
Learning to Explain Voting Rules
Inwon Kang

Rensselaer Polytechnic Institute

Troy, New York, USA

inwon.kang04@gmail.com

Qishen Han

Rensselaer Polytechnic Institute

Troy, New York, USA

hnickc2017@gmail.com

Lirong Xia

Rensselaer Polytechnic Institute

Troy, New York, USA

xialirong@gmail.com

ABSTRACT
Explaining the outcome of a vote is a crucial task to address, espe-

cially in the case of complex voting rules. This work proposes

a methodology for explaining voting rules using decision-tree-

based classifiers, a widely applied tool in XAI domain. Using simple

ranking-aware features, the classifiers can be trained to achieve high

accuracy while maintaining a human-readable size. We test this

framework with well-established voting rules – Copeland, Kemeny-

Young, Ranked Pairs, and Schulze – and different decision tree

algorithms to generate explanations for each election’s outcome.

We find that in the setting of three candidates, a decision tree model

can perfectly explain these voting rules with simple features. When

the number of candidates increases, the tree is not perfect yet re-

mains high accuracy in explaining the outcome. This works aims

to improve the public’s engagement with election systems by im-

proving interpretability in voting rules with a visual aid which is

faithful to the original voting rule.

CCS CONCEPTS
• Computing methodologies → Classification and regression
trees; Multi-agent systems; • Human-centered computing→
Human computer interaction (HCI).

KEYWORDS
Social Choice, Artificial Intelligence, Explainable Voting, Machine

Learning, Explainable AI, XAI
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1 INTRODUCTION
Voting is the most widely applied decision making method with

application in every corner of life, ranging from electing the gov-

ernment and congress to making high-stake decisions by multiple

supercomputers, and has also become an essential part of many

complex machine learning systems. While voting aims to reach a

“good” decision, it is also important to explain and convince the peo-
ple on the decision. The requirement and challenges of explaining
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the vote outcome is especially acute for complex voting rules such

as Schulze [23], as it’s hard for untrained individuals to understand

the technical details and insights of voting rules.

Previous works focuses on logical explanation of the voting rule,

which aims to generate interpretation on logical principles and

reasoning, including axiomatic approach [6, 19], algorithmic ap-

proach, and crowdsourcing [24]. However, it is important to provide

a procedural explanation in practical scenarios, which allows agents

without expertise to examine the votes in detail and verifying the

correctness of the outcome. Unlike logical explanation that focus

on interpretation, procedural explanation emphasize the trustwor-

thiness of the voting. Trustworthy is an essential guarantee in large

elections, where every detail may be questioned and examined by

a large population of crowd. Therefore, it is important to provide

a human-readable procedural explanation via simple features, for

example, the position of a candidate in the rank and the competition

between two candidates.

Example 1.1. A local government decides to hold votes on public

construction in the neighborhood (e.g., swimming pools, stadium,

e.t.c.) with some pre-determined voting rule (e.g., Schulze). To get

better support from the public, the government decides to gener-

ate an explanation for the voting outcome for examination. The

public has no expertise on how the voting rule works, but they

can understand simple notions such as “a swimming pool is more

welcomed than a stadium” and “a park is a second-favorite choice

for half of the voters”. The government hopes that their explanation

is as simple and correct as possible. How can they generate the

explanation?

Motivated by the example, we propose the following question.

Can we generate procedural explanations for voting rules
via simple features?

Traditionally, a procedural explanation appears in a form of

a pseudo-code or the execution record of the voting rule. This

works on simple, intuitive rules such as Plurality and Borda, but is

likely to fail on more complex rules. For example, ranked pairs and

and Schulze compute the winner on highly abstract features (pair

rankings and paths) which might be alien for people not familar

with social choice theory. The development of machine learning

provides a powerful perspective and tools for analyzing voting

rules. Multiple works have demonstrated that deep models such as

MLP or GNN can be used to estimate and emulate the behavior of a

voting rule [3, 5, 16, 20]. However, deep models can not gurantee a

correct representation and are equally or even more complex than

the voting rule itself. The methods still need to improve in terms of

accuracy and interpretability.

This paper focuses on explaining voting rules via decision tree
models. Decision tree is s powerful tool to learn and characterize a

voting rule via a series of simple features. Moreover, as a white-box
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learning model, a decision tree has a human-readable structure,

which allows non-experts to follow the steps in a visual manner.

Compared to pseudo codes, a decision tree built upon pairwise

comparisons is easier to follow and verify the correctness of the

vote. By training a perfect decision tree that can accurately predict

the winner of an election, one can use the tree’s decision paths to

justify the outcome of the election.

Our Contribution. We propose a methodology of producing a

procedural explanation for a voting rule using decision tree models.

In our experiments, we train decision tree models to learn different

voting rules. We use pairwise margin, i.e. the difference between
pairwise comparisons, to characterize a voting rule. A typical pair-

wise margin looks like “whether the votes of 𝐴 ≻ 𝐵 exceeds the

votes of 𝐵 ≻ 𝐶”. In a decision tree, a non-leaf node is a condi-

tion of feature, a leaf node is a decision, and a path is procedural

explanation of a profile.

We show that decision trees for voting rules that satisfy the

Condorcet criterion can be learned for a setting with 3 candidates.

In particular, we show that the Generalized Optimal Sparse Decision

Tree (GOSDT) [15] and Extreme Gradient Boosting (XGBoost) [7]

algorithms output a perfect tree when using the pairwise-margin

feature. We also test this framework on a more complex setting

with increased candidates, and find that the algorithms were still

able to find a near-perfect tree with most of the leaf nodes being

correct.

We believe a decision tree serves as a useful tool to explain

learning. It is easier to understand than pseudo codes and more

transparent than deep models. A decision tree that can provably

cover every possible scenario can be relied on as a correct explana-

tion. Because of the transparency and guaranteed accuracy, the tree

can then be used by anyone to verify the steps taken to reach the

election result. Expanding upon Example 1.1, the local government

can release the trained decision tree for the voting process, allowing

the public to understand how their votes impacted the result of the

outcome, or even decide whether they would like to change the

voting rule to a different rule.

2 RELATEDWORKS
Explainable Voting. Past literature has approached the problem of

explaining a voting rule using the axiomatic approach first proposed

by Cailloux and Endriss [6], which decomposes the voting profile

into subgroups that fit into some pre-define axioms acknowledged

by the public. The voting outcome is then interpreted as a logical

chain of these axioms. Proccacia [19] proposed that axiomatic prop-

erties should help explain the voting rule to the public in real-life

scenarios. Expanding upon this, Peters et al. [18] show that an

axiom-based explanation for Borda can be constructed in 𝑂 (𝑚2)
steps for m alternatives.

