines when the index is k.

�

Step 4: We derive the time complexity of the diversity choice rule. The first step for
calculating the choice rule is to find one maximal distribution in Ξ∗(X). By Lemma
10, we can use the domain-reduction algorithm. We assume that f can be evaluated
in a constant time in what follows. Step 2 of the algorithm takes O(|C × T |) time.
Let ξk∗ denote the outcome of the algorithm. Since the algorithm starts from 0 and
adds 1 to some coordinate toward ξk∗ at every round, the number of iterations is
||ξk∗||, which is bounded by ||ξ(X)|| because ξk∗ ≤ ξ(X). Since

||ξ(X)|| =
∑
(c,t)

ξtc(X) =
∑
(c,t)

∑
x∈X

ξtc({x}) =
∑
x∈X

∑
(c,t)

ξtc({x}) = |X|,

the number of iterations is bounded by O(|X|). Thus, finding an outcome of the
algorithm takes O(|C| × |T | × |X|) time.
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Given a maximal distribution in Ξ∗(X), we can run the diversity choice rule. By
Lemma 12, it suffices to examine the computational time of the modified rule. Step
2 of the rule takes O(|C| × |T | × |X|) time. The number of iterations is equal to
|X|. Hence, the modified diversity choice rule finds an outcome in O(|C| × |T | ×
|X|2) time. Together with the time complexity of executing the domain-reduction
algorith, we conclude that finding an outcome of the diversity choice rule takes
O(|C| × |T | × |X|2) time. �

Proof of Theorem 2. We need the following properties of choice rules in our proofs.
A choice rule C satisfies the irrelevance of rejected contracts condition, if, for each
X ⊆ X and x ∈ X \ X , x /∈ C(X ∪ {x}) =⇒ C(X ∪ {x}) = C(X) (Aygün
and Sönmez, 2013). A choice rule C satisfies the substitutes condition, if, for each
X ⊆ X and x ∈ X \X , C(X) ⊇ C(X ∪ {x}) ∩X (Kelso and Crawford, 1982; Roth,
1984).

Lemma 13 (Aizerman and Malishevski (1981)). A choice rule C is path independent
if, and only if, it satisfies the irrelevance of rejected contracts condition and the substitutes
condition.

By this lemma path independence is equivalent to the conjunction of the irrel-
evance of rejected contracts condition (IRC) and the substitutes condition, so we
show these two properties to prove path independence.
Proof of IRC: LetX ⊆ X and x ∈ X \X such that x /∈ Cd(X ∪{x}). We need to show
Cd(X ∪ {x}) = Cd(X).

Let c = γ(x), t = τ(σ(x)), ξ1 = ξ(Cd(X)), and ξ2 = ξ(Cd(X ∪ {x})).
Since x /∈ Cd(X ∪ {x}), ξ2 ≤ ξ(X). Together with Theorem 1 (i), we get

f(ξ1) = f(ξ2). Furthermore, Cd(X ∪ {x}) is in F(X) and F(X ∪ {x}). Likewise,
Cd(X) is in F(X ∪ {x}) because (X ,F(X )) is a matroid (Lemma 4). Therefore,
Cd(X), Cd(X ∪ {x}) ∈ F(X) ∩ F(X ∪ {x}). By Theorem 1 (ii), Cd(X) merit
dominates Cd(X ∪ {x}) and Cd(X ∪ {x}) merit dominates Cd(X). Therefore,
Cd(X) = Cd(X ∪ {x}), which follows from the antisymmetry of merit domination
that if two sets merit dominate each other they have to be the same. The antisym-
metry of merit domination is straightforward because if two sets merit dominate
each other, then they have the same number of contracts and, furthermore, because
different contracts have distinct merit rankings, they need to have the same set of
contracts.

To finish the proof, we show that Cd satisfies the substitutes condition.
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Proof of Substitutability: Let X ⊆ X and x ∈ X \ X . We need to show Cd(X) ⊇
Cd(X ∪ {x}) ∩X .

Let c = γ(x), t = τ(σ(x)), ξ1 = ξ(Cd(X)), and ξ2 = ξ(Cd(X ∪ {x})).
If x /∈ Cd(X ∪ {x}), then by the irrelevance of rejected contracts condition we

have Cd(X) = Cd(X ∪ {x}). Therefore, Cd(X) ⊇ Cd(X ∪ {x}) ∩X = Cd(X).
For the rest of the proof suppose that x ∈ Cd(X ∪{x}). We consider several cases

depending on the value of ξ2.
Case 1: Consider the case ξ2 ≤ ξ(X). Then f(ξ1) = f(ξ2). By construction of Cd,

ξ1 is maximal in Ξ∗(X). Likewise, ξ2 is maximal in Ξ∗(X∪{x}). Since ξ2 ≤ ξ(X), we
get that ξ2 is also maximal in Ξ∗(X). By Lemma 3, ξ1 and ξ2 belong to an M-convex
set, so ||ξ2|| = ||ξ1||.42 Therefore,∣∣Cd(X ∪ {x}) \ Cd(X)

∣∣ =
∣∣Cd(X) \ Cd(X ∪ {x})

∣∣ .
Since x ∈ Cd(X ∪ {x}) \ Cd(X), we have |Cd(X ∪ {x}) \ Cd(X)| ≥ 1. We show that
|Cd(X ∪ {x}) \ Cd(X)| = 1.

Suppose, for contradiction, that
∣∣Cd(X ∪ {x}) \ Cd(X)

∣∣ ≥ 2. Then, there exists
x1 ∈ X \ {x} such that x1 ∈ Cd(X ∪ {x}) \Cd(X). Since f(ξ1) = f(ξ2), Cd(X ∪ {x})
andCd(X) are bases inF(X∪{x}). By the stronger version of B2, which is stated on
page 20, there exists x2 ∈ Cd(X)\Cd(X ∪{x}) such that (Cd(X ∪{x})\{x1})∪{x2}
and (Cd(X) \ {x2}) ∪ {x1} are also bases in F(X ∪ {x}). Theorem 1 implies that
Cd(X ∪{x}) merit dominates (Cd(X ∪{x})\{x1})∪{x2}, so x1 � x2. Furthermore,
since (Cd(X) \ {x2}) ∪ {x1} is a base in F(X ∪ {x}) it must also be a base in F(X).
By Theorem 1, Cd(X) merit dominates (Cd(X) \ {x2}) ∪ {x1}, therefore, x2 � x1,
which is a contradiction to x1 � x2. Therefore, |Cd(X ∪ {x}) \ Cd(X)| = 1 and
Cd(X ∪ {x}) = (Cd(X) ∪ {x}) \ {y} for some y ∈ Cd(X). As a result, Cd(X) ⊇
Cd(X ∪{x})∩X = Cd(X)\{y} for some y ∈ Cd(X). This finishes the proof of Case
1.

Case 2: Consider the case ξ2 6≤ ξ(X). SinceCd(X∪{x}) ⊆ X∪{x}, it must be that
(ξ2)tc > ξtc(X), so Cd(X ∪{x}) includes x and all contracts inX with type-t students
and school c. Furthermore, (ξ2)tc = ξtc(X) + 1 and (ξ1)tc ≤ ξtc(X).

Claim 3. For each school c′ ∈ C and type t′ ∈ T such that (c′, t′) 6= (c, t), we have
(ξ1)t

′

c′ ≥ (ξ2)t
′

c′ .

42Members of an M-convex set have the same sum of coordinates, see Proposition 4.1 in Murota
(2003).
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Proof of Claim 3. Suppose, for contradiction, that there exist school c′ ∈ C and type
t′ ∈ T with (c′, t′) 6= (c, t) such that (ξ1)t

′

c′ < (ξ2)t
′

c′ . Then, by ordinal concavity, either
(i)

(1) f(ξ2 − χc′,t′) > f(ξ2) or
(2) f(ξ1 + χc′,t′) > f(ξ1) or
(3) f(ξ2 − χc′,t′) = f(ξ2) and f(ξ1 + χc′,t′) = f(ξ1)

or (ii) there exist school ĉ ∈ C and type t̂ ∈ T with (ξ2)t̂ĉ < (ξ1)t̂ĉ such that

(1) f(ξ2 − χc′,t′ + χĉ,t̂) > f(ξ2) or
(2) f(ξ1 + χc′,t′ − χĉ,t̂) > f(ξ1) or
(3) f(ξ2 − χc′,t′ + χĉ,t̂) = f(ξ2) and f(ξ1 + χc′,t′ − χĉ,t̂) = f(ξ1).

Condition (i) cannot hold because under (i)(1) ξ2 − χc′,t′ ≤ Ξ(X ∪ {x}) and
f(ξ2 − χc′,t′) > f(ξ2) give us a contradiction to the result that the outcome of Cd

maximizes the diversity index among feasible subsets of X ∪ {x} (Theorem 1), be-
cause a contract in (X ∪ {x}) \ Cd(X ∪ {x}) with type-t′ student and school c′ can
be added to Cd(X ∪{x}) and increase the value of f . Under (i)(2) ξ1 +χc′,t′ ≤ ξ(X)

and f(ξ1 +χc′,t′) > f(ξ1) give us a contradiction to the result that the outcome of Cd

maximizes the diversity index among subsets ofX (Theorem 1), because a contract
inX \Cd(X) with type-t′ student and school c′ can be added to Cd(X) and increase
the value of f . Under (i)(3), ξ1+χc′,t′ ≤ ξ(X) and f(ξ1+χc′,t′) = f(ξ1) give us a con-
tradiction to the result that the outcome of Cd merit dominates any feasible subset
of X that maximizes diversity (Theorem 1), because a contract in X \ Cd(X) with
type-t′ student and school c′ can be added to Cd(X) without changing the value of
f .

