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Abstract

The estimation of racial disparities in health care, financial services, voting, and other contexts is often
hampered by the lack of individual-level racial information in administrative records. In many cases, the
law prohibits the collection of such information to prevent direct racial discrimination. As a result, many
analysts have adopted Bayesian Improved Surname Geocoding (BISG), which combines individual names
and addresses with Census data to predict race. Although BISG tends to produce well-calibrated racial
predictions, its residuals are often correlated with the outcomes of interest. As a result, standard tech-
niques yield biased estimates of racial disparities, commonly in the direction of minimizing the disparity.
We propose an alternative identification strategy that corrects this bias. The proposed strategy is applicable
whenever one’s surname is conditionally independent of the outcome given their (unobserved) race, resi-
dence location, and other observed characteristics. Leveraging this identification strategy, we introduce a
new class of models, Bayesian Instrumental Regression for Disparity Estimation (BIRDiE), that take BISG
probabilities as inputs and produce estimates of racial disparities by using surnames as a high-dimensional
instrumental variable for race. Our estimation method is scalable, making it possible to analyze large-scale
administrative data. We also show how to address potential violations of the key identification assump-
tions. A validation study based on the North Carolina voter file shows that BISG+BIRDIE reduces error
by up to 84% in comparison to the standard approaches for estimating racial differences in party registra-
tion. Open-source software is available which implements the proposed methodology.
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1 Introduction

The identification and estimation of racial disparities is of paramount importance to researchers, policymakers and
organizations in a variety of areas including public health (Van Ryn and Fu, 2003; Williams and Jackson, 2005),
employment (Conway and Roberts, 1983; Greene, 1984), voting (Gay, 2001; Hajnal and Trounstine, 200s; Barreto,
2007), criminal justice (Berk et al., 2021; Chouldechova, 2017; Dressel and Farid, 2018), economic policy (Brown,
2022), taxation (Black et al., 2022; Elzayn et al., 2023), housing (Kermani and Wong, 2021), lending (Chen, 2018),
and technology and fairness (Alao et al., 2021). Within the U.S. government, efforts to identify and remedy racial
disparities have taken on greater urgency with the recent issuance of Executive Order 13985, which in part directs
agencies to conduct equity assessments by developing appropriate methodology.

In many of these areas, however, racial information is not available at the individual level. The unavailability of
individual racial information makes it impossible for analysts to simply tabulate variables of interest against race to
identify disparities among different racial groups. In fact, in some areas, the law explicitly prohibits the collection of
racial information even as it demands fair treatment on the basis of race (see, e.g., the U.S. Equal Credit Opportunity
Act). This creates a dilemma for organizations who wish to measure possible disparities in order to monitor the
fairness of their decision-making or service provision.

To estimate racial disparities without individual-level racial data, some researchers have turned to ecological infer-
ence methods (Goodman, 1953; King, 1997; King et al., 2004; Wakefield, 2004; Imai et al., 2008; Greiner and Quinn,
2009). These methods, however, require strong assumptions, which can be difficult to verify and may provide mis-
leading results (Cho and Manski, 2008). Additionally, they all rely on accurate marginal information about race,
which may not always be available.

Where the analysis of racial disparities involves large-scale administrative data, many analysts have adopted Bayesian
Improved Surname Geocoding (BISG), which generates individual probabilities of belonging to different racial
groups using Bayes’ rule applied to last names and geographic location (Fiscella and Fremont, 2006; Elliott et al.,
2008; Imai and Khanna, 2016). BISG leverages residential racial segregation and the hereditary association between
self-reported race and surname to produce generally accurate and calibrated predictions of self-reported individual
race (Kenny et al., 2021; DeLuca and Curiel, 2022).

Much attention has been given to ways of increasing the accuracy of BISG and related methods for race prediction
(Voicu, 2018; Zest Al, 2020; Argyle and Barber, 2022; Imai et al., 2022; Decter-Frain, 2022; Greengard and Gelman,
2023). Unfortunately, broadly accurate BISG racial prediction alone is not sufficient for the unbiased estimation
of racial disparities, the primary goal of this paper. To estimate disparities, BISG probabilities (or any other racial
predictions) must be combined with information on the outcome variable for which the disparities are of interest.
But the most common techniques for doing so are known to be biased when race is correlated with the outcome
even after controlling on name and location (Chen et al., 2019; Argyle and Barber, 2022). These approaches include
weighting the outcome variable by the BISG probabilities, and thresholding the BISG probabilities to produce point
estimates of individual race (e.g., imputing “Black” as the race for an individual with a 61% probability of being Black
according to BISG).

In fact, these methods often underestimate the true magnitude of racial disparities, which is problematic for pol-
icymakers and analysts who aim to identify and reduce these disparities. As formally discussed in Section 2, the
standard methods of racial disparity estimation based on BISG predictions implicitly require individuals’ race to
be conditionally independent of the outcome given their residence location, surnames, and other observable at-
tributes. This key identification assumption, however, is unlikely to hold because race affects many aspects of so-
ciety even after accounting for residence location, surnames, and other observable attributes. Other researchers
have noted the implausibility of this assumption and have proposed methods to address it, but these alternative
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approaches are more general than the racial disparity setting and require additional data such as a partially labeled
subset (Fong and Tyler, 2021).

To address this challenge, in Section 3, we propose an alternative identification strategy. Specifically, we assume
that the outcome is conditionally independent of surname given (unobserved) individual’s race, residence loca-
tion, and other observed attributes. This assumption is a type of exclusion restriction where surname serves as an
instrumental variable for unobserved race. It implies that for two individuals who live in the same area, belong
to the same racial group, and share the observable attributes, their surnames have no predictive power of the out-
come. Somewhat counter-intuitively, the high-dimensionality of surnames aids rather than hinders identification
because it provides a large number of instruments. We argue that this new identification assumption is more cred-
ible than the commonly invoked assumption unless surname is directly used to determine the outcome of interest
(i-e., name-based discrimination).

Leveraging this identification strategy, in Section 3.2 we introduce a new class of models, Bayesian Instrumental
Regression for Disparity Estimation (BIRDiE), that accurately estimates racial disparities using BISG probabilities.
Beyond accuracy, BIRDIE improves on standard methodology in a number of ways:

* BIRDIE includes built-in flexibility for researchers to make problem-specific modeling choices (Section
3.2).

* BIRDIE can be fit with an EM algorithm that can scale to hundreds of thousands or millions of observa-
tions (Section 3.3).

¢ BIRDIE produces updated BISG probeabilities that incorporate the outcome variable, and are likely to be
more accurate than the BISG probabilities based only on surnames and geolocation (Section 3.4).

* BIRDIE can be used iteratively to condition on additional variables whose distribution by race is not
known a priori (Section 3.5). For example, party identification can be estimated by race and turnout.

Finally, in Section 3.6 we address potential violations of the key identification assumption, such as can happen with
overly coarse racial categories, by exploiting auxiliary information about the relations between names and more
specific ethnic groups. All of the proposed methodology is implemented in a computationally efficient open-source
software package, birdie, that is made available with the paper.*

In Section 4, we validate the proposed methodology using real-world data taken from the voter file in North Car-
olina, where self-reported individual-race is observed and can be used to construct the ground-truth of racial dis-
parities. BIRDIE substantially outperforms existing estimators across different error measures and multiple levels
of geolocation specificity. For example, the most popular existing BISG-only disparity estimator pegs the gap at
Democratic party registration between White and Black voters at 20.8 percentage points, while the actual gap is
54.6 percentage points—more than double. Our preferred BIRDIiE model using the same BISG probabilities yields
an estimate of 49.2 percentage points. This represents about a 84% reduction in bias.

Section s gives concluding remarks.

2 Bias of the Standard Methodology

In this section, we review the assumptions of the standard BISG-based methodology for estimating racial disparities
when individual race is not observed. We show that the racial disparity estimates based on the standard methodology
are biased unless the outcome variable is independent of race given surname, residence location, and other observed

*The software and accompanying documentation are available at https://corymccartan.com/birdie/.
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covariates. We argue that this assumption is likely to be violated given the significant role race plays in many aspects
of our society.

2.1 Setup and BISG Procedure

Suppose that we have an i.i.d. sample of N individuals from a population of infinite size. For each individual
i =1,2,..., N, wedefine a tuple (Y;, R;, G;, X;, S;), where Y; € ) is the outcome of interest for individual
i, R; € R is the (unobserved) race of the individual, G; € G is the (geo)location of the individual’s residence,
X; € X are other observed characteristics, and S; € S is the individual’s surname. When we are not referring to a
particular individual, we will drop the subscripts for notational simplicity. Note thatindividual race is unobservable
butall other variables are assumed to be observed. The availability of particular (or any) X is not required for either

the standard or proposed methodology.

We assume throughout that these variables are discrete, taking a finite set of values, ie., |Y|, |R|, |G|, |X|, and
|S| are constants. Note that typically S is high-dimensional as there exist a large number of unique surnames. In
practice, residence location G is also discrete, since joint information about location, race, and other variables is
generally only available down to the Census block level. For the sake of simplicity, we assume that the outcome
variable Y is also discrete, though it is possible to extend the standard and proposed methodologies to continuous
outcome variables.