Apart from the axiomatic approach, Suryanarayana et al. [24]

uses feature-based explanations to explain the outcome of elec-

tions. The authors gathered participants through crowdsourcing

and asked them to evaluate an election’s result based on feature-

based explanations.

Machine Learning and Voting Rules. Past works on using machine

learning to learn from voting rules have been mostly focused on

using models based on neural network architecture. Burka et al. [5]

train a Multi Layer Perceptron (MLP) model to learn various voting

rules. They show that MLP performs near perfect for the Borda

rule, given a sufficient sample size. Anil et al. [3] show Permutation

Invariant Neural Nets (PIN) can learn generalized voting rules very

accurately compared to models like MLP, as well as demonstrating

that new voting rules that consider various (utilitarian, egalitarian)

social welfare functions perform better than classical NN models.

Machine learning can also be used in conjunction with voting rules.

Doucette et al. [9] propose a method using conventional machine

learning to complete a preference profile with incomplete ballots to

be used with traditional voting rules. In this work, machine learning

is used to ‘complete’ the incomplete ballots based on the patterns

extracted from existing ballots. Xia et al. [25] discuss a top-down

approach of designing a voting rule using machine learning. The

authors discuss the goals of building such a system, and how to

design a training workflow to train a machine learning model to

output a voting rule with desired properties. Building upon this

idea, Grant et al. [10] propose a concept of direct democracy system

through voting avatars, in which each individual is represented

by an automated agent based on a customized machine-learning

model.

Explainability of Machine Learning Models. Also known as XAI,

past works in explainable AI have proposed different models and

methodologies to increase machine learning models’ explainability.

Gunning et al. [12] discuss the various ML models that can be used

to generate explanations, comparing the complexity versus the

explainability of various broad types of machine learning. Samek

et al. [22] conduct a survey on existing methods of explaining AI

models and the scope of explanation. The authors discuss various

methods for explaining black-box models, such as using decision

trees or logistic regression weights to generate an explanation for

the target model. Dat et al. [8] reviews AI explanation methods and

categorizes them according to their similarities and differences. The

authors focus on explaining deep models and point out that there

are still limitations to how well such models can be explained. Islam

et al. [13] conduct a systematic literature review of XAI by review-

ing 137 recent publications relating to XAI. They find a wide variety

of application domains such as entertainment, finance, criminal

justice and healthcare. Adadi et al. [1] conduct a survey of the XAI

field and identify the different types of motivations and application

domains associated with it. In their survey, the authors outline the

need for XAI as follows: the need for justification, controllability,

and discoverability. The authors also point out a wide range of

domains that could benefit from XAI, such as healthcare, finance,

and criminal justice. Guidotti et al. [11] define an explanation for AI

as an “interface between humans and a decision maker that is at the

same time both an accurate proxy of the decision maker and com-

prehensible to humans”. Expanding upon this definition, Arrieta et

al. [4] define explainability as “details and reasons a model gives

to make its functioning clear or easy to understand”. In this work,

we use a combination of these definitions. For a decision tree to be

‘explainable’ and thus serve as an explanation, the model needs to be
an accurate representation of the target mechanism while providing a
clear insight into its decision paths given a weighted majority graph.
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3 PRELIMINARIES
3.1 Voting Rules
A voting rule chooses a set of winners from a set of candidates

according to a voting profile. A set of candidates is defined as 𝐶 ,

with |𝐶 | = 𝑚. A vote 𝑉 is a linear ordering of these candidates,

namely 𝑉 ∈ 𝐿(𝐶) and |𝑉 | = 𝑛, where 𝐿(𝐶) denotes all the possible
orderings. A voting profile 𝑃 is composed of 𝑛 votes, thus 𝑃 ∈
𝐿(𝐶)𝑛 . Throughout this work, we use𝑚 to denote the number of

candidates and 𝑛 to denote the size of the profile. A voting rule

𝑟 : 𝐿(𝐶)𝑛 → 2
𝐶 \ {∅} maps a profile to a set of winners from the

candidates. A weighted majority graph (WMG) of a profile 𝑃 is a

graph structure that characterizes pairwise preferences between

agents. Let |𝐴 ≻ 𝐵 | be the number of votes that prefer 𝐴 over 𝐵 in

the profile 𝑃 . For each 𝐴 ≻ 𝐵 in profile 𝑃 , the WMG has an edge

𝐴 → 𝐵 with weight |𝐴 ≻ 𝐵 | − |𝐵 ≻ 𝐴|.

3.1.1 Copeland. The Copeland rule selects the winner by counting
pairwise preferences. A candidate gets a Copeland score of 1 from

each candidate that he/she is preferred over by a majority of the

voters and gets𝛼 from each candidate that he/she is tied with. In this

paper, we assume 𝛼 = 0.5. The total Copeland score of a candidate

is the sum of the scores his/her wins from all other candidates.

The final winner is declared by finding the candidate who has the

highest Copeland score.

3.1.2 Kemeny-Young. The Kemeny-Young rule [14] selects the

ranking that least disagrees with the profile, and the winner is

the top candidate of the select ranking. Given a ranking and a vote,

the score of the ranking from the vote is the number of their oppo-

site pairwise preferences. The score of the ranking in the profile is

the sum of the score of this ranking from all the votes. The ranking

with the minimum score is then selected.

Example 3.1 (Kemeny-Young). For a voting profile with two votes

for𝐴 ≻ 𝐵 ≻ 𝐶 and one vote for 𝐵 ≻ 𝐶 ≻ 𝐴. Ranking𝐴 ≻ 𝐵 ≻ 𝐶 has

no opposite pairwise preferences with the first two votes and has

two opposite preferences (𝐵 ≻ 𝐴 and 𝐶 ≻ 𝐴) with vote 𝐵 ≻ 𝐶 ≻ 𝐴.

Therefore, the score of 𝐴 ≻ 𝐵 ≻ 𝐶 is 2. 𝐴 ≻ 𝐵 ≻ 𝐶 is the winning

ranking because no other ranking has a lower score.

3.1.3 Ranked pairs. The ranked pairs rule compares each pair of

alternatives. Every possible pair of candidates are ranked according

to their pairwise victory (the number of times a candidate beats

another). The pairwise victory are then sorted in descending order

(highest first). Iterating through the list of pairs, each pair is added

to the final ranking graph as an edge from the winner to the loser

unless it creates a cycle. The final winner is found by selecting

candidates with no incoming edges.