Likewise condition (ii) cannot hold because under (ii)(1) ξ2−χc′,t′+χĉ,t̂ ≤ ξ(X∪
{x}) and f(ξ2 − χc′,t′ + χĉ,t̂) > f(ξ2) give us a contradiction to the result that the
outcome of Cd maximizes the diversity index among feasible subsets of X ∪ {x}
(Theorem 1), because a contract in (X ∪ {x}) \ Cd(X ∪ {x}) with type-t̂ student
and school ĉ can be added to Cd(X ∪ {x}) and a contract from Cd(X ∪ {x}) with
type-t′ student and school c′ can be removed fromCd(X∪{x}) to increase the value
of f . Under (ii)(2) ξ1 + χc′,t′ − χĉ,t̂ ≤ ξ(X) and f(ξ1 + χc′,t′ − χĉ,t̂) > f(ξ1) give us
a contradiction to the result that the outcome of Cd maximizes the diversity index
among feasible subsets of X (Theorem 1), because a contract in X \ Cd(X) with
type-t′ student and school c′ can be added to Cd(X) and a contract from Cd(X)

with type-t̂ student and school ĉ can be removed from Cd(X) to increase the value
of f . Under (ii)(3), f(ξ2 − χc′,t′ + χĉ,t̂) = f(ξ2) and ξ2 − χc′,t′ + χĉ,t̂ ≤ ξ(X ∪ {x})
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imply that the lowest merit ranked type-t′ student with a contract at school c′ in
Cd(X∪{x})\Cd(X) has a higher merit ranking than the lowest merit ranked type-t̂
student with a contract at school ĉ inCd(X)\Cd(X∪{x}). Similarly, ξ1+χc′,t′−χĉ,t̂ ≤
ξ(X) and f(ξ1+χc′,t′−χĉ,t̂) = f(ξ1) imply that the lowest merit ranked type-t̂ student
with a contract at school ĉ in Cd(X) \Cd(X ∪ {x}) has a higher merit ranking than
the lowest merit type-t′ student with a contract at school c′ in Cd(X ∪{x}) \Cd(X),
which is a contradiction since the merit ranking is strict and (ĉ, t̂) 6= (c′, t′). �

Claim 4. (ξ1)tc = (ξ2)tc − 1.

Proof of Claim 4. Suppose, for contradiction, that (ξ1)tc 6= (ξ2)tc − 1. Since (ξ1)tc ≤
ξtc(X) and (ξ2)tc = ξtc(X) + 1, we get (ξ1)tc < ξtc(X) = (ξ2)tc − 1.

By ordinal concavity, either (i)
(1) f(ξ2 − χc,t) > f(ξ2), or
(2) f(ξ1 + χc,t) > f(ξ1), or
(3) f(ξ2 − χc,t) = f(ξ2) and f(ξ1 + χc,t) = f(ξ1)

or (ii) there exist school c′ ∈ C and type t′ ∈ T with (ξ2)t
′

c′ < (ξ1)t
′

c′ such that
(1) f(ξ2 − χc,t + χc′,t′) > f(ξ2)

(2) f(ξ1 + χc,t − χc′,t′) > f(ξ1) or
(3) f(ξ2 − χc,t + χc′,t′) = f(ξ2) and f(ξ1 + χc,t − χc′,t′) = f(ξ1).

Condition (i) cannot hold because under (i)(1) ξ2 − χc,t ≤ ξ(X ∪ {x}) and
f(ξ2−χc,t) > f(ξ2) give us a contradiction to the result that the outcome of Cd max-
imizes the diversity index among feasible subsets ofX ∪{x} (Theorem 1), because
a contract in (X ∪{x})\Cd(X ∪{x}) with type-t student and school c can be added
to Cd(X ∪ {x}) and increase the value of f . Similarly, under (i)(2) ξ1 + χc,t ≤ ξ(X)

and f(ξ1 + χc,t) > f(ξ1) give us a contradiction to the result that the outcome of Cd

maximizes the diversity index among feasible subsets of X (Theorem 1), because
a contract in X \Cd(X) with type-t student and school c can be added to Cd(X) to
increase the value of f . Under (i)(3) ξ1 +χc,t ≤ ξ(X) and f(ξ1 +χc,t) = f(ξ1) give us
a contradiction to the result that the outcome of Cd merit dominates each feasible
subset ofX that maximizes diversity (Theorem 1), because a contract inX \Cd(X)

with type-t student and school c can be added toCd(X) without changing the value
of f . Therefore, condition (ii) must hold.

Under condition (ii)(1) ξ2−χc,t+χc′,t′ ≤ ξ(X∪{x}) and f(ξ2−χc,t+χc′,t′) > f(ξ2)

give a contradiction to the result that the outcome of Cd maximizes the diversity
index among feasible subsets of X ∪ {x} (Theorem 1), because a contract in (X ∪
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{x}) \ Cd(X ∪ {x}) with type-t student and school c can be added to Cd(X ∪ {x})
and a contract from Cd(X ∪{x}) with type-t′ student and school c′ can be removed
from Cd(X ∪ {x}) to increase the value of f . Likewise, under (ii)(2) ξ1 + χc,t −
χc′,t′ ≤ ξ(X) and f(ξ1 + χc,t − χc′,t′) > f(ξ1) give us a contradiction to the result
that the outcome of Cd maximizes the diversity index among feasible subsets of X
(Theorem 1), because a contract in X \Cd(X) with type-t student and school c can
be added to Cd(X) and a contract in Cd(X) with type-t′ student and school c′ can
be removed to increase the value of f . Under (ii)(3) f(ξ2−χc,t +χc′,t′) = f(ξ2) and
ξ2−χc,t+χc′,t′ ≤ ξ(X∪{x}) imply that the lowest merit ranked type-t student with a
contract at school c inCd(X∪{x})\Cd(X) has a higher merit ranking than the lowest
merit ranked type-t′ student with a contract at school c′ in Cd(X) \ Cd(X ∪ {x}).
Similarly, f(ξ1 +χc,t−χc′,t′) = f(ξ1) and ξ1 +χc,t−χc′,t′ ≤ ξ(X) imply that the lowest
merit ranked type-t′ student with a contract at school c′ in Cd(X) \Cd(X ∪{x}) has
a higher merit ranking than the lowest merit ranked type-t′ student with a contract
at school c′ in Cd(X ∪{x})\Cd(X), which is a contradiction since the merit ranking
is strict and (c, t) 6= (c′, t′).

Both conditions cannot hold. Therefore, (ξ1)tc = (ξ2)tc − 1. �

To finish the proof of Case 2, we combine the results that we have established so
far: (ξ2)ct = ξtc(X ∪ {x}) = ξtc(X) + 1, (ξ1)ct = ξtc(X), and, for each type t′ ∈ T and
school c′ ∈ C with (t′, c′) 6= (t, c), (ξ1)c

′

t′ ≥ (ξ2)c
′

t′ . For a fixed type t′ ∈ T and school
c′ ∈ C and the number of contracts of type-t′ students with school c′, choice rule
Cd chooses contracts with the highest merit ranking. Therefore, Cd(X) ⊇ Cd(X ∪
{x})∩X , which finishes the proof of Case 2. Therefore, Cd satisfies the substitutes
condition. �

Proof of Theorem 3. Suppose, for contradiction, that Cd violates the law of aggre-
gate demand, i.e., there exist X,X ′ ⊆ X such that

X ⊆ X ′, and(1a)

|Cd(X)| > |Cd(X ′)|.(1b)

By (1b),

||ξ(Cd(X))|| > ||ξ(Cd(X ′))||.

By size-restricted concavity, there exists (c, t) ∈ C × T such that

ξtc(C
d(X)) > ξtc(C

d(X ′)),(1c)
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and one of the following conditions holds:

(i) f(ξ(Cd(X))− χc,t) > f(ξ(Cd(X))), or
(ii) f(ξ(Cd(X ′)) + χc,t) > f(ξ(Cd(X ′))), or
(iii) f(ξ(Cd(X))− χc,t) = f(ξ(Cd(X))) and f(ξ(Cd(X ′)) + χc,t) = f(ξ(Cd(X ′))).

If (i) holds, then we obtain a contradiction to ξ(Cd(X)) maximizing f among all
distributions ξ with ξ ≤ ξ(X) (Theorem 1 (i)). Hence, (ii) or (iii) holds. In either
case, we get

f(ξ(Cd(X ′)) + χc,t) ≥ f(ξ(Cd(X ′))).(1d)

By (1c), there exists x ∈ Cd(X)\Cd(X ′) such that

ξ({x}) = χc,t.(1e)

Since x ∈ Cd(X) and Cd(X) ⊆ X ⊆ X ′ (where the latter set-inclusion follows from
1a), we get

x ∈ X ′.(1f)

By (1f) and ξ(Cd(X ′)) ≤ ξ(X ′) (which follows from the definition of choice rules),
we get

ξ(Cd(X ′) ∪ {x}) ≤ ξ(X ′).(1g)

By (1d) and (1e),

f(ξ(Cd(X ′) ∪ {x})) ≥ f(ξ(Cd(X ′))).