Typically, BISG relies on data from the decennial Census or the American Community Survey (ACS), which pro-
vide information on the joint distribution of R and G (and any other covariates X, such as gender or age). It then
combines this information with data from the Census Bureau’s surname tables (U.S. Census Bureau, 2014), which
provide information on the joint distribution of R and S. We summarize this set of information from the Census
by two conditional probabilities, q; x|z and qg|r, and one marginal probability, q .

The BISG estimator of the probability that individual ¢ belongs to race 7 € R can then be written as (Fiscella and
Fremont, 2006; Elliott et al., 2008)

QG1X1|T QSZ|T q’r’
)
Z'I"ER QGZ'X”T" QSi|r’ qr!

Py = (I)
where, for example, g, x|, indicates the estimated conditional probability of residence location (; and covariates
Xi; given race r, taken from the Census table qg x| r-

The BISG estimator relies on two key assumptions. The first is that the Census tables reflect the true population
distributions of R, S, G, and X.

Assumption Ax (Data accuracy). Forall i,

P(Ri :T) =d(r
]P)(Sl =S | R; = T) = Gs|r
P(Gl =g, Xi=x ’ Ri=r)= dgzx|r

Despite the best efforts of the Census Bureau, Assumption A1 may never hold exactly in practice. The decennial
census has intrinsic error, including undercounting minority racial groups (U.S. Census Bureau, 2022; Anderson
and Fienberg, 1999; Strmic-Pawl et al., 2018), as well as error introduced by privacy-preserving mechanisms (Abowd
etal,, 2022). And because of births, deaths, and moves, census data are often out-of-date from the moment of pub-
lication. These errors have led further extensions of the BISG estimator to account for some of this measurement
error (Imai et al., 2022), which can help with accuracy for smaller racial groups. The plausibility of Assumption Ar
is stretched even further when the study population is a subset of the whole U.S. population, and so is not covered
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by national census data. In these cases, analysts should set q to the known or estimated marginal racial distribu-
tion in the study population, rather than the national racial distribution. It may be more plausible then to assume
that the conditional distributions P(S | R) and P(G, X | R) match the census distributions, even if P(R) does

not.

The second assumption required by BISG is the following conditional independence relation between an individ-
ual’s surname and residence location (as well as other characteristics) given their unobserved race.

Assumption A2 (Conditional independence of name and other proxy variables). For all i,

S; L {G;, X;} | R;.

Assumption Az implies, for example, that once we know an individual is White, knowing their surname is Smith
tells us nothing about their residence location and other observed characteristics. Although this assumption appears
to be reasonable, the lack of granularity in the coding of race may lead to its violation. For example, people with
Chinese, Indian, Filipino, Vietnamese, Korean, or Japanese are all coded as one racial group “Asian” in the census.
These groups, however, have varying sets of surnames and have different demographic and geographic distributions.
For instance, unlike the Smith example, knowing that an Asian individual’s surname is Gupta makes it more likely
that they have a higher income and live in the Eastern U.S (Budiman et al., 2019). Greengard and Gelman (2023)
relax this assumption by raking BISG probabilities with auxiliary data.

Even though Assumptions A2 and Ar may not hold exactly, researchers find that BISG produces accurate and
generally well-calibrated estimates in practice (Imai and Khanna, 2016; Zhang, 2018; Kenny et al., 2021; DeLuca
and Curiel, 2022). We observe this pattern as well in the validation study in Section 4.

Under Assumption A2, by Bayes’ Rule,

This justifies the estimator given in Equation (1), and provides us with the following immediate result.

Proposition 2.1 (Accuracy of BISG). Under Assumptions Az and A1, the BISG estimator produces correct probabil-
ities. That is, we have Py, = P(R; = r | Gy, X;, S;).

New methods continue to be developed that improve the calibration of BISG probabilities, including some ma-
chine learning methods based on labeled data (Zest Al, 2020; Imai et al., 2022; Argyle and Barber, 2022; Decter-
Frain, 2022; Greengard and Gelman, 2023). Fundamentally, these approaches focus on building a more accurate

model for R | G, X, S at the individual level.

2.2 Bias of Racial Disparity Estimates based on BISG Probabilities

To estimate racial disparities, BISG probabilities (or other racial predictions) must be combined with the outcome
variable. There are several common ways researchers do this.

The most frequent is perhaps the thresholding or classification estimator, which deterministically assigns individuals
to a predicted racial category based on the BISG estimates P; (either the largest P, or the one which exceeds a
predetermined threshold). Estimates of P(Y = y | R = r) are then obtained by tabulating the data by these

assigned categories.

Another common approach, which attempts to capture the uncertainty inherent in race prediction, is the following
weighting estimator:

~ (wtd)

Ny‘R (y ‘ T) = ! :

Zﬁ\; P,
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Unfortunately, accurate and calibrated estimates of individual race predictions alone are not sufficient for unbiased
estimation of racial disparities using these standard methodologies.?

This should come as no surprise for the thresholding estimator, since it does not take into account prediction
uncertainty in the BISG probeabilities. This is akin to ignoring measurement errors in the covariates of a regression,
something which has long been known to lead to biased coefficient estimates. Unlike the classical errors-in-variables
setting, however, the bias of the thresholding estimator is not consistently in the same direction, making it hard to
reason about (Chen et al., 2019).

But the weighting estimator is biased as well. The reason is that the prediction error of race probabilities may be
correlated with the outcome variable of interest. Chen et al. (2019) show that the asymptotic bias of this weighting
estimator is controlled by the residual correlation of Y and R after adjusting for GG, X, and S. We reproduce this
result here.

Theorem 2.2 (Theorem 3.1 of Chen etal. 2019). If race is binary (so R = {0, 1}), then as N — oo,

w.s. _E[COV(]I{Y =y}, I{R=1}]| G, X,S)]
P(R=r)

AW ) —P(Y =y | R="r)

This result implies that when the BISG residuals 1{R = r} — P(R = r | G, X,S) are correlated with the
outcome, estimates will be biased, even with infinite data. In fact, the weighting estimator will often underestimate
the magnitude of a disparity, as the following corollary shows. Thus, for instance, in measuring disparities in loan
approval (Y'), if Blacks are less likely to be approved for loans across all locations and surnames than Whites, then
the weighting estimator would understate the resulting overall White-Black disparity in loan approval rates.
Corollary 2.2.1. Lety € Y. If race is binary (so R = {0,1}), andP(Y =y | R=1,G =g, X =2,5 =5) >
PY=y|R=0,G=g,X =2,5=5)forallgec G x € X,ands €S, then

A WD) = Ry 0) <P(Y =y | R=1)—P(Y =y | R=0).

Conversely, Theorem 2.2 implies that conditional independence between individual’s race and outcome given their
surname, residence location, and other characteristics is sufficient to eliminate the asymptotic bias of the weighting
estimator.

Assumption A3 (Conditional independence of outcome and race). For alli,

Figure 1(a) shows a causal directed acyclic graph (DAG) that satisfies Assumption A3 as well as Assumption A2. The
dashed node border for R represents the fact that race is unobserved. The causal structure in Figure 1(a) implies the
conditional independence relation Y UL R | G, X, S, because all paths from R to Y are blocked by G, X, or S.
The key causal assumption of this DAG is that the effect of race R on the outcome Y must be entirely mediated
by surname S, residence location G, and other observed characteristics X'. This type of exclusion restriction may
not be credible in many practical settings because race can affect the outcome through so many factors, biasing the
weighting estimator.

Butin other settings, Assumption A3 may be more plausible. For example, for a manager reviewing job applications
on paper, race is typically unobserved, but the manager may be influenced by racial or gender cues in a candidate’s
name or address (Park et al., 2009; Aslund and Skans, 2012). So long as we observe all information used by the
manager and use it in the BISG estimation, the weighting estimator would give an asymptotically unbiased esti-
mate. Similarly, in evaluating the fairness of algorithmic decision-making, as long as all the information used by the

Of course, if the predictions are perfectly accurate, then there is no bias.

6
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)

(@) Assumption Az: Conditional inde- (b) Assumption A4: Conditional inde-
pendence of Y and R given (G, S, X) pendence of Y and S given (G, R, X)

Figure 1: Possible causal structures for which each of the labeled assumptions is satisfied, represented as a
directed acyclic graph (DAG) where G is residence location, R is race, S is surname, X is observed covariates,
andY isthe outcome. Race R is unobserved, which is signified by a dashed node boundary. Both DAGs also
satisfy Assumption Az: Conditional independence of S and (G, X) given R.

algorithm is incorporated into BISG, Assumption A3 would be appropriate. Outside of these cases, however, the
weighting estimator is likely to be biased.

Finally, while the discussion in this section has been focused on the BISG methodology, the qualitative results and
necessary assumptions carry over to other approaches which produce probabilistic predictions of individual race,
such as those recently developed by Zest AI (2020), Argyle and Barber (2022), and Decter-Frain (2022). Just like
standard BISG, all of these methods are based on individual names, geographic location (and sometimes other ge-
ographic attributes, like ACS or decennial census statistics), and possibly additional individual covariates. Just as
with BISG, well-calibrated probabilities are not generally sufficient to produce unbiased estimates of racial dispar-
ities using the standard weighting or thresholding estimators.