3.1.4 Schulze. The Schulze rule finds the winner by constructing

a weighted majority graph of the preferences. Given a path in the

graph, the path margin equals to the minimum weight of any of its

arcs. And the Schulze score 𝑆 (𝐴, 𝐵) equals to the maximum path

margin of all possible𝐴 → 𝐵 paths. The Schulze winner is declared

by finding a candidate who is preferred over every other candidate

– in other words, a candidate 𝐴 such that 𝑆 (𝐴, 𝐵) ≥ 𝑆 (𝐵,𝐴) for any
other candidates 𝐵.

𝐴 ≻ 𝐵 𝐴 ≻ 𝐶 𝐵 ≻ 𝐴 𝐵 ≻ 𝐶 𝐶 ≻ 𝐴 𝐶 ≻ 𝐵

5 7 2 5 0 2

Table 1: Example of Pairwise Victory

|𝐴 ≻ 𝐵 | − |𝐴 ≻ 𝐶 | -2

|𝐴 ≻ 𝐵 | − |𝐵 ≻ 𝐴| 3

|𝐴 ≻ 𝐵 | − |𝐵 ≻ 𝐶 | 2

|𝐴 ≻ 𝐵 | − |𝐶 ≻ 𝐴| 5

... ...

Table 2: Example of Pairwise Margin

Example 3.2 (Ranked pairs and Schulze). Here we give an illustra-

tion of how ranked pairs and the Schulze rule work. There are four

alternatives {𝐴, 𝐵,𝐶, 𝐷} and a profile 𝑃 whose weighted majority

graph is shown in Figure 1. (Edge 𝐶 → 𝐵 weighs 4 and 𝐴 → 𝐷

weighs 2.)

𝐴𝐴 𝐵𝐵

𝐶𝐶 𝐷𝐷6

2
6

4 24

Figure 1: The WMG of the profile in Example 3.2.

For ranked pairs with a lexicographical tie-breaking, the fol-

lowing edges are added to the final ranking graph in order: 𝐵 →
𝐴, 𝐷 → 𝐶,𝐴 → 𝐶,𝐴 → 𝐷 . Therefore, 𝐵 is the winner in ranked

pairs. For Schulze, the path margin of 𝐷 → 𝐴 and 𝐷 → 𝐵 are 4,

𝐷 → 𝐶 is 6, while the path margin of 𝐴 → 𝐷 , 𝐵 → 𝐷 , and 𝐶 → 𝐷

are all 2. Therefore, 𝐷 is the winner in Schulze.

3.1.5 Pairwise Margins. Our decision trees use pairwise margins
as features to learn and explain the voting rules. A pairwise margin
is defined as the difference between every possible pair of pairs

of candidates, i.e., the difference between the pairwise victories of
two pairs. A pairwise victory is defined as the number of times

candidate A is ranked higher than candidate B. The pairwise margin
is a powerful feature for WMG-based rules (Copeland, ranked pairs,

and Schulze), which calculate the winner on pairwise comparisons

and can be used to efficiently represent each step in finding the

winner of these rules.

Example 3.3. Consider a profile with seven votes: There are three
votes of [𝐴 ≻ 𝐵 ≻ 𝐶], two votes of [𝐴 ≻ 𝐶 ≻ 𝐵], and two votes of

[𝐵 ≻ 𝐴 ≻ 𝐶]. Table 1 and Table 2 show the pairwise victories and

(a subset of) pairwise margins of the profile respectively.

3.2 Explainable AI
Explainable AI, also known as XAI, is a subdomain of AI research

that studies how AI models can be explained/interpreted. The need

for explainability in AI models rises as the models become more

complex and are increasingly used in high-risk tasks, such as in the

field of medicine or automated driving.
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3.2.1 Explanationmethods. TheDefenseAdvanced Research Projects
Agency’s report on XAI defines three broad categories of methods

for explaining AI systems [12]. These are deep-model explanation,

model induction, and explanation by interpretable model. In this

work, we focus on explanation by interpretable model, namely deci-

sion tree models.

Deep-model explanation and model induction are generated by

training a complex deep model. Generally speaking, it is difficult to

decode the entire structure of the deep model to be understood by

humans. Thus, the resulting explanation is often a broad but possi-

bly an incomplete explanation of the behavior of the deep model.

Rudin et al. [21] argue that if the goal is to output an explainable

classifier, training a deep model and training another interpretable

proxy of that model is unnecessary if the performance is equiva-

lent. We also find in our experiments that decision trees are able to

achieve a perfect score under some settings, which further justifies

our choice of using interpretable models as the classifiers.

Linear models can also work well as interpretable classifiers for

generating explanations. However, preference profiles are difficult

to encode into a set of features that linear models can use. Linear

models are also unable to learn the correlation between groups of

features. For this reason, we only use decision trees as the inter-

pretable classifier in this work. We also experiment using different

varieties of decision tree mining algorithms to test their efficacy.

3.2.2 Assessing Explanation Quality. We define a good explana-

tion as being simple enough for anyone to understand without

domain-specific knowledge. This means the features should be eas-

ily understandable, and the structure should be simple. A complex

explanation may be able to deliver more information about the

decision process, but it will also have reduced explainability. On

the other hand, an explanation that is too simple may be easier

to process but will fail to deliver some intricacies of the decision

process. Thus, an effective explanation model should capture the

essence of the decision process while maintaining a reasonable de-

gree of simplicity – a subjective measure. In our work, we constrain

all our decision trees to have a maximum depth of 6 for 𝑚 = 3.

The maximum depth of 6 was a value that was chosen based on

our assumption that a tree of depth less than 6 is simple enough

for interpretation. We also explore using additional constraining

algorithms such as GOSDT and hierarchical shrinkage to constrain

our trees further while maintaining the accuracy performance.

3.3 Decision Tree models
A decision tree classifier is a machine learning algorithm that finds

the best split for a feature at each depth and keeps building nodes

until no further splits can be made. The resulting classifier is repre-

sented as a binary tree, with each leaf node denoting the predicted

label value. The tree structure allows one to traverse the exact deci-

sion path inside the estimator. This makes decision tree classifiers

especially useful for tasks in which an explicit decision path of the

model is needed.

One problem the classic decision tree mining algorithm, Classifi-

cation And Regression Tree (CART), faces is the size of the resulting

tree. While the decision tree classifier’s interpretability is useful,

the algorithm is prone to overfitting without proper constraints,

outputting a rather complex tree. This problem has been tackled

with several different algorithms [2, 15]. In our experiments, we

consider two optimizations to the decision tree algorithm, namely

Generalized Optimized Sparse Decision Tree (GODST) [15], and

Hierarchical Shrinkage [2].