Together with (1g) and the fact that ξ(Cd(X ′)) maximizes f among all distributions
ξ with ξ ≤ ξ(X ′) (which is Theorem 1(i)), it implies

ξ(Cd(X ′) ∪ {x}) ∈ Ξ∗(X ′).

Since x /∈ Cd(X ′), we obtain a contradiction to the fact that Cd(X ′) is the outcome
of the diversity choice rule with input X ′ (recall Step 2 of the rule). �

Note that size-restricted concavity is only used to derive (1d). This observa-
tion implies that the proof remains valid under the alternative assumption that f is
monotone.

Definition 12. The diversity index f : Ξ0 → R+ is monotone if f(ξ) ≥ f(ξ̃) for each
ξ, ξ̃ ∈ Ξ0 with ξ ≥ ξ̃.
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Therefore, if f is ordinally concave and monotone, then the diversity choice rule
satisfies path-independence and the law of aggregate demand.

Proof of Theorem 4. The following result follows from Theorem 1.

Lemma 14. Suppose that λ ∈ R+ is such that the diversity index fλ is ordinally concave.
Then, for each set of contracts X ⊆ X ,

(i) min{f(ξ(Cd
λ(X))), λ} = min{f(ξ(Cd(X))), λ} and

(ii) Cd
λ(X) merit dominates each Y ⊆ X such that

min{f(ξ(Cd
λ(Y ))), λ} = min{f(ξ(Cd(X))), λ}.

Now fix a set of contracts X ⊆ X and denote the outcome of the trace algorithm
asCtr(X). Using Lemma 14, first, we show thatCtr(X) ⊆ P(X), and, then, P(X) ⊆
Ctr(X) to finish the proof.

Claim 5. Ctr(X) ⊆ P(X).

Proof of Claim 5. Let Y ∈ Ctr(X). Suppose, for contradiction, that Y /∈ P(X), and,
hence, there exists Z ⊆ X such that Z 6= Y , Z merit dominates Y , and f(ξ(Z)) ≥
f(ξ(Y )).

Suppose that Z is chosen at index k ∈ N in the construction ofCtr(X). Therefore,
Y = Cd

λk
(X). Then, by Lemma 14, Y = Cd

λk
(X) merit dominates each subset of X

that attains diversity level of f(ξ(Cd
λk

(X))) = f(ξ(Y )). Therefore, since f(ξ(Z)) ≥
f(ξ(Y )) and Z ⊆ X , we get Y merit dominates Z. As noted in the proof of Theorem
2, the merit domination is antisymmetric, which is a contradiction because we have
Y merit dominates Z, Z merit dominates Y , and Y 6= Z. Therefore, Y ∈ P(X).
Since Y is any set in Ctr(X), we conclude Ctr(X) ⊆ P(X). �

Claim 6. P(X) ⊆ Ctr(X).

Proof of Claim 6. Let Y ∈ P(X). Suppose, for contradiction, that Y /∈ Ctr(X). Since
Cd(X) ∈ Ctr(X) andCtr(X) ⊆ P(X), we get thatCd(X) ∈ P(X). SinceY /∈ Ctr(X),
we have Y 6= Cd(X). By Theorem 1, f(ξ(Cd(X)) ≥ f(ξ(Y )) and Cd(X) merit dom-
inates any subset of X with diversity f(ξ(Cd(X)). Therefore, since Y ∈ P(X), we
cannot have f(ξ(Cd(X)) = f(ξ(Y )), which implies f(ξ(Cd(X))) > f(ξ(Y )).

Since λ0 = 0 and f(ξ(Cd(X))) > f(ξ(Y )), there exists an index k such that
f(ξ(Cd

λk
(X))) > f(ξ(Y )) ≥ λk where λk is defined as in the construction of Ctr(X).

By Lemma 14, and because min{f(ξ(Cd
λ(Y ))), λk} = λk = min{f(ξ(Cd(X))), λk},
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Cd
λk

(X) merit dominates Y . This is a contradiction because f(ξ(Cd
λk

(X))) > f(ξ(Y )),
Cd
λk

(X) merit dominates Y , and Y ∈ P(X). Hence, we get that Y ∈ Ctr(X). Since
Y is an arbitrary set in P(X), we conclude that P(X) ⊆ Ctr(X). �

Claims 5 and 6 imply that P(X) = Ctr(X). �

Appendix C. Proofs of Auxiliary Results, Definitions, Examples

In this appendix, we present a new definition of concavity, proofs of our auxiliary
results, and omitted examples.

A New Definition of Concavity

Semi-strict Pseudo M\-concavity. We provide a new definition of concavity, which
implies that for each λ ≥ 0, fλ is ordinally concave. Furthermore, this notion of
concavity has a clear interpretation.

Definition 13. The diversity index f : Ξ0 → R+ is semistrictly pseudo M\-concave if,
for each ξ, ξ̃ ∈ Ξ0 and (c, t) ∈ C ×T with ξtc > ξ̃tc, then there exists (c′, t′) ∈ (C ×T )∪{∅}
(with ξt′c′ < ξ̃t

′

c′ whenever (c′, t′) 6= ∅) such that

min{f(ξ), f(ξ̃)} ≤ min{f(ξ − χc,t + χc′,t′), f(ξ̃ + χc,t − χc′,t′)},

with strict inequality holding whenever f(ξ) 6= f(ξ̃) and ξ − χc,t + χc′,t′ 6= ξ̃.

The difference from pseudo M\-concavity is that the increase in the minimum
value must be strict if the two function values are different and the two distributions
do not coincide with each other as a result of moving toward each other.43 One can
verify that semistrict pseudo M\-concavity implies pseudo M\-concavity+.44

Semistrict pseudo M\-concavity can be viewed as a variant of quasi concavity,
which has been studied extensively in microeconomic theory.45 We say that a

43Note that ξ − χc,t + χc′,t′ 6= ξ̃ is equivalent to {ξ, ξ̃} ∩ {ξ − χc,t + χc′,t′ , ξ̃ + χc,t − χc′,t′} = ∅.
44The converse of this implication does not hold. Let C = {c} and T = {t, t′}; we identify Z|C|×|T |+

with Z2
+. Let f : Ξ0 → R+ be such that

Ξ0 = {(0, 0), (0, 1), (1, 0), (1, 1)} ⊆ Z2
+, f(0, 0) = f(1, 0) = 0, f(0, 1) = f(1, 1) = 1.

This function satisfies pseudo M\-concavity+ but violates semistrict pseudo M\-concavity. For ξ =

(1, 1), ξ̃ = (0, 0), and (c, t) with χc,t = (1, 0),

f(ξ) = f(ξ − χc,t) = 1, f(ξ̃) = f(ξ̃ + χc,t) = 0,

showing that the minimum function value does not strictly increase although f(ξ) 6= f(ξ̃) and ξ −
χc,t 6= ξ̃.

45In a model with a continuum of commodities, if a preference relation over the commodity space
is convex, then any utility function representing the preference relation is quasi concave; see Section
3.C of Mas-Colell et al. (1995).
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continuous function f : R|C|×|T | → R is semistrictly quasi concave,46 if for each
ξ, ξ̃ ∈ R|C|×|T | and λ ∈ (0, 1),

min{f(ξ), f(ξ̃)} ≤ f(λξ + (1− λ)ξ̃),

with strict inequality holding whenever f(ξ) 6= f(ξ̃). Both semistrict pseudo M\-
concavity and semistrict quasi concavity state that the minimum function value
increases, with the increase being strict whenever the original function values are
different.47

Proofs of the Propositions

Proof of Proposition 1. This proposition follows from Proposition 2 because
pseudo M\-concavity is weaker than pseudo M\-concavity+. �

Proof of Proposition 2. The “only if” direction: Let ξ, ξ̃ ∈ Ξ0 and (c, t) ∈ C × T with
ξtc > ξ̃tc. Our goal is to prove that there exists (c′, t′) ∈ (C × T ) ∪ {∅} (with ξt′c′ < ξ̃t

′

c′

whenever (c′, t′) 6= ∅) such that

min{f(ξ), f(ξ̃)} ≤ min{f(ξ − χc,t + χc′,t′), f(ξ̃ + χc,t − χc′,t′)},(2a)

and conditions (A) and (B) are satisfied.
Suppose that f(ξ) = f(ξ̃). Let λ∗ denote the equal value. By ordinal concavity of

fλ∗ , there exists (c∗, t∗) ∈ (C × T ) ∪ {∅} (with ξt∗c∗ < ξ̃t
∗
c∗ whenever (c∗, t∗) 6= ∅) such

that
(i∗) fλ∗(ξ − χc,t + χc∗,t∗) > fλ∗(ξ), or
(ii∗) fλ∗(ξ̃ + χc,t − χc∗,t∗) > fλ∗(ξ̃), or
(iii∗) fλ∗(ξ̃ + χc,t − χc∗,t∗) = fλ∗(ξ̃) and fλ∗ (ξ − χc,t + χc∗,t∗) = fλ∗(ξ).