3 The Proposed Methodology

In this section, we propose an alternative identification strategy for racial disparities. Specifically, we show that racial
disparity is identifiable if surname is conditionally independent of the outcome given race, residence geolocation,
and other observed information, under the aforementioned assumptions that guarantee the nonparametric identi-
fication of race probabilities with BISG or its variants. We then develop a class of statistical models, called Bayesian
Instrumental Regression for Disparity Estimation (BIRDIE), that estimate racial disparity under this identification
condition by using surnames as a high-dimensional instrumental variable for race. These models take as inputs the
BISG probabilities, and so can be easily applied on top of existing analysis pipielines, including with alternative
probeabilistic race prediction methodologies. We next discuss computation for BIRDiE models, as well as how the
methodology can be extended to include an additional explanatory variable that was not used at the BISG stage.
Finally, we show how to addresses the potential violations of the key identification assumptions, such as occurs
with name-based discrimination.

3.1 Identification Strategy

To reduce the potential bias of the weighting estimator, we propose an alternative identification assumption that
may be applicable when Assumption A3 is not credible. Specifically, we assume that surname, rather than race,

7
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satisfies the exclusion restriction conditional on (unobserved) race, residence location, and other observed charac-
teristics.

Assumption A4 (Conditional independence of outcome and name). For all i,

Y; L S; | Ri,Gi, Xi.

Figure 1(b) shows one possible causal DAG that meets this assumption as well as Assumption Az. In this DAG,
race can have a direct effect on the outcome Y as well as on residence location GG and other observed characteristics

X, while all paths from S to Y are blocked by GG, X, or R.

This causal structure is plausible in many real-world settings because, unlike Assumption A3, Assumption A4 al-
lows race to directly affect the outcome. For an outcome like party registration, Assumption A4 would mean that
among White voters in a particular geographic region, voters named Smith would z prori be no more or less likely
to identify with one party than voters named Thomas. In contrast, Assumption A3 would mean that among voters
named Smith in a particular geographic region, White voters would be 4 priori be no more or less likely to iden-
tify with one party than Black voters. In this case, Assumption A3 is likely to be violated, while Assumption A4
is plausible. It is important to note a key trade-off between the two assumptions. While Assumption A4 rules out
the possibility that surname directly aftects the outcome (e.g., name-based discrimination), such a direct effect is
allowed under Assumption A3. Section 3.6 revisits this important issue.

The appropriateness of each assumption depends on a specific application. In the above hiring example, if the
manager reviews applicants anonymously, there will be no name-based discrimination and the assumption is likely
to be satisfied. The assumption may be violated in other contexts, however. For example, in studying turnout,
if campaigns use the surnames of individual voters to decide whether to mobilize them, Assumption A4 will be
violated. Yet another possible violation of the assumption is the existence of unobserved confounder that affects
both outcome and surname. The country of origin for an immigrant may represent such a confounder: where
surnames are informative of country of origin, even within racial groups (as is often the case for Asian individuals),
variations in outcomes by country of origin will likely violate A4. This reflects the limitations of the relatively coarse
racial classifications used in BISG, as discussed above. Even in these cases, however, conditioning on (unobserved)
race is likely to substantially reduce the magnitude of association between outcome and surnames. In Section 3.6,
we show how to address this potential violation of Assumption A4.

We briefly note that Assumptions A3 and A4 are not necessarily mutually exclusive. For example, neither race or
surname could have a direct causal effect on the outcome. In these cases, both the weighting estimator and our
approach proposed below could give reasonable answers, though the data requirements of each may differ.

The following theorem shows that it is possible to nonparametrically identify racial disparities under Assumption
A4. The proof of the theorem and all other results in this paper are deferred to the appendix.

Theorem 3.1 (Nonparametric Identification). For any given g € G, x € X, andy € ), define a matrix P €
RISXIRI with entries ps, = P(R = v | G = ¢,X = 2,8 = ) and a vector b € RIS with entries by =
PY =y |G=g,X =x,5=5). Then under Assumption A4, and assuming knowledge of the joint distribution
P(R,G, X, S), the conditional probabilities P(Y =y | R,G = g, X = x) are identified if and only if both P
and the augmented matrix (P ) have rank |R|.

The essence of this identification result is the following simple observation. Under Assumption A4, we have, for
dlye V,ge G,z € X,ands € S,

PY=y|G=g,X=12,5=s)= ZIP’(Y:y |R=r,G=g9g,X=2)P(R=r|G=9g,X =2,5=35s).
reR
(2)
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The leftmost term is estimable from the data and corresponds to the vector b in Theorem 3.1, while the rightmost
term is the BISG estimand and corresponds to the matrix P in Theorem 3.1. Lastly, the remaining term in the
middle can be solved for, since Equation (2) holds across all combinations of Y, GG, X, and S, leading to a large
system of linear equations. Specifically, we have (|| — 1) x |G| x |X| x |S| equations with (|Y| — 1) x |G| X
|X| X |R| unknowns. Since |R| < |S|, we can identify these unknowns as long as the linear system has sufficient
rank. Our result is closely related to causal identification based on proxy variables in the presence of unmeasured
confounding (Kuroki and Pearl, 2014; Miao etal., 2018; Knox et al., 2022). Here, we use surname as a proxy variable
for (unobserved) race to identify racial disparities.

Together with Proposition 2.1, Theorem 3.1 implies that racial disparities can be identified under Assumptions Az,
Ay, and A4. The identifying equation (2) shows that P(Y =y | G = g, X = 2,5 = s) is linear in the BISG
estimandsP(R =7 | G = g, X = x, S = s). Thus, itis natural to consider the following least-squares estimator
of P(Y =y | R,G = g, X = x) under this alternative identification strategy,

~ (ols Fa -~ I
i aex W | +9:2) = (P10 Priag) ™ Priag) 1{Yz(ag) = v},

where as above P is the matrix of BISG probabilities,and Z(zg) is the set of individuals i with X; = xand G; = g.
Here and throughout the paper, a dot will indicate a vector constructed over that index, so ,uéf |SRG W lg,7)isa
vector of conditional probabilities for a particular outcome level y across all racial groups in R. By post-stratifying

this estimator across the (G, X) cells, we arrive at an estimator of P(Y = y | R),

~ (p-ols ~ 2~ 1
/"’gf“{ )(y ’ T) - Z (P—Ir(ggg)PI(:cg)) 1P.I(xg) ]I{YI(xg) = y}>'f’Qg:p|r7
reX,geG

since Ggq), = P(G = g,X = z | R = r) under Assumption Ar. This estimator is unbiased, as the following
theorem shows.

Theorem 3.2 (Unbiasedness of OLS Estimator). If Assumptions Az, Ar, and A4 hold, and the identification condi-
tions in Theorem 3.1 are satisfied, then forally € Y andr € R,

B[ (y | 7] =P(Y =y | R=7),

It is worth comparing this OLS estimator with the weighting estimator ﬂ;‘i‘:d). The next theorem shows that within
the (G, X) cells these two estimators are guaranteed to disagree, unless either the BISG probabilities perfectly dis-
criminate or the weighting estimator is constant across races. Unfortunately, these two conditions are almost never
met in practice. This underscores the importance of selecting the appropriate assumption (Assumption Az or A4)
for a particular analysis, since they imply different estimators with different results.

Theorem 3.3 (Necessary and Sufficient Condition for Equality of the Weighting and OLS Estimators). For any

y €V, g € Gandx € X, within the set of individuals with G; = g and X; = x, we have that u%té (y |
N = M;Z‘JR( | ) if and only if for every pair j, k € R, either the BISG probabzlz’tzes perfect[y discriminate (i.e.,

P(R; = j | Gi, Xi, S;) > 0impliesP(R; = k | Gy, X;,S;) = Oandvzceverm)oruym (ylj)= ﬂg’lﬁ( | k).
Despite potential advantages over the weighting estimator, the OLS estimator is not well-suited to estimation in
practice, since it ignores the fact that the unknown parameters are probabilities and thus constrained to be non-
negative and sum to 1. As a result, in any particular sample, the estimator can produce impossible or contradictory
estimates. This is particularly problematic because a large number of unique surnames make both P and b high-
dimensional. To address this challenge, and to open the door to more flexible modeling, we next propose a Bayesian
modeling approach that is based on our identification strategy and yet satisfies necessary constraints.

9
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3.2 Bayesian Instrumental Regression for Disparity Estimation

The BIRDIE approach combines a user-specified complete-data outcome model 7(Y" | R, G, X, ©), parametrized
by ©, with the BISG model in order to estimate the distribution Y | R thatis of interest. In this regard it mirrors the
two-stage approach to instrumental variables estimation: a first stage (BISG) that estimates the relationship between
instrument (surname) and variable of interest (race), and a second stage (BIRDiE) that uses the first-stage estimates
to produce valid estimates of the quantity of interest. However, unlike two-stage IV, the BIRDIE approach is not
an approximation: as we describe below, the model is a coherent joint distribution of data, unknown parameters,
and race.