3.3.1 Classification and Regularization Trees. The CART algorithm

splits the nodes based on the number of samples per class. In this

work, we use two implementations of the CART algorithm to com-

pare their efficacy. We consider python implementations of Deci-

sionTreeClassifier from scikit-learn [17] and XGBClassifier from

the xgboost [7] package. To distinguish these two different imple-

mentations, we refer to each as Scikit-Learn and XGBoost.
XGBoost is an ensemble classifier that uses gradient boosting to

improve its trees. The classifier usually consists of multiple iterative

trees, each improving upon the previous tree. However, XGBoost

can also be used to train a single decision tree, the structure of which

is equivalent to a CART tree. Because XGBoost’s implementation of

the CART algorithm sufficiently differs from that of scikit-learn’s,

we consider bothmodels in the experiments. In order to differentiate

the models, we will refer to scikit-learn’s implementation as Scikit-

Learn, and XGBoost as XGBoost.

3.3.2 Generalized Optimal Sparse Decision Tree. Generalized Opti-

mal Sparse Decision Tree (GOSDT) is an algorithm that uses gradi-

ent boosting to generate optimal sparse decision trees. Proposed

by Lin et al.[15], this algorithm turns the input data into a simpler

form by calculating a threshold for each continuous feature before

mining the decision tree. The GOSDT algorithm reduces the feature

search space by utilizing a gradient-boosted model to bin contin-

uous features into categorical bins before the main algorithm. In

this work, we skip this step because the features are binned before

they are inputted into the model, the steps of which are explained

in detail in Section 4.2.

3.3.3 Hierarchical Shrinkage. Hierarchical Shrinkage is another
method of pruning a decision tree to reduce its dimensions. Agar-

wal et al. [2] propose this method to reduce the tree’s dimension

to increase its interpretability while maintaining its performance.

Given a trained decision tree, this algorithm regularizes the tree

from the leaf nodes to merge unnecessarily.

4 EXPERIMENTS
We conduct our experiment by generating synthetic voting data

and training and testing each decision tree algorithm to the dataset.

Each training data comprises 𝑘 randomly generated preference

profiles with 𝑚 candidates and 𝑛 votes. Because the models are

meant to explain the voting rule used to generate the training data,

we evaluate them by testing against another randomly generated

dataset which includes scenarios the models may not have faced

before. In order to test the flexibility of our models, we generate

and experiment with multiple datasets with different𝑚 and 𝑛.

We conduct experiments to determine the effect of the number of

voters 𝑛 and the number of alternatives𝑚 on learning performance.

To test this, we use 𝑘 = 10, 000, 𝑛 ∈ [10, 100] and𝑚 ∈ [3, 5]. The
value of 𝑘 was chosen after experimenting with several different

values between [100, 500000] and finding a value that does not

place an unnecessary computational burden while outputting good

models.
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Although the task of winner prediction is a multi-class problem,

we reduce it into a binary task by training individual models for each

candidate’s victory. For example, if𝑚 = 5, we train five different

classifiers to learn the victory condition of each candidate and

average the accuracy score to evaluate the overall performance.

This allows us to obtain five smaller decision trees that can be

used to explain each scenario instead of one large decision tree

that can be harder to interpret. In order to assess the accuracy of

these resulting trees – as one tree alone does not explain the whole

election – we average the independent accuracy scores of the𝑚

trees.

4.1 Synthetic voting profile
Each dataset comprises 𝑘 preference profiles, which are composed

of 𝑛 votes which rank𝑚 candidates. We chose random generation

to create our dataset due to the exponential increase in the number

of possible profiles as𝑚 grows.

In order to ensure that there are no repeated profiles in the

dataset, we randomly generate each profile until we get a profile

that has yet to be added to the dataset. Although we are able to

generate a complete dataset for𝑚 = 3 scenario, we found that the

number of possible combinations for scenarios with𝑚 > 3 is too

high. Because of this reason, we use random generation for𝑚 = 3

as well for the sake of consistency. A more detailed discussion about

generating a complete dataset can be found in Appendix A.

To ensure the model has learned a correct rule, we generate

two separate datasets for training and testing. In the training and

testing data, we ensure that each tree has enough samples for both

victories and losses to learn a correct tree. To achieve this, we

set up the data generation procedure such that the training data

contains an equal number of instances of victories for all candidates.

First, we generate 𝑘 sets of preference profiles, randomly iterating

until each of𝑚 candidates wins in
𝑘
𝑚 of the profiles, including ties.

These profiles are then merged to complete the entire dataset. Once

the profiles and the election outcome are computed, the profile is

converted into vector space using the pairwise margin feature. We

use this method to test our classifiers with𝑚 = 3, 4 and 5 to test

the performance for more complex voting profiles.

Some voting rules considered in this work can result in ties. In-

stead of breaking the ties, we consider both of the tied candidates

to be winners of that election. This is because adding a random or

alphabetical tie-breaking mechanism will add to the rule’s complex-

ity, which may add an unnecessary burden to the models. We are

interested in explaining the mechanism of the voting rule, so we

consider each tied candidate to be the winner when training the

models.

4.2 Input features
The generated data must first be encoded into a set of features

for the decision trees to understand the election data. We use the

pairwise margins feature discussed in Section 3.1.5. This feature

represents the ranking properties of the profile, which is well-suited

for WMG-based voting rules. We use only one type of feature so

that the decision tree is easy to understand. In order to reduce the

search space for the decision tree’s thresholds, we pre-determine

a threshold for each feature by binning them into categories and

marking 𝐹𝑎𝑙𝑠𝑒 as -1 and 𝑇𝑟𝑢𝑒 as 1 to make the tree splitting algo-

rithm always learns a threshold of 0 for a node.

4.3 Performance Metrics
We use the accuracy score to evaluate the resulting trees. Because

each tree is trained on a binary classification task to predict the

victory of a particular candidate, we can calculate their individual

accuracy scores. To evaluate the entire set of trees that are trained

on a voting rule, we calculate the average of the individual accuracy

scores.

4.4 Experiment Environment
All of our experiments were conducted on a system with 2 AMD

EPYC 7313 16-Core Processors with 256G RAM running Ubuntu

20.04.6 LTS.

4.5 Results
4.5.1 Decision Tree Structure. An instance of a decision tree is in

Figure 2.

A decision tree has a binary-tree structure. Each non-leaf node

represents a condition in the form of “if a certain pairwise margin is

positive”. Each leaf node is a judgment on whether the candidate is a

winner. Given a voting profile, the decision path can be generated by

finding the next node that the outgoing edge points to, depending

on whether the condition is met or not. See Appendix C for more

diagrams of decision trees.