By the definition of fλ∗(·), neither (i∗) nor (ii∗) holds. Thus, (iii∗) holds, which
implies

f(ξ − χc,t + χc∗,t∗) ≥ λ∗ and f(ξ̃ + χc,t − χc∗,t∗) ≥ λ∗.

46Precisely speaking, semistrict quasi concavity is defined for a possibly discontinuous function
as follows: for each ξ, ξ̃ ∈ R|C|×|T | and λ ∈ (0, 1), min{f(ξ), f(ξ̃)} < f(λξ + (1 − λ)ξ̃) whenever
f(ξ) 6= f(ξ̃). If f is continuous, this condition is equivalent to the one in the main text.

47There is a subtle difference between continuous and discrete domains. For each ξ, ξ̃ ∈ R|C|×|T |
with ξ 6= ξ̃, it always holds that λξ + (1 − λ)ξ̃ 6= ξ̃ if λ ∈ (0, 1). In a discrete domain, however, it is
possible that ξ−χc,t +χc′,t′ = ξ̃. Hence, we add a condition that these two distributions are distinct
in the definition of semistrict pseudo M\-concavity.
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It follows that (2a) holds. Note that neither the if-clause of (A) nor that of (B)
holds.

In the remaining part, we assume f(ξ) < f(ξ̃) (the other case f(ξ) > f(ξ̃) can be
handled analogously). Under this assumption, for each (c′, t′) ∈ (C × T )∪ {∅} that
satisfies (2a), the if-clause of (A) never holds. Thus, it suffices to prove that (2a)
and condition (B) hold for some (c′, t′) ∈ (C × T ) ∪ {∅}.

Let Φ ⊆ {(c′, t′) ∈ (C × T ) | ξt′c′ < ξ̃t
′

c′} ∪ {∅} be the set of coordinates that satisfy
one of the following conditions:

(i) f(ξ − χc,t + χc′,t′) > f(ξ), or
(ii) f(ξ̃ + χc,t − χc′,t′) > f(ξ̃), or
(iii) f(ξ̃ + χc,t − χc′,t′) = f(ξ̃) and f (ξ − χc,t + χc′,t′) = f(ξ).

Note that Φ 6= ∅ because fλ = f holds for a sufficiently large λ and the function
satisfies ordinal concavity.

Case 1: Suppose there exists (c′, t′) ∈ Φ for which (iii) holds. Then, (2a) immedi-
ately follows (the if-clause of (B) does not hold).

Case 2: Suppose that there does not exist (c′, t′) ∈ Φ for which (iii) holds.

Subcase 2-1: Suppose that there does not exist (c′, t′) ∈ Φ for which (i) holds. In
this case, every (c′, t′) ∈ Φ satisfies (ii). Let λ′ = f(ξ̃). Since fλ′ satisfies ordinal
concavity, there exists (c′′, t′′) ∈ (C ×T )∪{∅} (with ξt′′c′′ < ξ̃t

′′

c′′ whenever (c′′, t′′) 6= ∅)
such that

(iv) fλ′(ξ − χc,t + χc′′,t′′) > fλ′(ξ), or
(v) fλ′(ξ̃ + χc,t − χc′′,t′′) > fλ′(ξ̃), or
(vi) fλ′(ξ̃ + χc,t − χc′′,t′′) = fλ′(ξ̃) and fλ′ (ξ − χc,t + χc′′,t′′) = fλ′(ξ).

By the definition of truncation, (v) never holds. If (iv) holds, then together with
λ′ = f(ξ̃) > f(ξ), we obtain a contradiction to the assumption of Subcase 2-1. Thus,
(vi) holds, which establishes (2a) (the if-clause of (B) does not hold).

Subcase 2-2: Suppose that there exists (c′, t′) ∈ Φ for which (i) holds. Let Φ′ ⊆ Φ be
the set of coordinates for which (i) holds.

Subcase 2-2-1: Suppose that there exists (c′, t′) ∈ Φ′ such that

f(ξ̃ + χc,t − χc′,t′) ≥ f(ξ) (= min{f(ξ), f(ξ̃)}).(2b)

Then, (2a) holds (the if-clause of (B) does not hold).
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Subcase 2-2-2: Suppose that there does not exist (c′, t′) ∈ Φ′ that satisfies (2b). Let
λ′′ = f(ξ). Since fλ′′ satisfies ordinal concavity, there exists (c′′′, t′′′) ∈ (C × T )∪ {∅}
(with ξt′′′c′′′ < ξ̃t

′′′

c′′′ whenever (c′′′, t′′′) 6= ∅) such that

(vii) fλ′′(ξ − χc,t + χc′′′,t′′′) > fλ′′(ξ), or
(viii) fλ′′(ξ̃ + χc,t − χc′′′,t′′′) > fλ′′(ξ̃), or

(ix) fλ′′ (ξ − χc,t + χc′′′,t′′′) = fλ′′(ξ) and fλ′′(ξ̃ + χc,t − χc′′′,t′′′) = fλ′′(ξ̃).

By the definition of fλ′′(·), neither (vii) nor (viii) holds. Thus, (ix) holds.
If f(ξ) < f(ξ−χc,t+χc′′′,t′′′), then (c′′′, t′′′) ∈ Φ′. By the assumption of Subcase 2-2-

2, f(ξ̃+χc,t−χc′′′,t′′′) < f(ξ) = λ′′. Then, fλ′′(ξ̃+χc,t−χc′′′,t′′′) = f(ξ̃+χc,t−χc′′′,t′′′) <
λ′′ = fλ′′(ξ̃), where the last equality follows from λ′′ = f(ξ) < f(ξ̃). We obtain a
contradiction to fλ′′(ξ̃ + χc,t − χc′′′,t′′′) = fλ′′(ξ̃) stated in (ix).

It follows that f(ξ − χc,t + χc′′′,t′′′) ≤ f(ξ) = λ′′. Together with
fλ′′ (ξ − χc,t + χc′′′,t′′′) = fλ′′(ξ) = λ′′ (the former equality follows from (ix)), we
have

f(ξ) = f(ξ − χc,t + χc′′′,t′′′).(2c)

By fλ′′(ξ̃ + χc,t − χc′′′,t′′′) = fλ′′(ξ̃) ≥ λ′′ (the equality follows from (ix)), we have
f(ξ̃ + χc,t − χc′′′,t′′′) ≥ λ′′ = f(ξ). This condition and (2c) imply that (2a) holds for
(c′′′, t′′′). Note that the if-clause of (B) holds if f(ξ̃ + χc,t − χc′′′,t′′′) < f(ξ̃). In this
case, by the assumption of Subcase 2-2, there exists a coordinate in Φ′, for which
the desired strict inequality in (B) holds.

The “if” direction: Let ξ, ξ̃ ∈ Ξ0 and (c, t) ∈ C × T with ξtc > ξ̃tc. By pseudo M\-
concavity+, there exists (c′, t′) ∈ (C × T ) ∪ {∅} (with ξt′c′ < ξ̃t

′

c′ whenever (c′, t′) 6= ∅)
such that

min{f(ξ), f(ξ̃)} ≤ min{f(ξ − χc,t + χc′,t′), f(ξ̃ + χc,t − χc′,t′)},(2d)

and conditions (A) and (B) are satisfied. Let λ ≥ 0.

Case 1: Suppose f(ξ) = f(ξ̃).

Subcase 1-1: Suppose λ > f(ξ) = f(ξ̃). Then, (2d) implies that one of the following
conditions holds:

• f(ξ) < f(ξ + χc,t − χc′,t′)
(
⇐⇒ fλ(ξ) < fλ(ξ + χc,t − χc′,t′)

)
, or

• f(ξ̃) < f(ξ̃ − χc,t + χc′,t′)
(
⇐⇒ fλ(ξ̃) < fλ(ξ̃ − χc,t + χc′,t′)

)
, or

• f(ξ) = f(ξ + χc,t − χc′,t′) and f(ξ̃) = f(ξ̃ − χc,t + χc′,t′)(
⇐⇒ fλ(ξ) = fλ(ξ + χc,t − χc′,t′) and fλ(ξ̃) = fλ(ξ̃ − χc,t + χc′,t′)

)
.
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Thus, ordinal concavity of fλ holds.

Subcase 1-2: Suppose λ ≤ f(ξ) = f(ξ̃). Then, (2d) implies f(ξ − χc,t + χc′,t′) ≥ f(ξ)

and f(ξ̃ + χc,t − χc′,t′) ≥ f(ξ̃), which in turn implies

fλ(ξ) = fλ(ξ + χc,t − χc′,t′) and fλ(ξ̃) = fλ(ξ̃ − χc,t + χc′,t′).

Thus, ordinal concavity of fλ holds.

Case 2: Suppose f(ξ) 6= f(ξ̃). We assume f(ξ) < f(ξ̃) (the other case f(ξ) > f(ξ̃)

can be handled analogously).

Subcase 2-1: Suppose λ > f(ξ̃). Note that (2d) implies f(ξ) ≤ f(ξ − χc,t + χc′,t′).

Subcase 2-1-1: Suppose f(ξ) < f(ξ − χc,t + χc′,t′). This inequality is equivalent to
fλ(ξ) < fλ(ξ − χc,t + χc′,t′), showing that ordinal concavity of fλ holds.