We first present the general BIRDIiE model and describe potential choices of complete-data outcome models before
discussing our computational approach. The BIRDIE posterior is obtained by applying Assumptions Az, Ar, and
A4 to the joint distribution 7(Y, R, G, X, S, ©):

7(©,R|Y,G,X,S) x7(O,R,Y,G,X,8S)

N
X W(@) Hﬂ'(}/z ’ Ri, Gi, Xl', @)W(Rl | Gi,Xi, SZ)
=1
N A
=7m(0) [[~(Vi | Ri,Gi, X;,0)Pig,, (3)
=1

where as above 13‘z are the BISG probeability estimates for individual ¢, which depend on Census data represented in
dax|R» 45| and qR, but not on the outcome-model parameters ©. As a result these “first-stage” BISG estimates
can be plugged directly into the BIRDIE posterior computation without any loss of Bayesian coherency.*

To apply this general BIRDIiE model to a particular analysis requires choosing a complete-data outcome model,
given by the likelihood 7(Y; | R;, G;, X, ©) and prior 7(©). Since Y is discrete, a categorical regression model
is appropriate for 7(Y; | R;, G;, X;, ©). The parametrization of the categorical regression will depend on the
analyst’s goals, computational resources, and prior beliefs about the structure of the problem. We present here
several reasonable alternatives that trade off modeling flexibility and computational efficiency.

Complete-pooling model.  The simplest possible model is one in which the relationship between Y and R does
not vary with G or X. This model is parametrized by © = {6, },cr, which describe the distribution of Y within
every level of R:

Y; | R, G;, X;,0 ~ Caty(ORi)

0, " Dir(e),

where Caty denotes a discrete (categorical) distribution on the set V. With known R, the posterior of 8, is conju-
gate, a fact which will make computation under the EM scheme described in Section 3.3 below extremely efficient.
Of course, this efficiency comes at the cost of a restrictive model that allows for no role of G and X. If in real-
ity P(Y' | R) does vary along these dimensions, it is possible that the posterior of 8, will not accurately estimate
P(Y | R). In any case, if the analyst is interested in subgroup or small-area estimates of P(Y" | R), the complete-
pooling model will be of little use.

#This remains true if a more complex model is used in place of the BISG probabilities (such as those of Zest Al, 2020; Imai et al,,
2022; Argyle and Barber, 2022; and Decter-Frain, 2022), so long as the parameters of the first-stage model are a priori independent of the
parameters of the BIRDiE model.
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Saturated (no-pooling) model. At the other end of the spectrum from the complete-pooling model is a sazu-
rated or no-pooling model, which estimates a different distribution of Y | R within every level of G and X:

Yi | Ri, Gi, Xi, © ~ Caty(Or,c,x,)
0,40 * Dir(cr).
This model is closest to the OLS estimator, though it ensures that all probability estimates lie in [0, 1]. As with the
complete-pooling model, the posterior of 8,4, is conjugate to its prior, and so computation can be made efficient.
Additionally, this model allows for any arbitrary relationship between Y, R, G, and X. Since it is fully nonpara-
metric, the posterior will converge to the true P(Y" | R, G, X') with enough data in each (G, X) cell. However, in
practice, the model can suffer from the curse of dimensionality: the number of (G, X)) cells may be relatively large
compared to the amount of available data, or even exceed it, especially since G' can be quite large, covering many

blocks or ZIP codes. In these cases, the prior will dominate the data in each cell, which could have a large biasing
effect even on overall inferences about P(Y | R).

General mixed-effects model.  Asa compromise between the complete-pooling and no-pooling model, a partial
pooling approach based on a multinomial mixed-eftects model can be used. Properly specified, the mixed-eftects
model maintains the flexibility of the saturated model while avoiding its high bias and variance in finite samples.

}/i ’ Ria Gi7Xia O ~ Ca'ty(g_l(u’rgz))
Mrgzy = Wﬁry + Zu,,
Uy ‘ ¢ry ~ N(Ov Z(q’)ry))

21d iid
By © 1P, < FO,

Lis a softmax or other link function, W and Z are matrices of fixed and random effects, respectively, P isa

where g~
vector of random-effect parameters, and f ) and f(®) are some priors for the superscripted parameters. Some fixed
or random eftects could be shared across combinations of R and Y, though this could complicate computation.
We recommend including X and especially G in the model as random eftects, with hierarchical structure as ap-
propriate. Such a structure partially pools estimates of P(Y | R, X, G) towards an overall estimate of P(Y" | R),
allowing the model to share information between geographic areas. This should prove especially useful in cases
where some areas have few or no observations for certain racial groups.

We also recommend including group-level covariates as fixed effects, which will help share information across ran-
dom effects and significantly improve generalization performance to unseen random effect levels (Buttice and High-
ton, 2013). For example, if G records counties, analysts could include racial and socioeconomic variables measured
at the county level as predictors. This would help produce more accurate estimates of P(Y | R, G) to the ex-
tent that variation in these probabilities is associated with these racial and socioeconomic variables. Ultimately the
structure of this general model will have to be chosen based on the data and the relevant research question.

3.3 Computation

The posterior in Equation (3) contains the high-dimensional discrete nuisance parameter R, which poses a chal-
lenge for computation. We suggest two approaches for handling R, one suited to small sample sizes, and one suited
to large sample sizes.

Small samples: Inference directly on the marginal likelihood. Since R is discrete, we can marginalize it out
as follows:

N
T(O]Y.G.X,8) =3 7(0r|Y,GXS) xa®) ][> n(¥i|rGiXi 0P  (4)

reRN i=1reR
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This decouples the total number of parameters from the sample size. Additionally, Equation (4) has only contin-
uous parameters, and so can be used with any general Bayesian inference procedure such as Markov chain Monte
Carlo (MCMC). However, the moderate-to-high dimensionality in practical settings, even after integrating out R,
and the expensive likelihood calculation due to the sum nested within the outer product, makes MCMC algorithms
computationally too expensive outside of relatively small datasets.

Large samples: Expectation-Maximization. When the number of individuals exceeds a thousand or so, we
propose an Expectation-Maximization (EM) algorithm (Dempster et al., 1977) to calculate the maximum « poste-
riori (MAP) estimate of © for BIRDIiE models. The EM algorithm alternates between an E-step which calculates
the expected log posterior density (), averaging over the missing R, and an M-step which maximizes () over values

of ©.

Specifically, given a current parameter estimate @(t), the expected log posterior density can be written as

QO | ©") = Eflogn(0V R | Y,G,X,8)]

= > |09 Y, G X,S)logn(0 1| Y, G X,S)
reRN

C1ogr(©) £33 { (logn (% [ 1,1, %, 047 4 g )
i=1rer

X 7T(Rz =r | @(t)>Yvia Gi, Xi, Sl)}

= C +logw(©0+Y +ZZP( log w(Y; |, Gy, Xi, @D,
1=1reR

where C'is a constant that can be ignored as it does not depend on O+ and f’g/) =7(R|0Y Y, G, X,S)

are the BISG probabilities updated using Bayes’ rule:

s m(Yi|rGi, X, 00)F,
Faly = S ver (Y | 17, Gy, , Xi, ©0) By

(s)

At the M-step, Q(OF1) | ©1)) s straightforward to maximize, since it is just the log complete-data posterior,

with likelihood weights given by the P plt \)Y Additionally, if © can be partitioned into parameters which only af-
fect individuals in each racial group (as is the case with all the models described in Section 3.2 above), then the

maximization can be performed separately on each group of individuals.

A critical advantage of this EM scheme over working directly with the marginal likelihood is that the maximization
in the M-step can be performed using sufficient statistics calculated as part of the E-step, rather than on all of
the individual entries in the data. Since the M-step is usually the practical (if not also asymptotic) bottleneck in
the computation, this is enormously helpful—the problem size scales with || x |X| x |G| rather than with N.
Specifically, notice that we can rewrite Q(©+1) | ©*)) (dropping the unnecessary constant) as

N
QO [01) =logm(©1) + 3~ N Pl logn(¥; | 7, Gy, Xi, 0+

i=1 reR
=logm(© )+ 33N S log(y [ r,g, 2,00 [ > B,
reRyeY zeX geg i€Z(yzg)
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where analogously to above Z(yxg) is the set of individuals with Y; = y, X; = z,and G; = g.

For BIRDIE models where the complete-data likelihood is conjugate to the prior, such as the complete- and no-
pooling models, these sufficient statistics are used in the M-step anyway, and can be efficiently calculated during the
E-step as well. In combination with the acceleration scheme described next, this allows the entire EM algorithm to
be run to convergence on data with hundreds of thousands or millions of individuals in a matter of seconds.

While EM algorithms are highly stable, due to their monotonic increasing of the marginal likelihood, they are also
often slow to converge (Laird, 1993). To address this, we propose, and include in our open-source software imple-
mentation, the use of fixed-point iteration accelerators such as Anderson acceleration or SQUAREM (Varadhan
and Roland, 2008). These techniques can substantially reduce the overall computational time without meaning-
tully aftecting the stability of inference.

Finally, it is important to note that the EM algorithm does not provide any uncertainty quantification. However, in
large samples, sampling and model-based uncertainty is dominated by biases caused by even small violations of the
underlying assumptions, a problem we discuss below in Section 3.6 and the accompanying appendix. For BIRDiE
models with few parameters, such as the complete-pooling model, bootstrapping is computationally feasible and
can be used to approximate the asymptotic covariance matrix of the MAP estimate.