4.5.2 Effect of 𝑛 on Accuracy. We conduct our experiment with

varying values of𝑚 and 𝑛 to determine how different candidates

and voters influence the learning process. Because odd values of 𝑛

produce an incomplete tree that cannot handle even values of 𝑛, we

only consider even values for 𝑛. This is due to the fact that there

can be ties present with even values of 𝑛 that do not appear in the

odd cases. We train the trees for different values of 𝑛 ∈ [10, 100]
incremented by 10. When the dataset is randomly generated, we

find that increasing the value of 𝑛 has a positive correlation with

the models’ performance, except for Copeland for Scikit-Learn and

HSTree. The fact that Scikit-Learn and HSTree show a similar trend

is not surprising, given the fact that HSTree is an optimization of

Scikit-Learn. Upon checking the resulting decision trees, we find

that the Scikit-Learn and HSTree resulted in decision trees that

tend to underfit and perform poorly on the Copeland rule testing

data. The general increase in performance may be attributed to

the fact that the selected features are the ratio of votes, so the

values converge more as the profile size increases. We also observe

that XGBoost and GOSDT consistently score near 100% accuracy

on all four rules. A plot of the accuracy scores of the models for

each voting rule with varying values of 𝑛 can be seen in Figure 3.

Finally, when training/testing the trees for the𝑚 = 3 scenario by

generating the complete dataset with every possible preference

profile, we found that all of the algorithms were able to produce a

perfect tree regardless of the value of 𝑛. This suggests that XGBoost

and GOSDT can generate a perfect tree even with an imperfect

dataset, while Scikit-learn and HSTree require a complete dataset

to produce a perfect tree.
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True

False|C≻A| - |A≻B| > 0

A loses

True

False|B≻A| - |A≻B| > 0

False

True

|B≻C| - |A≻B| > 0

False

True|C≻A| - |A≻C| > 0

A wins A loses

False

True|C≻B| - |A≻C| > 0

A wins A wins

A loses

Figure 2: GOSDT tree predicting A’s victory for the Schulze rule,𝑚 = 3.
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Figure 3: Averaged performance of models trained using ran-
domly generated data over 𝑛 ∈ [10, 100]

4.5.3 Model Hyperparameters. In order to produce a tree that

learns the voting rule while minimizing the size of the tree, we

experiment with different hyperparameters for each algorithm. To

find the correlation between the maximum depth of the trees and

the accuracy, we test the algorithms with maximum depth values

between [3, 6] with𝑚 = 3, 𝑛 = 100 setting. The results of this exper-

iment can be seen in Figure 4. We find that the different algorithms

require different depth settings to produce a perfect tree. The XG-

Boost algorithm was able to learn a perfect tree with a maximum

depth set to 3. However, GOSDT required an additional layer of

depth to produce a perfect tree. This behavior may be attributed to

the fact that GOSDT applies a heavier penalty towards ‘complex’

decision trees, likely trying to avoid a tree with full leaves. We also

find that limiting the criterion for leaf node splits to avoid redun-

dant leaves is needed, which we set to 0.2 in our final experiments.

The GOSDT and HSTree algorithm also offers a set of parameters
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Figure 4: Averaged performance of models trained with
𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ∈ [3, 6]

relevant to each algorithm, which are again set after experimenting

with different values. The hyperparameters for each model can be

seen in Table 4 of Appendix B. In order to keep the results repro-

ducible, the corresponding random seed of each algorithm is set

to 0. Although XGBoost and GODST could output a perfect tree,

the Scikit-Learn algorithm and HSTree algorithm could not learn a

perfect tree in any of these settings. Since HSTree is an algorithm

that runs on top of the Scikit-Learn algorithm, this result is not

surprising.

4.5.4 Learning from𝑚 > 3 Scenarios. We conduct another set of

experiments by varying the number of candidates,𝑚. We train and

test on profiles with𝑚 ∈ [3, 5] to determine how well the same

trees perform in a larger candidate setting. As expected, the aver-

age accuracy of the models decreases as the number of candidates

grows, as seen in Figure 5. With these larger settings, we find that

the GOSDT algorithm cannot converge, running out of memory
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Copeland Kemeny-Young Ranked Pairs Schulze
XGBoost 1.0 0.99 1.0 1.0

GOSDT 1.0 0.99 1.0 1.0

Scikit-Learn 0.82 0.96 0.95 0.95

HSTree 0.81 0.96 0.95 0.95

Table 3: Final averaged accuracy score of best trees learned by model for𝑚 = 3, 𝑛 = 100. KY refers to Kemeny-Young, and RP
refers to Ranked Pairs
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Figure 5: Averaged performance of models over𝑚 ∈ [3, 5]

on a 256G RAM system. This is likely because the size of the fea-

ture set grows exponentially with larger values of𝑚 and the fact

that the random dataset needs to be much larger to consider more

cases. We also face the problem of not having a complete dataset.

Interestingly, Scikit-Learn and HSTree algorithms can be seen with

increased performance for the Copeland rule. The unpacked deci-

sion trees show that the Scikit-Learn trees start to display increased

performance with less overfitting compared to XGBoost, with 9 leaf

nodes compared to the 42 leaf nodes of the XGBoost tree. However,

this behavior was limited to the Copeland rule.

Looking deeper into the data generation process, we find the

number of possible pairwise margin features for 𝑚 = 3 was 147,

which can be covered in a random generation of 100,000 samples.

However, we were not able to confirm such a bound for𝑚 > 3 due

to the fact that the number of profiles became too large to generate

and check. Thus, we rely on a random generation process that is

possibly incomplete to train the trees for𝑚 > 3 and find that it is

computationally difficult to generate training data that covers every

case. More details about the computation related to data generation

can be found in Appendix A. Although the resulting decision is not

perfect, we found that the trees are still able to score with a high

accuracy score. For example, upon examining the Scikit-Learn tree

for Copeland with𝑚 = 4, 𝑛 = 50, which scored 99% accuracy, we

find that 81 out of 125 of the leaf nodes are correct with most of

the incorrect leaf nodes being correct around 10% of the time on

the test dataset.