Subcase 2-1-2: Suppose f(ξ) = f(ξ − χc,t + χc′,t′). Equivalently,

fλ(ξ) = fλ(ξ − χc,t + χc′,t′).(2e)

• If f(ξ̃) < f(ξ̃ + χc,t − χc′,t′), then equivalently fλ(ξ̃) < fλ(ξ̃ + χc,t − χc′,t′),
showing that ordinal concavity of fλ holds.
• If f(ξ̃) = f(ξ̃ + χc,t − χc′,t′), then equivalently fλ(ξ̃) = fλ(ξ̃ + χc,t − χc′,t′),

which together with (2e) implies that ordinal concavity of fλ holds.
• If f(ξ̃) > f(ξ̃+χc,t−χc′,t′), then the if-clause of (B) holds. Thus, there exists

(c′′, t′′) ∈ (C × T ) ∪ {∅} (with ξt′′c′′ < ξ̃t
′′

c′′ whenever (c′′, t′′) 6= ∅) such that

f(ξ) < f(ξ − χc,t + χc′′,t′′).

This inequality is equivalent to fλ(ξ) < fλ(ξ − χc,t + χc′′,t′′), showing that
ordinal concavity of fλ holds.

Subcase 2-2: Suppose f(ξ̃) ≥ λ > f(ξ). Note that (2d) implies f(ξ) ≤ f(ξ − χc,t +

χc′,t′).

Subcase 2-2-1: Suppose f(ξ) < f(ξ − χc,t + χc′,t′). This inequality is equivalent to
fλ(ξ) < fλ(ξ − χc,t + χc′,t′), showing that ordinal concavity of fλ holds.

Subcase 2-2-2: Suppose f(ξ) = f(ξ − χc,t + χc′,t′). Equivalently,

fλ(ξ) = fλ(ξ − χc,t + χc′,t′).(2f)

• If f(ξ̃) ≤ f(ξ̃ + χc,t − χc′,t′), then fλ(ξ̃) = fλ(ξ̃ + χc,t − χc′,t′), which together
with (2f) implies that ordinal concavity of fλ holds.
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• If f(ξ̃) > f(ξ̃+χc,t−χc′,t′), then the if-clause of (B) holds. Thus, there exists
(c′′, t′′) ∈ (C × T ) ∪ {∅} (with ξt′′c′′ < ξ̃t

′′

c′′ whenever (c′′, t′′) 6= ∅) such that

f(ξ) < f(ξ − χc,t + χc′′,t′′).

This inequality is equivalent to fλ(ξ) < fλ(ξ − χc,t + χc′′,t′′), showing that
ordinal concavity of fλ holds.

Subcase 2-3: Suppose λ ≤ f(ξ). By (2d), we have λ ≤ f(ξ) ≤ f(ξ − χc,t + χc′,t′) and
λ ≤ f(ξ) ≤ f(ξ̃ − χc,t + χc′,t′), which implies

fλ(ξ) = fλ(ξ − χc,t + χc′,t′) and fλ(ξ̃) = fλ(ξ̃ + χc,t − χc′,t′).

Thus, ordinal concavity of fλ holds. �

Proof of Proposition 3. If (X ,F) is a matroid, the greedy rule satisfies path inde-
pendence (Fleiner, 2001) and the law of aggregate demand (Yokoi, 2019). There-
fore, (1) implies (3). Furthermore, (3) implies (2) trivially. To complete the proof,
we show that (2) implies (1).

Suppose that (2) is satisfied. Let B denote the collection of maximal sets inF . By
assumption, F is nonempty, which implies that B is nonempty. Hence, B1 holds.
Before showing B2’, we establish that I2 is satisfied.

To show I2, let X ∈ F . Consider a weight function that assigns all contracts in
X a distinct positive weight. Let C be the greedy rule for such a weight function.
Then, by the greedy rule definition, C(X) = X since X ∈ F . For any X ′ ⊆ X , path
independence implies that C(X ′) = X ′. In addition, by the greedy rule definition,
C(X ′) ∈ F , so we get X ′ ∈ F . Therefore, I2 is satisfied.

Suppose, for contradiction, that B2’ is not satisfied. Therefore, there exist
X1, X2 ∈ B and x1 ∈ X1 \X2 such that for each x2 ∈ X2 \X1, (X1 \ {x1}) ∪ {x2} is
not included in a feasible set in F .

Consider a weight function that assigns all contracts in X a distinct and positive
weight so that contracts in X1 \ {x1} have higher weights than contracts in X2 \X1,
and contracts in X2 \ X1 have higher weights than the weight of x1. Let C ′ be the
greedy rule for such a weight function.

When X1 ∪ X2 is the set of available contracts for the greedy rule C ′, it chooses
X1 \ {x1} first because X1 ∈ F and the weights of contracts in X1 \ {x1} are greater
than the weights of other contracts in X1 ∪ X2. Next the greedy rule chooses no
x2 ∈ X2\X1 because, by construction, (X1\{x1})∪{x2} is not included in a feasible
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set in F . Finally, the greedy rule chooses x1 because (X1 \ {x1}) ∪ {x1} = X1 ∈ F .
Since X1 ∈ B, no other contract can be chosen. Therefore, we get

C ′(X1 ∪X2) = X1.

When {x1} ∪X2 is the set of available contracts for the greedy rule C ′, contracts
inX2 are chosen first because they have positive weights greater than the weight of
x1 and X2 ∈ F . Furthermore, since X2 ∈ B, x1 is not chosen and we get

C ′({x1} ∪X2) = X2.

The two displayed equations provide a contradiction to path independence ofC ′:
By Lemma 13, path independence implies the substitutes condition. Now, by the
substitutes condition, x1 ∈ X1 = C ′(X1 ∪ X2) implies x1 ∈ C ′({x1} ∪ X2) = X2,
which is a contradiction since x1 /∈ X2.

Therefore, we conclude that the maximal sets in F satisfy B1 and B2’, which to-
gether with Lemma 1 implies that they are the bases of a matroid. Since F satisfies
I2, F is the collection of subsets of the bases, which implies that (X,F) is a matroid
(see Theorem 1.2.3 of Oxley (2006)). �

Proof of Proposition 4. First we show that M\-concavity implies ordinal concavity.
Let ξ, ξ̃ ∈ Ξ0 and (c, t) ∈ C × T be such that ξtc > ξ̃tc. Then, by M\-concavity, one

of conditions (i) and (ii) in Definition 11 holds.
Suppose that condition (i) in Definition 11 holds. If condition (i) or (ii) in Defi-

nition 4 holds, then ordinal concavity is satisfied. If conditions (i) and (ii) in Defi-
nition 4 do not hold, then we have

f(ξ − χc,t) ≤ f(ξ) and f(ξ̃ + χc,t) ≤ f(ξ̃).

These two inequalities together with condition (i) in Definition 11 imply that

f(ξ − χc,t) = f(ξ) and f(ξ̃ + χc,t) = f(ξ̃),

which is condition (iii) in Definition of 4, so ordinal concavity is satisfied.
Suppose that condition (i) in Definition 11 does not hold. By M\-concavity, con-

dition (ii) in Definition 11 holds. Therefore, there exists (c′, t′) ∈ C×T with ξt′c′ < ξ̃t
′

c′

such that
f(ξ − χc,t + χc′,t′) + f(ξ̃ + χc,t − χc′,t′) ≥ f(ξ) + f(ξ̃).
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If condition (i) or (ii) in Definition 4 holds, then ordinal concavity is satisfied. If
conditions (i) and (ii) in Definition 4 do not hold, then we have

f(ξ − χc,t + χc′,t′) ≤ f(ξ) and f(ξ̃ + χc,t − χc′,t′) ≤ f(ξ̃).

These two inequalities together with condition (ii) in Definition 11 imply that

f(ξ − χc,t + χc′,t′) = f(ξ) and f(ξ̃ + χc,t − χc′,t′) = f(ξ̃),

which is condition (iii) in Definition of 4, so ordinal concavity is satisfied.
Now we provide a function that satisfies ordinal concavity but not M\-concavity.

Let the diversity index f be defined as f(0) = 0, f(1) = 3, and f(2) = 10. Since it is
strictly increasing it is ordinally concave because condition (ii) in Definition of 4 is
satisfied. However, M\ concavity fails because for ξ = 2, ξ̃ = 0, and χ = 1 we have
f(ξ − χ) + f(ξ̃ + χ) = 6 < 10 = f(ξ) + f(ξ̃). �

Proofs of the Lemmas and Claims

Proof of Lemma 2. In their Proposition 3.1, Murota and Shioura (2018) provide
the following equivalent condition for M\-convexity.

Lemma 15. A set of distributions Ξ is M\-convex if and only if, for each ξ, ξ̃ ∈ Ξ,
(i) ||ξ|| > ||ξ̃|| implies that there exists (c, t) ∈ C×T with ξtc > ξ̃tc such that ξ−χc,t ∈ Ξ

and ξ̃ + χc,t ∈ Ξ, and
(ii) ||ξ|| = ||ξ̃|| implies that for each (c, t) ∈ C × T with ξtc > ξ̃tc, there exists (c′, t′) ∈
C × T with ξt′c′ < ξ̃t

′

c′ such that

ξ − χc,t + χc′,t′ ∈ Ξ and ξ̃ + χc,t − χc′,t′ ∈ Ξ.