3.4 Updated Individual Race Probabilities

The EM algorithm produces the updated individual race probabilities given in Equation (5). One feature of these
updated probabilities is that it is appropriate to apply the weighting estimator to them to estimate disparities. This
is because the updated probabilities condition on Y, and so the asymptotic bias term in Theorem 2.2 becomes
zero. In fact, the weighting estimate from the updated probabilities is identical to the BIRDIE estimate. While
more study is required, for downstream settings where weights are needed, generating these weights with BISG
followed by BIRDIE will likely produce more accurate results than simply using BISG weights alone.

3.5 Additional Explanatory Variables

Often, researchers are interested in not just P(Y" | R) butalso P(Y" | W, R), for some variable W € W which is
not part of the BISG predictors (X, G). For example, a lending firm auditing potential racial disparities in lending
decisions would likely be interested both in how the rate of loan approval (Y") varies by race, but also how loan
approval varies by race, conditional on a measure of creditworthiness (WW). The unconditional disparities reflect
realities of systemic racism and inequality, while the conditional disparities measure the fairness of the firm’s lending
decisions after controlling for these systemic factors. Such estimates could be used to compute various measures of
algorithmic fairness, including calibration parity and false positive error rate balance. Another scenario is a policy
evaluation study, where researchers are interested in how the impact of policy varies across racial groups. Such an
anlysis requires incorporating an interaction between race and the treatment variable.

There are two main ways to perform such an analysis with our proposed methodology. The first, and perhaps
simplest, is to apply the methodology to the combined variable YW € Y x W. This will produce estimates of
P(Y,W | R), from which P(Y" | W, R) can be straightforwardly calculated by appropriate normalization. This
approach will work well if || and [W| are both small, so that |} x W] is of manageable size. If one of these
variables has many levels, however, directly estimating the distribution of Y, W | R could be less efficient, as it
does not account for information about the marginal distributions Y | Rand W | R.

An alternative approach is to first apply the proposed methodology to estimate P(W | R). This allows for cal-
culation of model-updated BISG probabilities Pjjy = 7(R | ©, W, G, X, S), which are also computed as a

byproduct of the EM algorithm described above. Then, the methodology can be applied again, using f"w as the
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input probabilities rather than the original BISG probabilities, to estimate P(Y" | W, R). This approach will likely

perform better when W consists of multiple predictors or if either || or [W] are large.

Both of these approaches require the following identifying assumption, which generalizes Assumption A4.

Assumption As (Conditional independence of outcome, predictor and name). For all i, (Y;, W;) 1L S; |
R;, G, X, or, equivalently,

Wi L S; | Ri,Gi, X and  Y; 1L S; | Wy, R;, Gy, Xi.

In the lending example, this would translate to the assumption that a measure of creditworthiness is independent
of last name after controlling for race, location, and covariates, and that lending decisions are independent of last
names after controlling for creditworthiness, race, location, and covariates.

3.6 Addressing Potential Violations of the Assumptions

BIRDIE crucially relies on Assumption A4 for identification. In addition, like the weighting and thresholding
estimators, it also relies upon Assumptions A2 and A, which are required for the BISG race probabilities to be
accurate. Unfortunately, these assumptions may not exactly hold in practice, and are also not testable in observed
data. In this section and Appendix C, we develop sensitivity analyses that assess how violations of these assumptions
affect the estimates of racial disparities.

First, BIRDIE assumes that conditional on unobserved race and observed covariates, outcomes and surnames are
independent. As discussed in Section 3.1, however, association between the outcome and country of origin or racial
subgroups may lead to correlation between surnames and outcome even after controlling for race and geography.
To address this problem, suppose that a low-dimensional summary statistic of surname, f : S — R%, d < |S|, is
available, where f may map each surname to a finer ethnic group within each racial category. For example, Imai is
a Japanese name whereas McCartan is a name of Irish origin. If f can classify surnames into finer racial subgroups
or countries of origin—even approximately—then it can be used to control for this channel of possible violations
of Assumption A4. Formally, we relax Assumption A4 as follows.

Assumption A6 (Partial conditional independence of outcome and name). For all i,

Y: 1L S; | f(S:), Ri, Gi, X;.

The next theorem shows that it is still possible to nonparametrically identify racial disparities under Assumption
A6 under the identification condition, which is only slightly stronger than for Theorem 3.1.

Theorem 3.4 (Nonparametric Identification Under Assumption A6). Let f : S — RY d < |S|, with range
f(S). Forany given g € G, x € X, z € f(S), andy € Y, define a matrix P € RISIRE with entries
psr =P(R=7 |G =9g,X = 2,8 = 5) and a vector b € RIS| with entriesby = P(Y = y | G =
9, X = x,8 = s). Then under Assumption A6, and assuming knowledge of the joint distribution P(R, G, X, S),
the conditional probabilities P(Y =y | R, f(S) = 2,G = g, X = x) are identified if and only if both P and the
angmented matrix (P b) have rank | R|.

Aslong as the dimension d of the surname summary statistic f(5) is much smaller than the (usually large) number
of surnames |S|, racial disparities are likely to be identified under Theorem 3.4 when they are already identified
under Theorem 3.1. Thus, Assumption A6 and Theorem 3.4 can be used in conjunction with carefully chosen f
in order to probe likely failure modes of the more restrictive Assumption A4. If estimates are not much affected by
the inclusion of f(.9), then researchers can be more confident in the plausibility of Assumption A4.

Second, bias can also arise from violations of the assumptions underlying the BISG methodology (Assumptions A2
and Ar). Of course, this is not unique to the proposed methodology: violations of these assumptions will also affect
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the validity of other disparity estimators such as weighting or thresholding. However, since as discussed above the
BISG assumptions may rarely hold exactly in practice, we provide in Appendix C several results characterizing how
the model’s estimates are affected by bias in the BISG probabilities.

4 Empirical Validation

To better understand how BIRDIE performs in real-world contexts, we apply it to North Carolina voter registra-
tion data. This voter file contains individual-level self-reported race for almost all voters and hence the “ground
truth” relationship between outcome and race is known. We compare the performance of BIRDIiE models against
those of the weighting and thresholding estimators. We also evaluate how the estimation error depends on the
level of geographic precision used in the BISG probabilities. Finally, we briefly demonstrate various extensions of
the BIRDiE methodology: small-area estimates, improved individual race predictions, estimation conditional on
an additional explanatory variable (as discussed in Section 3.5), and sensitivity analysis for potential assumption
violation (Section 3.6).

4.1 North Carolina Voter File

Like most other Southern states, which have a history of disenfranchising minority voters, the state of North Car-
olina asks (and previously required) every voter to self-report their race upon registration. This data, along with
voters’ names, addresses, gender, party registration (if any), and voting history, is part of the voter file that the secre-
tary of state makes publicly available. This feature makes the voter file an ideal validation setting for the proposed
methodology. The outcome we examine here, party registration, is the product of many unobservable factors, and
is known to differ across racial groups. Since self-reported race is available, inferences about these racial disparities
using the estimators discussed here can be compared to the corresponding ground truth.

Estimation of party registration by race is of substantive interest as well, especially in the context of the Voting
Rights Actof 1965 (VR A). The relationship between these variables is critical for understanding the impact of policy
changes such as redistricting or election rules on compliance with the VR A, and for establishing legal standing to
challenge these policies under the VR A. As many states do not ask for self-reported race during voter registration,
and other states no longer require reporting race, methods like BIRDIE are important tools for evaluating VR A
compliance.

We use a subset of the October 2022 voter file which could be linked to a proprietary voter file provided by L2,
Inc., a leading national non-partisan firm and the oldest organization in the United States that supplies voter data
and related technology to candidates, political parties, pollsters, and consultants for use in campaigns. The Lz file
geocoded each address to a Census block, which allows for the finest block-level BISG predictions. We also removed
any records without individual race information, since our goal is validation compared to some ground truth, rather
than inference about the entire population of registered North Carolina voters. Altogether, 22.1% of records either
had missing race information or could not be linked to the L2 file.

The overall merged voter file contains 5,754,912 voters, 71.1% of which are White, 21.1% of which are Black, and 7.8%
of which belong to another race. To reduce computational burden, we further subsampled this file by selecting
1,000,000 records at random without replacement. This sample size is large enough to ensure that sampling error
in the estimates is negligibly small.

Figure 2 shows the distribution of party registration by self-reported race in this subsample. White voters dispro-
portionately register as Republicans, while Black voters disproportionately register as Democrats. This serves as the
ground-truth in our validation analysis presented below.
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Figure 2: Distribution of party registration by race for a sample of 1,000,000 North Carolina voters. Parties
are Libertarian (LIB), Republican (REP), Independent (IND), and Democratic (DEM).

4.2 The Model Setup

We first calculate BISG probabilities using 2010 Census data at the census block, tract, ZIP code tabulation area
(ZCTA), and county level. Every record in the voter file contains county information, while roughly 13% of records
are missing ZIP codes and 27% of records are missing blocks/tracts; when these finer geographic identifiers were
missing, we used county-level Census tables in the BISG calculations.