4.5.5 Learning the Perfect Tree. The results show that XGBoost

and GOSDT can often learn perfect trees in the𝑚 = 3 setting. For

the Scikit-Learn decision tree and HSTree optimization, the models

never perform above 90% accuracy with the same depth and leaf

node constraints. In the Kemeny-Young rule, the accuracy scores

can be seen improving as the size of the profiles grows larger. This

suggests that the models, especially GOSDT and XGBoost, may be

able to learn a near-perfect model given a dataset that contains

every possible feature that can take place. The Ranked Pairs and

Schulze rule display a very similar trend. Again GOSDT and XG-

Boost can be seen outperforming the other classifiers, producing a

near-perfect tree for most cases. For Schulze, the models are able

to find a perfect tree for 𝑚 = 3. The Scikit-learn decision tree

and HSTree can slightly improve their performance as the size of

the profile grows, although the performance is still far from per-

fect. The final averaged accuracy score of the trees trained with

𝑚 = 3, 𝑛 = 100 can be seen in Table 3.

While most models had a high accuracy score (>90%) for the 4

voting rules that satisfy the Condorcet criterion, only XGBoost and

GOSDT were able to learn a perfect rule that scored 100% accuracy.

Upon examining the tree structure, we find that GOSDT produces a

sparser tree than XGBoost. Compared to the 24 nodes present in the

XGBoost tree in Figure 6 of Appendix C for the Copeland rule, the

GOSDT tree, as can be seen in Appendix C Figure 7, outputs a tree

with only 16 nodes while achieving the same perfect performance.

The final trees trained on profile with𝑚 = 3, 𝑛 = 100 can be seen

in Figure 2 and Figures 6 and 7 of Appendix C.

The following theorem provides a correctness guarantee of the

Schulze decision tree in Figure 2

Theorem 4.1. For three alternatives 𝐴, 𝐵, and 𝐶 and any profile
𝑃 , the GOSDT tree for Schulze in Figure 2 correctly decides whether 𝐴
is a winner.

For Schulze with three candidates,𝐴 becomes a loser when there

is another candidate (for example, 𝐵) such that the path weight

of 𝐴 to 𝐵 is strictly smaller than the path weight of 𝐵 to 𝐴. This

happens when the weight of 𝐵 ≻ 𝐴 in the weighted majority graph

is positive and larger than either 𝐴 ≻ 𝐶 or 𝐶 ≻ 𝐵. Otherwise, 𝐴

will be the winner. The full proof is in Appendix D.1.
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5 CONCLUSION AND FUTUREWORK
We propose a framework for training decision trees to learn the

outcome of a voting rule and serve as an explanation. We train

different decision tree models on synthetic voting profile data for

different voting rules. Our experiments show that voting rules that

incorporate rankings into their mechanism (i.e., satisfy the Con-

dorcet criterion) can be well estimated by decision tree models and

produce a human-readable diagram. We use thepairwise margin
features to train our dataset, which allows our decision trees to be

agnostic to the number of voters in a voting profile. We find that

XGBoost and GOSDT can learn a perfect tree even with an incom-

plete dataset, while Scikit-Learn and HSTree algorithm requires a

dataset containing every possible case to learn a perfect tree. We

also find that increasing the number of candidates requires a tree

with a greater depth.

We also compare the performance and efficiency of different

decision tree mining algorithms in generating explanations. Using

an optimization algorithm, specifically, GOSDT, can help with the

performance of the baseline decision tree and reduce its size at the

cost of computational efficiency. We find that Copeland and Schulze

can be perfectly learned with three candidates, and ranked pairs

and Kemeny-Young achieve a near-perfect score experimentally.

Our framework can be used by an organization that needs to

conduct an election with maximum transparency to the voters.

The correct decision tree can be used to verify that the election

was indeed conducted correctly and to audit the entire auditing

process. For example, suppose a new (and complex) voting rule

was implemented, and the public is not familiar with it. In that

case, the decision tree can be referred to in order to understand

why the final outcome was chosen and whether the public agrees

with the mechanisms of the new voting rule. By having a visual

explanation of the voting rule that captures every possible scenario,

this framework can be used to increase the public’s engagement in

voting systems.

One direct extension of this work is generating simple decision

trees for votes with multiple alternatives. Another future direction

is to create new explainable voting rules based on decision trees.

We have demonstrated that decision trees can act as proxies for

voting rules. If we reverse this process, we can design new voting

mechanisms that are both explainable and axiomatically desirable.
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A DISCUSSION ABOUT DATA GENERATION
For a voting scenario with𝑚 candidates, there are𝑚! unique votes. Since there can be duplicate votes in a preference profile, the number of

possible profiles with 𝑛 votes can be expressed as a subset of these𝑚! votes with repeats. For 𝑛 voters, the possible number of subsets given

𝑚! can be expressed as (𝑚! + 𝑛 − 1)!/(𝑛! ∗ (𝑚! − 1)!). Then, the number of possible profiles given𝑚 = 3, 𝑛 = 100 is 96560646. This value

grows exponentially with larger values of𝑚, with the number of possible profiles for𝑚 = 4, 𝑛 = 100 resulting around 5 ∗ 1024.
However, it should be noted that in many of these profiles can also result in the same pair_margin features, since the pattern of WMG

may be similar. For example, in the case of𝑚 = 3, 𝑛 = 100, we find that the number of unique pairwise margine features possible is 147,

which can be easily covered when randomly generating 100,000 non-repeating samples. In fact, we find that the number of unique features

in a voting profile with𝑚 = 3 and 𝑛 ≥ 12 are 147. This suggests that there is likely a threshold for the number of possible features in𝑚 > 3

scenarios as well, although we were not able to check it due to computing constraints.

B HYPERPARAMETERS USED IN EXPERIMENTS

Model Parameters

XGBoost {max_depth: 3, min_samples_split: 0.2}

Scikit-Learn {max_depth: 6, min_samples_split: 0.2}

GOSDT {regularization: 0.001, depth_budget: 4}
HSTree {max_depth: 6, max_leaf_nodes: 7}

Table 4: Hyperparameters used for final tree

C MORE EXAMPLES OF GENERATED TREE DIAGRAMS
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Figure 6: XGBoost tree predicting A’s victory for the Copeland rule,𝑚 = 3.
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Figure 7: GOSDT tree predicting A’s victory for the Copeland rule,𝑚 = 3.

D CORRECTNESS OF THE TREE
Throughout the section, we prove the correctness by enumerating every leaf node in the tree. Note that a leaf node can be uniquely represented

by a path from the root to the leaf, and each branch choice on the path can be represented by "TRUE" or "FALSE", which is whether the

condition at the node is satisfied. We use |𝐴 ≻ 𝐵 | as the number of votes that prefers𝐴 to 𝐵 in the profile 𝑃 , and𝐷 [𝐴 ≻ 𝐵] = |𝐴 ≻ 𝐵 | − |𝐵 ≻ 𝐴|
be the marginal difference between 𝐴 and 𝐵.