Let Ξ be a finite and non-empty M\-convex set andM the set of maximal distribu-
tions in Ξ. Then there exists at least one distribution inM. If there exists exactly one
distribution inM, then it is trivially M-convex. For the rest of the proof, suppose
thatM has at least two distributions.

Let ξ, ξ̃ ∈M be distinct. Without loss of generality assume that ||ξ|| ≥ ||ξ̃||.
If ||ξ|| > ||ξ̃||, then, by Lemma 15, there exists (c, t) ∈ C ×T with ξtc > ξ̃tc such that

ξ−χc,t ∈ Ξ and ξ̃+χc,t ∈ Ξ. However, ξ̃+χc,t ∈ Ξ contradicts the assumption that ξ̃
is maximal in Ξ. Therefore, we must have ||ξ|| = ||ξ̃||, which implies that every dis-
tribution inM has the same sum of coordinates. Furthermore, every distribution
in Ξ that has the same sum of coordinates also has to be maximal.
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By Lemma 15, for each (c, t) ∈ C×T with ξtc > ξ̃tc, there exists (c′, t′) ∈ C×T with
ξt
′

c′ < ξ̃t
′

c′ such that

ξ − χc,t + χc′,t′ ∈ Ξ and ξ̃ + χc,t − χc′,t′ ∈ Ξ.

The equations above imply that both distributions are also maximal in Ξ because
||ξ−χc,t+χc′,t′|| = ||ξ|| and ||ξ̃+χc,t−χc′,t′|| = ||ξ̃||. Therefore, we get ξ−χc,t+χc′,t′ ∈
M and ξ̃ + χc,t − χc′,t′ ∈M, which establishes thatM is an M-convex set. �

Proof of the Statement in Example 1. We prove the statement that the diversity
index defined in Example 1 satisfies ordinal concavity. We consider several cases
depending on the value of ξ used in the definition of ordinal concavity.

Case 1: ξ = ξ({x, y}). Let t ∈ T be the type of the student associated with contract
x and t′ ∈ T be the type of the student associated with contract z. If ξ̃t′c = 0, then
ξ̃ = ξ(∅) or ξ̃ = ξ({y}). For ξ̃ = ξ(∅), we have f(ξ̃ + ξ({x})) > f(ξ̃). Therefore,
condition (ii) in the definition of ordinal concavity is satisfied. For ξ̃ = ξ({y}), we
have f(ξ − χc,t) = f(ξ) and f(ξ̃ + χc,t) = f(ξ̃). Therefore, condition (iii) in the
definition of ordinal concavity is satisfied. However, if ξ̃t′c = 1, then ξ̃ = ξ({z}) or
ξ̃ = ξ({y, z}). For both values of ξ̃, f(ξ − χc,t + χc,t′) > f(ξ), which means that
condition (i) in the definition of ordinal concavity is satisfied.

Case 2: ξ = ξ({y, z}). If χc,t = ξ({y}) and n > 5, then we have f(ξ − χc,t) > f(ξ), so
condition (i) in the definition of ordinal concavity is satisfied.

If χc,t = ξ({y}) and n = 5, then, for ξ̃ = ξ(∅), we have f(ξ̃ + χc,t) > f(ξ̃), so
condition (ii) in the definition of ordinal concavity is satisfied. For ξ̃ = ξ({x}), we
have f(ξ − χc,t) = f(ξ) and f(ξ̃ + χc,t) = f(ξ̃), so condition (iii) in the definition
of ordinal concavity is satisfied For ξ̃ = ξ({z}), we have f(ξ̃ + χc,t) = f(ξ̃) and
f(ξ−χc,t) = f(ξ), so condition (iii) in the definition of ordinal concavity is satisfied.
Finally, if ξ̃ = ξ({x, z}), let t′ ∈ T be such that χc,t′ = ξ({z}). Then f(ξ̃+χc,t−χc,t′) =

f(ξ̃) and f(ξ − χc,t′ + χc,t) = f(ξ), so condition (iii) in the definition of ordinal
concavity is satisfied.

However, if χc,t = ξ({z}), then ξ̃tc = 0, and for all such ξ̃ except ξ({x, y}), we have
f(ξ̃ + χc,t) > f(ξ̃). Therefore, condition (ii) in the definition of ordinal concavity
is satisfied. For ξ̃ = ξ({x, y}), let χc,t′ = ξ({x}). Then f(ξ̃ + χc,t − χc,t′) = f(ξ̃) and
f(ξ − χc,t′ + χc,t) = f(ξ), so condition (iii) in the definition of ordinal concavity is
satisfied.
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Case 3: ξ = ξ({x, z}). Since the diversity index f is symmetric with respect to x and
y, this case is analogous to Case 2 above.

Case 4: ξ = ξ({z}). In this case, we have χc,t = ξ({z}) and ξ̃tc = 0. For all such
ξ̃ except ξ({x, y}), we have f(ξ̃ + χc,t) > f(ξ̃), so condition (ii) is satisfied in the
definition of ordinal concavity. For ξ̃ = ξ({x, y}), if we let χc,t′ = ξ({x}) where
t′ ∈ T is the type of student associated with contract x, then f(ξ̃+χc,t−χc,t′) > f(ξ̃),
so condition (ii) in the definition of ordinal concavity is satisfied.

Case 5: ξ = ξ({x}). In this case, we have χc,t = ξ({x}) and ξ̃tc = 0. If ξ̃ = ξ(∅), then
f(ξ̃ + χc,t) > f(ξ̃). Therefore, condition (ii) in the definition of ordinal concavity
is satisfied. If ξ̃ = ξ({y}), let t′ ∈ T be such that χc,t′ = ξ({y}). Then f(ξ̃ + χc,t −
χc,t′) = f(ξ̃) and f(ξ − χc,t + χc,t′) = f(ξ), so condition (iii) in the definition of
ordinal concavity is satisfied. If ξ̃ ∈ {ξ({z}), ξ({y, z})}, then let t′′ ∈ T be such that
χc,t′′ = ξ({z}). Then f(ξ−χc,t +χc,t′′) > f(ξ), which means that condition (i) in the
definition of ordinal concavity is satisfied.

Case 6: ξ = ξ({y}). Since the diversity index f is symmetric with respect to x and
y, this case is analogous to Case 5 above.

�

Proof of Claim 1. Let ξ, ξ̃ ∈ Ξ0 and (c, t) with ξtc > ξ̃tc. If ξ̃ = ξ(∅), then

f(ξ̃) < f(ξ) and f(ξ̃) < f(ξ̃ + χc,t).

Together with the fact that f(ξ(∅)) = 0 is the minimum function value, pseudo M\-
concavity+ is satisfied. In the remaining part, suppose that ξ̃ 6= ξ(∅). If ||ξ|| = ||ξ̃|| =
1 or ξ ≥ ξ̃, then pseudo M\-concavity+ trivially holds. In what follows, we consider
the remaining three cases.

Case 1: Suppose {ξ, ξ̃} ⊆ {ξ({x}), ξ({y, z})}.

Subcase 1-1: Suppose ξ = ξ({x}), which implies χc,t = ξ({x}). For (c′, t′) with
χc′,t′ = ξ({z}),

f(ξ({x})− χc,t + χc′,t′) = f(ξ({z})) = n > 1 = f(ξ({x})),

f(ξ{y, z}) + χc,t − χc′,t′) = f(ξ({x, y})) = 1.

Together with f(ξ({x})) = 1 < 5 = f(ξ({y, z}), pseudo M\-concavity+ holds.



DESIGN ON MATROIDS 59

Subcase 1-2: Suppose ξ = ξ({y, z}) and χc,t = ξ({y}). For (c′, t′) with χc′,t′ = ξ({x}),

f(ξ({y, z})− χc,t + χc′,t′) = f(ξ({x, z})) = 5 = f(ξ({y, z})),

f(ξ({x}) + χc,t − χc′,t′) = f(ξ({y})) = 1 = f(ξ({x})).

Hence, pseudo M\-concavity+ holds.

Subcase 1-3: Suppose ξ = ξ({y, z}) and χc,t = ξ({z}). For (c′, t′) with χc′,t′ = ξ({x}),

f(ξ({x}) + χc,t − χc′,t′) = f(ξ({z})) = 5 > 1 = f(ξ({x})),

f(ξ({y, z})− χc,t + χc′,t′) = f(ξ({x, y})) = 1.

Together with f(ξ({x})) = 1 < 5 = f(ξ({y, z}) pseudo M\-concavity+ holds.

Case 2: Suppose {ξ, ξ̃} ⊆ {ξ({y}), ξ({x, z})}. Since contracts x and y are symmetric,
the proof of this case is similar to that for Case 1.

Case 3: Suppose {ξ, ξ̃} ⊆ {ξ({z}), ξ({x, y})}.

Subcase 3-1: Suppose ξ = ξ({z}), which implies χc,t = ξ({z}). For (c′, t′) with χc′,t′ =

ξ({x}),

f(ξ({x, y}) + χc,t − χc′,t′) = f(ξ({y, z})) = 5 > 1 = f(ξ({x, y})),

f(ξ({z})− χc,t + χc′,t′) = f(ξ({x})) = 1.