The BISG probabilities are broadly accurate. Using the maximum a posteriori racial category as a prediction, we
obtain the accuracy of 76.2% for the county probabilities, 78.4% for the ZIP code probabilities, 78.5% for the tract
probeabilities, and 79.6% for the block probabilities. An alternative measure of the quality of the BISG probabilities
is the logarithmic score, a proper scoring rule which rewards precise and calibrated probabilistic estimates (higher
values are better). The logarithmic scores for the BISG probabilities are —0.618 for counties, —0.587 for ZIP codes,
—0.58s for tracts, and —o0.607 for blocks. For comparison, the prior-only logarithmic score (i.e., using no name or
geographic information) is —0.867. The worsened performance for block-level versus tract-level probabilities likely
stems from the larger impact of census measurement error at smaller geographies, a problem that could be addressed
using newer BISG methods such as those of Imai et al. (2022).

Since the goal of our validation study is to compare BIRDIE estimates with weighting and thresholding estimates,
we do not make additional comparisons between BISG probabilities and those generated with alternative racial
prediction methods. To the extent competing racial prediction methods improve prediction accuracy, we expect the
gap between different disparity estimation methods (weighting, thresholding, BIRDIE) to narrow, consistent with
Theorems 2.2 and 3.3. However, as we have discussed, high accuracy of racial prediction alone is neither necessary
nor sufficient for accurate estimation of racial disparities. If other racial prediction methods produce increased
accuracy at the cost of worsened calibration, accuracy in estimating racial disparities may be poor whether using
weighting, thresholding, or BIRDIE estimates.

In our validation, for a given set of BISG probabilities, we estimate the conditional distribution of each outcome
variable given race using BIRDIE with both saturated pooling and multinomial mixed-effects models introduced
above. We then compare the resulting estimates based on these BIRDIiE models against those of the two existing
estimators — the weighting estimator as well as a thresholding estimator that deterministically assigns each individ-
ual the maximum & posterior: racial category. For the saturated BIRDIiE model, we use geographic effects matching
the geographic level used in the BISG probabilities (e.g., county eftects for the county-level BISG probabilities), ex-
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Figure 3: Ervor in the White-Black and White-Hispanic disparity estimates for party registration, by
estimation method. All methods used block-level data for this figure; the results for other levels of geographic
detail are generally similar. Estimation uncertainty is minimal and hence suppressed from the figure for
clarity.

cept for the block-level probabilities. Due to the large number of individual census blocks, we use tract-level effects
instead for this particular model.

We use our software’s default priors for both BIRDIiE models. This is a uniform prior for the saturated model
and a NV (0, 1) prior on 3 and a Gamma(2, 10) prior on the random intercept standard deviation for the mixed
model. With standardized covariates, the prior on the fixed effects 3 is weakly informative, corresponding to a prior
belief that a one-standard-deviation increase in the covariate level will generally correspond to a change in the linear
predictor between —2 and 2. The weakly informative prior on the random intercept scale is centered at 0.2 and
places most of its mass between 0.024 and 0.56. To give an idea of the computational efficiency of the proposed
method, the maximum runtime of the saturated of the BIRDIiE models fit to estimate party registration was 6.9
seconds (on a modern laptop with 8GB RAM), and the maximum runtime for the mixed model estimates was 22.6
seconds.

4.3 Estimates of Racial Disparity in Party Registration

We first examine the relative accuracy of the proposed methods in estimating the disparity between White and Black,
and White and Hispanic voters, in party registration. For example, the true difference in Democratic registration
between Black and White voters in the sample is 54.6 percentage points, meaning Black voters register Democratic
at a much higher rate. However, the standard weighting approach produces an estimate of only 20.8 percentage
points for this disparity—less than half the true value. This is consistent with Corollary 2.2.1, which states that the
weighting estimator tends to underestimate the magnitude of racial disparity. The thresholding estimator, while
slightly better, also misses the mark, with an estimate of 30.5 percentage points. In contrast, the saturated BIRDIE
model produces an estimate of 49.2 percentage points, and the mixed BIRDiIE model also estimates 49.2. These
estimates are only slightly lower than the ground truth.

Figure 3 compares the empirical performance of the BIRDIiE models against that of the weighting and thresholding
estimators across all of these possible disparity measurements, using the block-level BISG predictions. The true
disparity is subtracted off from each estimate for ease of comparison, and so the figure plots the estimation error of
racial disparity between two racial groups. For White—Black (left plot) and White-Hispanic (right plot) disparities
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Figure 4: Total variation distance between the estimated and actual distribution of party registration, by
estimation method and level of geographic detail used in the BISG predictions. The left plot shows the overall
total variation distance, whlie the right plot decomposes it by racial group.

in party registration, the BIRDIiE models (solid circles and squares) substantially outperform the two commonly
used estimators (open circles and crosses). For two major parties, both the weighting and thresholding estimators
exhibit a substantial amount of estimation error, for example, exceeding 20 percentage points for the White-Black
disparity for the Democratic party. In contrast, the two BIRDiE models yield a much smaller estimation error that
ranges within several percentage points for all racial disparity estimates. The saturated and mixed-effects BIRDIE
models perform similarly with no discernible difterence.

For a more comprehensive look at the error in the estimated partisanship-by-race distributions, we turn to the total
variation (TV) distance, which is calculated as

N 1 .
dTV(NY|R: MY|R) 9 Z Z |y, r(y,7) — wy,r(Y, 7)),
yeYreR

where f1y g is the joint distribution of Y and R. The TV distance is an upper bound on the error in 4y proba-
bility calculated from the estimated joint distribution, and as such is useful general-purpose measure of estimation
error. The left plot of Figure 4 shows the TV distance for each estimator, not just for the block-level BISG esti-
mates used in Figure 3 but also across the range of geographic levels used in the BISG calculation (x-axis). We find
that both BIRDIiE models substantially outperform every alternative at every geographic level. In general, the es-
timates based on the BIRDiE models exhibit a total variation distance whose magnitude is about one third and
one fourth of that for the thresholding and weighting estimators, respectively. As before, the saturated and mixed-
effects BIRDiE models perform similarly. According to this measure, we find that finer geographic data provide
only minor improvements in accuracy for the BIRDIE or conventional estimates. While possibly counterintuitive,
this finding underscores the fact that calibrated BISG probabilities, rather than highly precise probabilities, are all
that is needed for accurate disparity estimation.’

SOf course, both calibrated and precise probabilities are to be preferred to imprecise but calibrated probabilities. However, in practice
there may be a tradeoft between the two. For example, including first names in the BISG predictions increases their precision. But first
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Figure 5: Accuracy of small-area estimates by race, as measured by the average total variation distance.

It is also possible to measure the TV distance for each conditional distribution by race:
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The right plot of Figure 4 shows these within-race TV distances, to illuminate how the estimators perform on each
subgroup. In general, the BIRDiE models are more accurate than the weighting and thresholding estimators for the
White and Black racial groups which together make up 96% of the sample. All estimators perform roughly equally
well for Hispanic, Asian, and Native voters (though the thresholding estimator performs well for Hispanic voters),
exhibiting relatively small estimation error. The weighting and thresholding estimators perform particularly poorly
for Black voters and for the “Other” racial group.

4.4 Small-area Estimation

An advantage of the BIRDiE methodology is its explicit modeling of P(Y | R, G, X'), which produces not only
estimates of the marginal P(Y" | R) butalso subgroup estimates of how these conditional distributions vary across
covariates and geographic areas. This section examines the accuracy of the saturated and mixed-effects BIRDIE
models in recovering small-area relationships between party registration and race, compared to standard methodol-
ogy that simply applies the weighting and thresholding estimators within each geographic area. We study accuracy
at the county, ZIP code, and tract level, using the BISG probabilities and BIRDiE models that were applied to each.
Since in fitting the BIRDIE model to block-level BISG probabilities we used tract-level random intercepts, we do
not present block-level estimates.

We evaluate the small-area estimates by calculating the mean total variation distance between the estimated and true
conditional distributions of party registration by race (averaging across geographic areas). Figure 5 summarizes our
results, which qualitatively track the patterns found overall in Figure 4. The two BIRDIiE models exhibit substan-
tially lower error than the weighting and thresholding estimators. Across all methods, the error is lower for White
voters, who make up the bulk of the sample. Somewhat surprisingly, the amount of error does not appear to vary
much for the BIRDiE models across different levels of geography—tract-level estimates are roughly as accurate as
county-level estimates, on average.

names may lead to worse calibration, since BISG methods which use surnames make an somewhat unrealistic conditional independence
assumption, and data on first names by race come from non-census sources. Additionally, unlike surnames, first names (which are usually
chosen by parents) can be more correlated with socioeconomic variables, leading to violations of Assumptions A4.
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Figure 6: Race probability predictive accuracy, as measured by the area under the receiver operating char-
acteristic (ROC) curve, for the input BISG probabilities as well as the BIRDiE-updated probabilities, by
race and level of geographic precision. Larger values indicate more precise predicions.

Between the BIRDIE models, the mixed-effects model slightly outperforms the saturated model. This reflects the
value in partially pooling estimates through the random effect structure.