D.1 Schulze
Theorem 4.1. For three alternatives 𝐴, 𝐵, and 𝐶 and any profile 𝑃 , the GOSDT tree in Figure 2 correctly decides whether 𝐴 is a winner.

Proof. First note that for any alternatives𝑊,𝑋,𝑌 , and 𝑍 (that can be the same alternative), |𝑊 ≻ 𝑋 | ≥ |𝑌 ≻ 𝑍 | directly implies

𝐷 [𝑊 ≻ 𝑋 ] ≥ 𝐷 [𝑌 ≻ 𝑍 ], and |𝑊 ≻ 𝑋 | > |𝑌 ≻ 𝑍 | directly implies 𝐷 [𝑊 ≻ 𝑋 ] > 𝐷 [𝑌 ≻ 𝑍 ]. We will use this property of 𝐷 throughout the

proof.

[TRUE]. In this case at least one of 𝐶 ≻ 𝐴 and 𝐵 ≻ 𝐴 is true, and 𝐷 [𝐶 ≻ 𝐴] > 𝐷 [𝐴 ≻ 𝐵]. If 𝐶 ≻ 𝐴 is true, the path weight of 𝐶 to 𝐴 is

at least 𝐷 [𝐶 ≻ 𝐴], while the path weight of 𝐴 to 𝐶 will not exceed max(𝐷 [𝐴 ≻ 𝐵], 𝐷 [𝐴 ≻ 𝐶] < 0). If 𝐶 ≻ 𝐴 is true, 𝐴 is dominated by 𝐵

similarly. Therefore, 𝐴 is a loser.

[FALSE, TRUE, TRUE]. The path weight of 𝐵 to 𝐴 is at least 𝐷 [𝐵 ≻ 𝐴], while the path weight of 𝐴 to 𝐵 is at most max(𝐷 [𝐶 ≻ 𝐵], 𝐷 [𝐴 ≻
𝐵]) < 𝐷 [𝐵 ≻ 𝐴]. Therefore, 𝐴 is dominated by 𝐵 and is a loser.

[FALSE, TRUE, FALSE]. In this case, 𝐷 [𝐵 ≻ 𝐴], 𝐷 [𝐶 ≻ 𝐵], and 𝐷 [𝐴 ≻ 𝐶] are positive. Among the three marginal differences, 𝐷 [𝐵 ≻ 𝐴] is
the smallest. The path weight of 𝐴 to 𝐵 and 𝐴 to 𝐶 will no larger than min(𝐷 [𝐴 ≻ 𝐶], 𝐷 [𝐶 ≻ 𝐵]), while the path weight of 𝐵 to 𝐴 and 𝐶 to

𝐴 will not larger than 𝐷 [𝐵 ≻ 𝐴]. Therefore, 𝐴 is a winner.

[FALSE, FALSE, TRUE, TRUE]. In this case, 𝐷 [𝐴 ≻ 𝐵] ≥ 𝐷 [𝐶 ≻ 𝐴] > 𝐷 [𝐵 ≻ 𝐶], and 𝐷 [𝐶 ≻ 𝐴] ≥ 0. Therefore, the path weight of 𝐴 to 𝐶

will not exceed max(𝐷 [𝐵 ≻ 𝐶], 𝐷 [𝐴 ≻ 𝐶]), while the path weight of𝐶 to 𝐴 is at least 𝐷 [𝐶 ≻ 𝐴]. Therefore, 𝐴 is dominated by𝐶 and cannot

be a winner.

[FALSE, FALSE, TRUE, FALSE]. In this case, 𝐷 [𝐴 ≻ 𝐵] ≥ 𝐷 [𝐶 ≻ 𝐴] ≥ 0, and 𝐷 [𝐵 ≻ 𝐶] ≥ 𝐷 [𝐶 ≻ 𝐴]. Similar to the [FALSE, TRUE,

FALSE] case, 𝐴 becomes a winner.

[FALSE, FALSE, FALSE]. In this case, 𝐷 [𝐴 ≻ 𝐵] ≥ 0, and 𝐷 [𝐴 ≻ 𝐶] ≥ 0. Therefore, the path weight of 𝐴to 𝐵 and 𝐴 to 𝐶 are non-negative,

while the reverse is non-positive. Therefore, 𝐴 is a winner. □

D.2 Copeland
Theorem 1. For three alternatives 𝐴, 𝐵, and 𝐶 and any profile 𝑃 , the XGBoost tree for Copeland in Figure 6 correctly decides whether 𝐴 is a

winner.

Proof. [TRUE, TRUE, TRUE]. In this case, we know that 𝐵 beats 𝐴 and 𝐶 beats 𝐵 in the head-to-head competition. Since |𝐴 ≻ 𝐵 | is
greater than |𝐶 ≻ 𝐴|, we know that |𝐴 ≻ 𝐶 | is greater than |𝐵 ≻ 𝐴| and exceeds half of the voters. Therefore,𝐴 beats𝐶 , and three alternatives

form a cycle in the WMG. Therefore, all the alternatives including A are winners.

[TRUE, TRUE, FALSE]. 𝐵 still beats 𝐴, and 𝐶 loses or is tied with 𝐵. In this case, 𝐵 has a score of at least 1.5, while 𝐴 beaten by 𝐵 has at

most 1. Therefore, 𝐴 is a loser.

[TRUE, FALSE, TRUE, TRUE]. In this case, 𝐶 beats 𝐴, and 𝐵 beats 𝐶 . And since that |𝐴 ≻ 𝐵 | is greater than |𝐶 ≻ 𝐴|, 𝐴 beats 𝐵. Therefore,

all the alternatives are co-winners.
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[TRUE, FALSE, TRUE, FALSE]. Similar to the [TRUE, TRUE, FALSE] case, 𝐶 wins 𝐴 and does not lose 𝐵 and becomes the unique winner.

[TRUE, FALSE, FALSE]. In this case, 𝐴 does not lose either 𝐵 or𝐶 . Moreover, since |𝐴 ≻ 𝐵 | is greater than |𝐶 ≻ 𝐴|, 𝐴 wins at least one of 𝐵

and 𝐶 . Therefore, 𝐴 gets a score of at least 1.5 and becomes the unique winner.

[FALSE, TRUE, TRUE]. In this case, 𝐴 beats 𝐶 and 𝐶 beats 𝐵. Since both 𝐵 and 𝐶 cannot be a Condorcet winner, 𝐴 will always be a winner

regardless of the relationship between 𝐵 and 𝐶 .

[FALSE, TRUE, FALSE]. In this case, 𝐴 beats 𝐶 , and 𝐵 is not beaten by 𝐶 . Since |𝐴 ≻ 𝐵 | is not greater than |𝐶 ≻ 𝐴|, 𝐴 is beaten by 𝐵.