Together with f(ξ({x, y})) = 1 < n = f(ξ({z})), pseudo M\-concavity+ holds.

Subcase 3-2: Suppose ξ = ξ({x, y}) and χc,t = ξ({x}). For (c′, t′) with χc′,t′ = ξ({z}),

f(ξ({x, y})− χc,t + χc′,t′) = f(ξ({y, z})) = 5 > f(ξ({x, y})),

f(ξ({z}) + χc,t − χc′,t′) = f(ξ({x})) = 1.

Together with f(ξ({x, y})) = 1 < n = f(ξ({z})), pseudo M\-concavity+ holds.

Subcase 3-3: Suppose ξ = ξ({x, y}) and χc,t = ξ({y}). Since contracts x and y are
symmetric, the proof for this case is similar to that for Subcase 3-2. �

Proof of Claim 2. Suppose that Ξ0 = {ξ ∈ Z|C|×|T |+ |
∑

t∈T ξ
t
c ≤ q} for some q ∈ Z+.

Let ξ, ξ̃ ∈ Ξ0 and (c, t) ∈ C × T with ξtc > ξ̃tc. We consider three cases. In each
case discussed below, the if-clauses of (A) and (B) in the definition of pseudo M\-
concavity+ do not hold. Therefore, it suffices to show that the weak inequality in
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the definition holds. Recall that, for each ξ ∈ Ξ0,

f s(ξ) =
∑

(c,t)∈C×T

min{ξtc, rtc}.

Case 1: Suppose f s(ξ) < f s(ξ̃).

Subcase 1-1: Suppose rtc ≥ ξtc. Then,

rtc ≥ min{ξtc, rtc} = ξtc > ξ̃tc = min{ξ̃tc, rtc}.

Together with f s(ξ) < f s(ξ̃), there exists (c′, t′) ∈ C × T such that

min{ξt′c′ , rt
′

c′} < min{ξ̃t′c′ , rt
′

c′} ≤ rt
′

c′ .

By the above two inequalities,

f s(ξ) = f s(ξ − χc,t) + 1 = f s(ξ − χc,t + χc′,t′), and

f s(ξ̃) ≤ f s(ξ̃ − χc′,t′) + 1 = f s(ξ̃ + χc,t − χc′,t′).

It follows that pseudo M\-concavity+ is satisfied.

Subcase 1-2: Suppose rtc < ξtc.

Subcase 1-2-1: Suppose
∑

(c̃,t̃)∈C×T ξ̃
t̃
c < q, which implies ξ̃ + χc,t ∈ Ξ0. By rtc < ξtc,

f s(ξ) = f s(ξ − χc,t).

By the definition of f s(·),

f s(ξ̃) ≤ f s(ξ̃ + χc,t).

It follows that pseudo M\-concavity+ is satisfied.

Subcase 1-2-2: Suppose
∑

(c̃,t̃)∈C×T ξ̃
t̃
c̃ = q. By ξtc > ξ̃tc and

∑
(c̃,t̃)∈C×T ξ

t̃
c̃ ≤ q =∑

(c̃,t̃)∈C×T ξ̃
t̃
c̃, there exists (c′, t′) ∈ C × T such that ξt′c′ < ξ̃t

′

c′ . If rt′c′ < ξ̃t
′

c′ , then to-
gether with rtc < ξtc,

f s(ξ) = f s(ξ − χc,t) ≤ f s(ξ − χc,t + χc′,t′), and

f s(ξ̃) = f s(ξ̃ − χc′,t′) ≤ f s(ξ̃ + χc,t − χc′,t′).

It follows that pseudo M\-concavity+ is satisfied. If rt′c′ ≥ ξ̃t
′

c′(> ξt
′

c′), then together
with rtc < ξtc,

f s(ξ) = f s(ξ − χc,t) < f s(ξ − χc,t + χc′,t′), and

f s(ξ̃)− 1 = f s(ξ̃ − χc′,t′) ≤ f s(ξ̃ + χc,t − χc′,t′).
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By the assumption of Case 1, min{f s(ξ), f s(ξ̃) − 1} = min{f s(ξ), f s(ξ̃)}. Together
with the above two inequalities, pseudo M\-concavity+ is satisfied.

Case 2: Suppose f s(ξ) = f s(ξ̃).48

Subcase 2-1: Suppose rtc ≥ ξtc. Then,

rtc ≥ min{ξtc, rtc} = ξtc > ξ̃tc = min{ξ̃tc, rtc}.

Together with f s(ξ) = f s(ξ̃), there exists (c′, t′) ∈ C × T such that

min{ξt′c′ , rt
′

c′} < min{ξ̃t′c′ , rt
′

c′} ≤ rt
′

c′ .

By the above two inequalities,

f s(ξ) = f s(ξ − χc,t) + 1 = f s(ξ − χc,t + χc′,t′), and

f s(ξ̃) ≤ f s(ξ̃ − χc′,t′) + 1 = f s(ξ̃ + χc,t − χc′,t′).

It follows that pseudo M\-concavity+ is satisfied.

Subcase 2-2: Suppose rtc < ξtc.

Subcase 2-2-1: Suppose
∑

(c̃,t̃)∈C×T ξ̃
t̃
c̃ < q, which implies ξ̃ + χc,t ∈ Ξ0. By rtc < ξtc,

f s(ξ) = f s(ξ − χc,t).

By the definition of f s(·),

f s(ξ̃) ≤ f s(ξ̃ + χc,t).

It follows that pseudo M\-concavity+ is satisfied.

Subcase 2-2-2: Suppose
∑

(c̃,t̃)∈C×T ξ̃
t̃
c̃ = q. Let Φ = {(c̃, t̃) ∈ C × T | ξ t̃c̃ < ξ̃ t̃c̃}. By

ξtc > ξ̃tc and
∑

(c̃,t̃)∈C×T ξ
t̃
c̃ ≤ q =

∑
(c̃,t̃)∈C×T ξ̃

t̃
c̃, we have Φ 6= ∅.

48The proofs for Subcases 2-1 and 2-2-1 are similar to those for Subcases 1-1 and 1-2-1, respec-
tively.
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Suppose, for contradiction, that rt̃c̃ ≥ ξ̃ t̃c̃ for each (c̃, t̃) ∈ Φ. Then,

f s(ξ)− f s(ξ̃) =
∑

(c̃,t̃)∈C×T

min{ξ t̃c̃, rt̃c̃} −
∑

(c̃,t̃)∈C×T

min{ξ̃ t̃c̃, rt̃c̃}

=
∑

(c̃,t̃)∈Φ

min{ξ t̃c̃, rt̃c′} −
∑

(c̃,t̃)∈Φ

min{ξ̃ t̃c̃, rt̃c̃}

+
∑

(c̃,t̃)∈(C×T )\Φ

min{ξ t̃c̃, rt̃c̃} −
∑

(c̃,t̃)∈(C×T )\Φ

min{ξ̃ t̃c̃, rt̃c̃}

=
∑

(c̃,t̃)∈Φ

ξ t̃c̃ −
∑

(c̃,t̃)∈Φ

ξ̃ t̃c̃

+
∑

(c̃,t̃)∈(C×T )\Φ

(
min{ξ t̃c̃, rt̃c̃} −min{ξ̃ t̃c̃, rt̃c̃}

)
<
∑

(c̃,t̃)∈Φ

ξ t̃c̃ −
∑

(c̃,t̃)∈Φ

ξ̃ t̃c̃

+
∑

(c̃,t̃)∈(C×T )\Φ

(
ξ t̃c̃ − ξ̃ t̃c̃

)
≤ 0,

where the third equality follows from the assumption made for contradiction and
the definition of Φ, the strict inequality follows from min{ξ t̃c̃, rt̃c̃} − min{ξ̃ t̃c̃, rt̃c̃} ≤
ξ t̃c̃ − ξ̃ t̃c̃ for each (c̃, t̃) ∈ (C × T )\Φ and min{ξtc, rtc} −min{ξ̃tc, rtc} < ξtc − ξ̃tc for (c, t) ∈
(C × T )\Φ (where the latter strict inequality follows from ξtc > ξ̃tc and rtc < ξtc),
and the last inequality follows from the assumption of Subcase 2-2-2. We obtain a
contradiction to the assumption of Case 2.

It follows that there exists (c′, t′) ∈ Φ with rt′c′ < ξ̃t
′

c′ . Together with rtc < ξtc,

f s(ξ) = f s(ξ − χc,t) ≤ f s(ξ − χc,t + χc′,t′), and

f s(ξ̃) = f s(ξ̃ − χc′,t′) ≤ f s(ξ̃ + χc,t − χc′,t′).

It follows that pseudo M\-concavity+ is satisfied.

Case 3: Suppose f s(ξ) > f s(ξ̃).

Subcase 3-1: Suppose rtc ≥ ξtc.

Subcase 3-1-1: Suppose
∑

(c̃,t̃)∈C×T ξ̃
t̃
c̃ < q, which implies ξ̃ + χc,t ∈ Ξ0. By rtc ≥ ξtc,

f s(ξ)− 1 = f s(ξ − χc,t).
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By rtc ≥ ξtc > ξ̃tc,

f s(ξ̃) < f s(ξ̃ + χc,t).