4.5 Improved Individual Race Probabilities

As discussed in Section 3.4, we can use the conditional distribution P(Y" | R, X, ) estimated with a BIRDiE
model to create model-updated BISG probabilities Py = 7(R | ©,Y, G, X, S) by applying Bayes’ rule. These
updated probabilities may be more accurate than the original BISG probabilities.

For example, using the estimates produced by the mixed BIRDIiE model applied to party registration with block-
level BISG estimates, the MAP prediction accuracy increases from 79.6% with the input probabilities to 82.9%
with the updated probabilities. These increases are significantly larger than the differences in accuracy between
BISG probabilities using different levels of geographic precision.

The improvements are reflected in other accuracy measures as well. Figure 6 shows the accuracy of the predictions
by race, as measured by the area under the receiver operating characteristic (ROC) curve. The updated probabil-
ities are noticeably more accurate than the input probabilities for White and Black voters, about as accurate for
Hispanic, Asian, and Native voters, and slightly less accurate for “Other” voters. Since White and Black voters to-
gether constitute the vast majority of the sample, these patterns translate to improvement in the logarithmic scores
as well: the score for the input probabilities is —0.607, and this increases to —o.570 with the updated probabilities.

4.6 Estimates Conditional on an Additional Variable

The North Carolina voter file also provides an opportunity to demonstrate the methodology described in Section
3.5 to produce estimates conditional on another predictor variable that is not used in the BISG probabilities. We will
estimate party registration rates by race among voters and nonvoters in the 2020 election. Following the discussion
in Section 3.5, we will compute these estimates two ways: (1) by estimating party registration and 2020 turnout
jointly by race, and (2) by first estimating 2020 turnout by race, then estimating party registration by race and 2020
turnout.

We will use a multinomial mixed-eftects BIRDiE model applied to the block-level BISG probabilities, with random
intercepts by tracts, for all the estimation. Fitting this model to a combined 2018/2020 turnout variable (i.e., one
with four levels: no/no, no/yes, and so on) produces estimates of the joint distribution of 2018 and 2020 turnout
by race. Normalizing these probabilities within 2018 turnout and race groups produces estimates of 2020 turnout
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Figure 7: Error in the conditional expectation estimates for party registration by turnout and race, by
estimation method. All methods used block-level data for this figure. Estimation uncertainty is minimal

and hence suppressed from the figure for clarity.

by race and 2018 turnout. The total variation distance between these estimates and the true distribution is o.0sr,
which indicates close agreement.

Figure 7 presents the errors in the estimates for this method (solid square), the two-step method (solid circle),
and for the weighting (open circle) and thresholding (cross) estimators. The TV distance between these two-stage
estimates and the true distribution is 0.052, very similar to the error in the joint-estimation approach. The two-
step approach produces similar estimates to the joint-estimation approach, though the latter performs better in
the “Other” category. As discussed in Section 3.5, while both approaches produce highly accurate estimates in this
example, we would expect the two-stage approach to be superior when one or both of the variables has more levels.

In contrast to the BIRDIE models, the weighting and thresholding estimates of party registration by 2020 turnout
and race include large errors, especially for Black voters with all the errors exceeding 10 percentage points. The TV
distance for the weighting estimator is 0.196, and the distance for the thresholding estimator is 0.147—around 3—4
times higher than for the estimates based on the BIRDIiE models.

4.7 Sensitivity Analysis

Finally, we examine the sensitivity of our party registration estimates to potential violations of the key identifying
Assumption A4, following the method outlined in Section 3.6 that is based on a low-dimensional summary statistic
of surnames. We use a publicly available sample of 5% of the individual records for the 1930 Census (Ruggles et al.,
2021), which contains individual names, individual and parental birthplace, and detailed race, ethnicity, and tribal
codes. Since many regions of Asia, particularly Vietnam, experienced little emigration to the United States before
1930, we further supplement this data with around 3,000 Asian surnames classified into six regional subgroups:
Chinese, Filipino, Indian, Japanese, Korean, Vietnamese, NHPI, and Other (Guage et al., 2023).
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Figure 8: Residual correlation between party registration and nine surname groups, after controlling for
race and location. Correlations whose 90% confidence intervals exclude zero are marked with an asterisk.
See Appendix D for details on the surname groups.

Using these subgroups and the 1930 birthplace and racial data, we can classify most surnames in the voter file into
nine groups (see Appendix D for a brief description of the groupings and the most common so surnames for each
group). While somewhat arbitrary, these groups are chosen to combine countries of origin which had significant
immigration to the United States during similar periods.

We first evaluate the plausibility of Assumption A4 by examining the correlation between the residuals of the
BIRDiE model fitand indicator variables for each of the nine surname groups. Under Assumption A4, this residual
correlation should be zero everywhere. As Figure 8 shows, however, for many groups and party labels, the correla-
tion is small but deviates from zero more than would be expected given only sampling variation. Here, we use the
residuals from the county-level saturated model specification, but the results are not sensitive to this choice.

Notably, voters with names in the Anlglosphere and Black surname group, which includes surnames that are rela-
tively more common among many-generation residents of the U.S., such as Smith, Williams, and Brown, are signif-
icantly less likely to register as Democrats and independents, and more likely to identify as Republicans, even after
controlling for race and geography. Meanwhile, voters with names in the First and Second wave European immi-
gration surname groups, which include surnames more common among 19th and 20th century immigrants from
Europe, display the opposite pattern. Differences among surname groups designed to correlate with membership
in various Asian subgroups are also visible. However, all of these correlations are quite small in magnitude, with
most on the order of o.o1 or so. Thus, we expect our party-by-race estimates to be little affected by the inclusion of
the surname group indicators.

Indeed, re-fitting the county-level saturated model with an additional surname group covariate produces nearly
identical results, albeit ata moderately higher computational cost given the increased number of (G, X, f(.9)) cells.
This re-fitting requires Assumption A6, which relaxes Assumption A4. We find that the average party registration
rate estimate changes only by 0.006, with the largest change being o.021, for the rate of Democratic registration
among Other voters. All in all, this analysis provides confidence that violations of Assumption A4 for the North
Carolina voter file are likely minor and would have minimal effects on quantitaive and qualitative conclusions.
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5 Discussion

We have introduced a new identifying assumption and accompanying model, BIRDIE, and clarified other assump-
tions implicit in approaches to disparity estimation from proxy data. In many real-world applications, we believe
that the new model and identification condition are appropriate and will produce significantly improved estimates.
However, there is no one-size-fits-all approach for the estimation of racial disparities. For example, the existence of
name-based discrimination may violate our identification assumption especially when racial categories, for which
data are available, are coarse. Although we provide a sensitivity analysis that partially addresses this concern, careful
consideration of the underlying causal and information structure is required to avoid making the incorrect conclu-
sions.

As our empirical demonstration shows, in realistic settings BIRDIE can substantially outperform existing estima-
tors of racial disparities, both in aggregate and for small areas. The BIRDIiE methodology also produces improved
BISG probabilities, and can be used to estimate disparities conditional on other variables. These additional features
should prove helpful in practical settings.

5.1 Recommendations for Practitioners

Given the large amount of missing data inherent to the type of racial disparity estimation studied here, choices
about data selection, processing, and modeling can have a large impact on estimates and substantive conclusions.
We collect here several recommendations for practitioners using BISG and BIRDIE methodology in their research.

* Choose estimation methodology and input data based on the specifics of the research question. As
we have stressed, the causal structure of the research setting determines whether BISG should be used with
the weighting or BIRDIE estimators. Research on populations which are very different from the general
U.S. population may also benefit from the use of alternative or additional data on race and geography
specific to that population. The choice of whether to use state-, county-, ZIP-, tract-, or block-level data
likewise depends on aspects of the data under study, and the scale of geographic variation in the outcome
variable and quantities of interest.

* Focus on the calibration, not the predictive accuracy, of BISG probabilities. Traditionally, BISG-
type methods have been evaluated by their predictive accuracy, measured by the mean agreement between
the thresholded racial categories and ground truth, or the AUROC of the BISG probabilities. We find
that, especially in cases with abundant individual-level data, far more important than maximizing predic-
tive accuracy is ensuring that the BISG probabilities are properly calibrated. Accurate but biased racial
prediction will lead to bias in downstream estimates, regardless of which disparity estimator is used. To
evaluate probabilistic calibration in validation settings, we recommend visual diagnostics like binned resid-
ual plots, as well as numerical summaries like the logarithmic score.

* Decide whether additional covariates need to be collected. Additional covariates can make the BISG
and BIRDIE assumptions more plausible, and can increase the accuracy of BISG probabilities and the
precision of BIRDIE estimates. Prioritize covariates which are highly predictive of both outcome and
race. However, including all available covariates without considering their effect on the various BISG and
BIRDiE assumptions is likely to cause problems. In particular, if a covariate’s distribution against both
race and geography is not known, avoid making unrealistic independence assumptions in order to allow the
covariate to be included in the BISG model. Rather, follow the approach outlined in Section 3.5. Covariate
choice should be driven by substantive considerations, not convenience.