Therefore, 𝐵 gets a score of at least 1.5, and 𝐴 cannot be the winner.

[FALSE, FALSE, TRUE, TRUE, TRUE]. Similar to the [FALSE, TRUE, TRUE] case, 𝐴 beats 𝐵, and 𝐵 beats 𝐶 . Therefore, 𝐴 is a winner.

[FALSE, FALSE, TRUE, TRUE, FALSE]. Similar to the [FALSE, TRUE, FALSE] case. 𝐴 beats 𝐵, and 𝐶 is not beaten by anyone. Moreover,

since |𝐴 ≻ 𝐵 | is not greater than |𝐶 ≻ 𝐴|, 𝐴 is beaten by 𝐶 . Therefore, 𝐶 gets a score of at least 1.5, and 𝐴 cannot be the winner.

[FALSE, FALSE, TRUE, FALSE]. In this case, 𝐴 does not beat either 𝐵 or 𝐶 . Moreover, since |𝐴 ≻ 𝐵 | is greater than |𝐶 ≻ 𝐵 |, 𝐵 beats 𝐶 and

becomes the unique winner. Therefore, 𝐴 is not a winner.

[FALSE, FALSE, FALSE, TRUE, TRUE]. 𝐴 does not beat 𝐶 . Since |𝐴 ≻ 𝐶 | is equal to |𝐶 ≻ 𝐵 |, 𝐶 does not beat 𝐵. Then from |𝐴 ≻ 𝐵 | is less
than |𝐵 ≻ 𝐶 | and not greater than |𝐶 ≻ 𝐵 |, we know that 𝐵 beats 𝐴. Therefore, 𝐴 cannot be a winner.

[FALSE, FALSE, FALSE, TRUE, FALSE]. Similarly, we have 𝐴 does not beat 𝐶 and 𝐶 does not beat 𝐵. On the other hand, we know that

|𝐴 ≻ 𝐵 | is not less than |𝐵 ≻ 𝐶 | and not greater than |𝐶 ≻ 𝐵 |. Therefore 𝐵 does not beat 𝐶 either, and 𝐵 and 𝐶 form a tie. Since |𝐴 ≻ 𝐶 | is
equal to |𝐶 ≻ 𝐵 |, 𝐴 and 𝐶 also form a tie. And as |𝐴 ≻ 𝐵 | is between |𝐵 ≻ 𝐶 | and |𝐶 ≻ 𝐵 |, 𝐴 and 𝐵 form a tie, too. Therefore, there is a

three-way tie between all the alternatives, and everyone is a co-winner.

[FALSE, FALSE, FALSE, FALSE]. In this case, 𝐴 does not beat 𝐶 . If |𝐴 ≻ 𝐶 | is greater than |𝐶 ≻ 𝐵 |, as |𝐴 ≻ 𝐶 | is smaller than the half, 𝐵

must beat 𝐶 . And since |𝐴 ≻ 𝐵 | is not greater than |𝐶 ≻ 𝐵 |, 𝐵 must also beat 𝐴. Therefore, 𝐵 is the Condorcet winner, and 𝐴 cannot be a

winner. If |𝐴 ≻ 𝐶 | is smaller than |𝐶 ≻ 𝐵 |, we consider the following subcases. (1) 𝐴 is tied with 𝐶 . In this case, since |𝐴 ≻ 𝐶 | is smaller

than |𝐶 ≻ 𝐵 |, 𝐶 beats 𝐵. Other the other hand, 𝐴 cannot beat 𝐵 since |𝐴 ≻ 𝐵 | is smaller than |𝐶 ≻ 𝐴|. Therefore, 𝐴 cannot be a winner. (2) 𝐶

beats 𝐴. In this case, 𝐴 can be a winner if and only if there is a cycle in WMG. However, this is not true because |𝐴 ≻ 𝐵 | is not greater than
|𝐶 ≻ 𝐵 |. Therefore, 𝐴 cannot be a winner.

□

Theorem 2. For three alternatives 𝐴, 𝐵, and 𝐶 and any profile 𝑃 , the GODST tree for Copeland in Figure 7 correctly decides whether 𝐴 is a
winner.

Proof. [TRUE, TRUE, TRUE]. In this case, 𝐴 beats 𝐵,𝐶 beats 𝐴, and 𝐵 beats𝐶 . Therefore, there is a cycle in the WMG, and everyone is

a winner.

[TRUE, TRUE, FALSE]. In this case, 𝐴 beats 𝐵 and 𝐶 beats 𝐴, but 𝐵 does not beat 𝐶 . Therefore, 𝐶 has a score of at least 1.5 while 𝐴’s score

is 1. Therefore, 𝐴 is not a winner.

[TRUE, FALSE]. In this case, 𝐴 beats 𝐵 and is not beaten by 𝐶 . Therefore, 𝐴 has a score of at least 1.5 and is the winner.

[FALSE, TRUE, TRUE, TRUE]. This case is a cycle of 𝐴 ≻ 𝐶 ≻ 𝐵 ≻ 𝐴. Therefore, everyone is a winner.

[FALSE, TRUE, TRUE, FALSE]. In this case, 𝐵 wins 𝐴 and is not beaten by 𝐶 . Therefore, 𝐴 cannot be the winner.

[FALSE, TRUE, FALSE]. In this case, 𝐴 wins 𝐶 and is tied with 𝐵. Therefore, 𝐴 is a winner.

[FALSE, FALSE, TRUE]. In this case, 𝐴 does not beat either 𝐵 or𝐶 . If 𝐴 is tied with 𝐵, then 𝐵 wins𝐶 and gets a score of 1.5, while 𝐴’s score

is at most 1. If 𝐴 loses 𝐵, 𝐴’s score will always be lower than 𝐵’s. Therefore, 𝐴 cannot be a winner.

[FALSE, FALSE, FALSE, TRUE]. This is similar to the [FALSE, FALSE, TRUE] case. 𝐴 does not beat either 𝐵 or 𝐶 , and 𝐴’s score is strictly

lower than 𝐶’s. Therefore, 𝐴 cannot be a winner.

[FALSE, FALSE, FALSE, FALSE]. In this case, both |𝐴 ≻ 𝐵 | and |𝐴 ≻ 𝐶 | are not larger than half. This means that both |𝐵 ≻ 𝐶 | and |𝐶 ≻ 𝐵 |
are not larger than half. Therefore, the situation must be a three-way tie in the head-to-head competition. Therefore, everyone is a winner.

□
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