By the assumption of Case 3, min{f s(ξ) − 1, f s(ξ̃)} = min{f s(ξ), f s(ξ̃)}. Together
with the above displayed equality and inequality, pseudo M\-concavity+ is satis-
fied.

Subcase 3-1-2: Suppose
∑

(c̃,t̃)∈C×T ξ̃
t̃
c̃ = q. By ξtc > ξ̃tc and

∑
(c̃,t̃)∈C×T ξ

t̃
c̃ ≤ q =∑

(c̃,t̃)∈C×T ξ̃
t̃
c̃, there exists (c′, t′) ∈ C × T such that ξt′c′ < ξ̃t

′

c′ . If rt′c′ < ξ̃t
′

c′ , then to-
gether with rtc ≥ ξtc > ξ̃tc,

f s(ξ)− 1 = f s(ξ − χc,t) ≤ f s(ξ − χc,t + χc′,t′), and

f s(ξ̃) = f s(ξ̃ − χc′,t′) < f s(ξ̃ + χc,t − χc′,t′).

By the assumption of Case 3, min{f s(ξ) − 1, f s(ξ̃)} = min{f s(ξ), f s(ξ̃)}. Together
with the above inequalities, pseudo M\-concavity+ is satisfied. If rt′c′ ≥ ξ̃t

′

c′(> ξt
′

c′),
together with rtc ≥ ξtc > ξ̃tc,

f s(ξ) = f s(ξ − χc,t) + 1 = f s(ξ − χc,t + χc′,t′), and

f s(ξ̃) = f s(ξ̃ − χc′,t′) + 1 = f s(ξ̃ + χc,t − χc′,t′).

It follows that pseudo M\-concavity+ is satisfied.

Subcase 3-2: Suppose rtc < ξtc.

Subcase 3-2-1: Suppose
∑

(c̃,t̃)∈C×T ξ̃
t̃
c̃ < q, which implies ξ̃ + χc,t ∈ Ξ0. By rtc < ξtc,

f s(ξ) = f s(ξ − χc,t).

By the definition of f s,

f s(ξ̃) ≤ f s(ξ̃ + χc,t).

It follows that pseudo M\-concavity+ is satisfied.

Subcase 3-2-2: Suppose
∑

(c̃,t̃)∈C×T ξ̃
t̃
c̃ = q. Let Φ = {(c̃, t̃) ∈ C × T | ξ t̃c̃ < ξ̃ t̃c̃}. By

ξtc > ξ̃tc and
∑

(c̃,t̃)∈C×T ξ
t̃
c̃ ≤ q =

∑
(c̃,t̃)∈C×T ξ̃

t̃
c̃, we have Φ 6= ∅.

Suppose, for contradiction, that rt̃c̃ ≥ ξ̃ t̃c̃ for each (c̃, t̃) ∈ Φ. Then, by following
the same line of argument as in Subcase 2-2-2, we obtain f s(ξ) < f s(ξ̃), which is a
contradiction to the assumption of Subcase 3. It follows that there exists (c′, t′) ∈ Φ
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with rt′c′ < ξ̃t
′

c′ . Together with rtc < ξtc,

f s(ξ) = f s(ξ − χc,t) ≤ f s(ξ − χc,t + χc′,t′), and

f s(ξ̃) = f s(ξ̃ − χc′,t′) ≤ f s(ξ̃ + χc,t − χc′,t′).

We conclude that pseudo M\-concavity+ is satisfied. �

Counterexample to Claim 2 when Ξ0 is not given as in the statement: Let C = {c, c′} and
T = {t, t′}. Suppose that each school’s capacity is given by qc = 2 and qc′ = 1, i.e.,

Ξ0 =
{
ξ ∈ Z|C|×|T |+ |

∑
t∈T

ξtc ≤ 2,
∑
t∈T

ξtc′ ≤ 1
}
.

The number of reserved seats is given by rtc = 1, rt′c = 1, rtc′ = 1, and rt
′

c′ = 0. Let
ξ, ξ̃ ∈ Ξ0 be such that

ξtc = 2, ξt
′

c = 0, ξtc′ = 1, ξt
′

c′ = 0,

ξ̃tc = 1, ξ̃t
′

c = 1, ξ̃tc′ = 0, ξ̃t
′

c′ = 0.

For (c, t), the only candidate of (c′′, t′′) ∈ (C × T ) ∪ {∅} with ξ̃ + χc,t − χc′′,t′′ ∈
Ξ0 is (c′′, t′′) = (c, t′) (otherwise the capacity constraint for school c is violated at
ξ̃ + χc,t − χc′′,t′′). Then,

min{f s(ξ), f s(ξ̃)} = min{2, 2} = 2, and

f s(ξ̃) = 2 > 1 = f s(ξ̃ + χc,t − χc,t′).

It follows that f s violates pseudo M\-concavity, and hence violates pseudo M\-
concavity+.

Omitted Examples

Example 5. In this example we show that ordinal concavity of f does not necessarily
imply ordinal concavity of fλ. Let C = {c}, T = {t, t′}, Ξ0 = {0, 1}2 ⊆ Z2

+, ξ({x}) =

(1, 0), and ξ({y}) = (0, 1). Let X = {x, y} and the diversity index f be defined as
follows:

f(ξ(∅)) = 1, f(ξ({x})) = 0, f(ξ({y})) = 2, and f(ξ({x, y})) = 1.

It is easy to see that f is ordinally concave. For λ = 1,

fλ(ξ(∅)) = 1, fλ(ξ({x})) = 0, fλ(ξ({y})) = 1, and fλ(ξ({x, y})) = 1.
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Consider ξ({x, y}), ξ(∅), and t ∈ T with χc,t = ξ({x}). Since

fλ(ξ({x, y})) = 1 = fλ(ξ({y})) and

fλ(ξ(∅)) = 1 > 0 = fλ(ξ({x})),

fλ violates ordinal concavity.

Example 6. In this example we show that the converse of Proposition 1 is false. Let
C = {c}, T = {t}, and Ξ0 = {0, 1, 2} ⊆ Z+. We identify Z|C|×|T |+ with Z+. Define
f : Ξ0 → R as

f(0) = 0, f(1) = 0, and f(2) = 1.

It is easy to see that f satisfies pseudo M\-concavity. However, fλ violates ordinal
concavity whenever λ ≥ 1 (in which case fλ = f).49 To see this point, let ξ = 2 and
ξ̃ = 0. Since

1 = fλ(ξ) > fλ(ξ − χc,t) = fλ(1) = 0 and

0 = fλ(ξ̃) = fλ(ξ̃ + χc,t) = fλ(1) = 0,

fλ violates ordinal concavity.

Example 7. In this example we illustrate the trace algorithm in Section 4.1. Consider
the setting in Example 1 and suppose that n ≥ 6. Suppose that the university is
considering the set of applications X = {x, y, z} and the merit ranking of contracts
is x � y � z. Note that the diversity choice rule outcome is Cd(X) = {z}.

At the beginning of the algorithm k = 0, λ0 = 0, and X0 = ∅. Therefore, we need
to calculate Cd

λ0
(X). For λ0 = 0, fλ0 assigns zero to all sets. Hence, the set of max-

imal distributions in the set of maximizers of fλ0 is {ξ({x, y}), ξ({x, z}), ξ({y, z})},
and thus, Cd

λ0
(X) = {x, y}. Since Cd

λ0
(X) 6= Cd(X) = {z}, we set X1 = X0 ∪

{Cd
λ0

(X)} = {{x, y}} and λ1 = f(ξ({x, y})) + 1 = 2.
In the second iteration we have k = 1, λ1 = 2, and X1 = {{x, y}}. Hence, we need

to find Cd
λ1

(X). For λ1 = 2, fλ1 assigns two to all sets with a diversity index (with
respect to f) of at least two. Therefore, the set of maximal distributions in the set of
maximizers for the diversity index fλ1 is {ξ({x, z}), ξ({y, z})}, and thus Cd

λ1
(X) =

{x, z}. Since Cd
λ1

(X) 6= Cd(X) = {z}, we set X2 = X1 ∪ {Cd
λ1

(X)} = {{x, y}, {x, z}}
and λ2 = f(ξ({x, z})) + 1 = 6.

49Therefore, this example in fact shows that pseudo M\-concavity of f does not imply ordinal
concavity of f .
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{x, z}
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5 n1

{y, z}{x}

{y}

diversity
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Figure 1. The filled nodes are on the diversity-merit Pareto frontier
in Example 7 when n > 5.

In the third iteration we have k = 2, λ2 = 6, and X2 = {{x, y}, {x, z}}. Hence,
we need to construct Cd

λ2
(X). For λ2 = 6, fλ2 assigns six to all sets with a diversity

index (with respect to f) of at least six. Therefore, the set of maximal distribu-
tions in the set of maximizers for the diversity index fλ2 is {ξ({z})}, which implies
that Cd

λ2
(X) = {z}. Since Cd

λ2
(X) = Cd(X) = {z}, we set X3 = X2 ∪ {Cd

λ2
(X)} =

{{x, y}, {x, z}, {z}} and return this as the outcome of the trace algorithm. The out-
come generates all the sets in the diversity-merit Pareto frontier by Theorem 4; see
Figure 1.
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