* Unless computational limits are severe, use the mixed-effects BIRDIiE model with group-level
covariates. The mixed-effects model uses the data itself to determine how much to pool disparity estimates
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across different geographies. This avoids the dual pitfalls of Simpson’s paradox (a risk if no geographical
information is used) and over-regularization (caused by the prior if no pooling is performed). When using
the mixed-effects model, group-level covariates are likely to improve both overall and especially small-area
accuracy, and they are easy to collect from public sources. For example, a good default for a ZIP-code
level model applied to a political outcome variable would be to include the percentages of the major racial
groups in the ZIP code, as well as the ZIP code’s income level, population density, and partisanship, in the
model.

* Perform sensitivity analyses. Both the BISG and BIRDiE models use priors, which should be perturbed
to examine the sensitivity of the results to prior selection. The sensitivity of BIRDIE to its key identifying
assumption should also be assessed, at minimum using the auxiliary covariate approach demonstrated in
Section 4.7.

* Consider validating estimates with a small-scale survey. Even with administrative microdata obser-
vations in the millions, there is no substitute for a high-quality random sample of individuals for whom
race can be observed. Such a sample can be used to validate the various assumptions made by BISG and
BIRDIiE, as well as providing a sanity check against BIRDIE disparity estimates. Future improvements to
BIRDIE could also directly integrate survey data into the workflow.

5.2 Ethical Considerations

As researchers have increasingly applied racial prediction and imputation methods to administrative records, in-
cluding many publicly available datasets, there has been growing concern about ethical and privacy considerations
around performing such predictions. While some scholars do not view racial prediction methods as privacy risks
(Bun et al., 2021, “Statistical Inference is Not a Privacy Violation”), we believe it is important for researchers to
consider the implications of their use of racial prediction methods (Kenny et al., 2023).

Recently, Lee and Velez (2023) studied public perception of these ethical considerations through a large factorial
survey experiment that asked participants if they viewed a hypothetical study as ethically permissible based on three
study factors. Among other findings, their study shows that asking for consent in data collection is strongly as-
sociated with the study being viewed as more ethically permissible. They also find that studies which focused on
accurate estimation of racial disparities were viewed as more ethically permissible than studies that overestimated
or underestimated the size of disparities.

Compared to previous approaches to racial disparity estimation, which emphasized maximizing accuracy of in-
dividual racial predictions to minimize measurement error, BIRDIE focuses on the accuracy of estimating racial
disparities. In fact, as our validation study demonstrated, different sets of individual race predictions of varying in-
dividual accuracies (county-based versus block-based BISG), when used with BIRDIE, produced similar estimates
of racial disparities. To the extent that it allows researchers to focus on calibration of racial prediction rather than
maximizing individual predictive accuracy, BIRDIE may alleviate some privacy concerns and reduce incentives to
collect and link more personal data in an attempt to further increase accuracy. We view this as a welcome change,
consistent with the public’s preference for focusing on accurate disparity information.

However, BIRDIE does allow for the creation of improved BISG probabilities that incorporate the outcome vari-
able and thus can be more accurate as well as better calibrated. While this accuracy gain is a purely statistical phe-
nomenon based on variables already present in the individual dataset under study, researchers should be cautious,
for example, in releasing these improved racial predictions publicly. We urge practitioners to view racial prediction
tools as a means to the end of accurate disparity estimation, and treat the intermediate probabilistic predictions
with appropriate care.
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5.3 Future Research

Much work remains to be done in accurately and reliably measuring racial disparities. First, the BISG probabilities
themselves can be improved. Approaches to doing so include Imai et al. (2022), which accounts for some Census
measurement error while remaining computationally tractable, and Greengard and Gelman (2023), which rakes
BISG margins to improve calibration. More work on identifying and producing data sources which can be used as
BISG inputs, rather than relying solely on Census tabulations, will also pay dividends for BISG quality.

Beyond the BISG probabilities, further empirical analyses could determine useful additional variables to condition
on, which could allow analysts to weaken the required assumption. Additional study, possibly combined with
qualitative research, could identify causal pathways that might threaten the assumptions that BISG and BIRDiIE
rely on, and develop data sources, like our auxiliary 1930 Census data, that could be used to evaluate the plausibility
of those assumptions in real-world analyses, and their effect on numerical conclusions. Finally, the BIRDiE model
could also be extended to directly model more complex types of outcome variables.
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A Proofs of Propositions

Corollary 2.2.1. Lery € Y. If raceis binary (so R = {0,1}),andP(Y =y | R=1,G =g, X =x,5 = s) >
PY=y|R=0,G=g9,X =2,5=5s)forallgc G x € X,ands €S, then

~ (wtd ~ (wed
A WD) = Ry 0) <P(Y =y | R=1)—P(Y =y | R=0).

Proof. For notational simplicity, let 1, = P(Y =y | R = r)and i, = ﬂgv‘tg) (y | r)forr € {0,1}. Since
PY=y|R=1G=9g,X=2,5=s)>PY =y|R=0,G=g9,X =2,5=s)forallg € G,
x € X, necessarily E[Cov(1{Y = y},1{R = 1} | G, X,S)] > 0and E[Cov(1{Y = y},1{R = 1} |
G, X,S)] < 0. We note that the corollary could be stated under this more general condition, but was not for
expositional clarity. Thus by Theorem 2.2, jiy — p, < Oand fi; — g, > 0. Then

fu — flo = fir — p1 + p1 — po + pro — flo
= (fur — p1) — (fio — po) + (p1 — po)
< p1 — Mo,

as claimed. O

Theorem 3.1 (Nonparametric Identification). For any given g € G, v € X, andy € ), define a matrix P €
RISXIRI with entries psr = P(R = r | G = ¢,X = 2,5 = ) and a vector b € RIS! with entries by =
PY =y |G=g,X =x,8=5s). Then under Assumption A4, and assuming knowledge of the joint distribution
P(R,G, X, S), the conditional probabilities P(Y =y | R,G = g, X = x) are identified if and only if both P
and the augmented matrix (P b) have rank |R|.

Proof. Applying the law of total probability and our conditional independence relation S L Y | R, G, X, we
have, forally € V,g € G,z € X,ands € S,

PY=y|lG=9g,X=2,5=5)
:ZP(Y:y|R:r,G:g,X:x,S:s)]P’(R:r|G:g,X:x,S:s)
TER
:Z]P)(Y:y|R:r,G:g,X:m)IP’(R:MG:g,X:x,S:s).
reR

The left-hand side is estimable from the data and the rightmost term P(R = 7 | G = ¢, X = 2,5 = s)is
assumed known. So foreachy € YV, g € G,and x € X, this relation is a linear system in unknown parameters
PY =y | R=r_G = g,X = x). These parameters are identified if and only if this system has a unique
solution, i.e. if the coefficient matrix P has rank |R| and so does the augmented matrix (P b). O

Theorem 3.2 (Unbiasedness of OLS Estimator). If Assumptions Az, Ar, and A4 hold, and the identification condi-
tions in Theorem 3.1 are satisfied, then forally € Y andr € R,

E[i (v | )] =P(Y =y | R=7),

Proof: Fixy € Y and define mgyr = E[I{Y =y} | R = r,G = g, X = x)]. Then under Assumptions Az,
Ar and Ay,

Ei{Y =y} |G=9, X =2,5 = 5]
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=) El{Y =y} | R=r,G=g, X =2)|P(R=r|G=g,X=2,5=>5)
reR

:ng:rrﬁm
reR

where as in the main text P is the (random) vector of BISG probeabilities. In fact, since the right-hand side depends
on S only through p, we have

E[H{Y = y} | G = g7X = x7f)] = Z mgmrﬁr-
reR
So the conditional expectation of 1{Y" = y} given X, G, and the BISG probabilities p is linear in those probabil-

ities, with coefficients mg;,. Consequently, the OLS estimate ﬂg?;sf)w X (y | -, g, x) will be unbiased for m gy, by

the standard results.

Now, we can expand P(Y =y | R =) as
P(Y=y|R=r)= Y PY=y|R=rG=gX=0)P(G=g,X=x2|R=r)

x€X,geG
= D Mgyl
rEX ,g€§
Since ;lgflj)%g W | - g,2) is unbiased for Mgy, by the linearity of expectation the poststratified estimator
/lgf‘_zs) (y | r)isunbiased for P(Y =y | R=r). O
Theorem 3.3 (Necessary and Sufficient Condition for Equality of the Weighting and OLS Estimators). For any
y € VY, g € Gandx € X, within the set of individuals with G; = g and X; = x, we bhave that ,&gf}'té) (y |

)= ;l%%(y | ) if and only if for every pair j, k € R, either the BISG probabilities perfectly discriminate (i.e.,

P(R; = j | Gi, Xi, S;i) > 0impliesP(R; = k | Gy, X, S;) = Oﬂndvz'cevé’ma)orﬂ%t?(y | 4) = ﬂgf)'?(y | k).

Proof. Fixay € )V, g € Gandz € X. The weighting estimator of P(Y = y | R = r) within the set of
individuals with G; = g and X; = x may be written

Pl Yo = v} [Proie, ., (Y0 = 0]

DT
PI(rg)?“1

~ (wtd
M§/|tR)GX(y | T,g,fL‘) =

)

proip, ., (1)

the ratio of the projected length of the outcome vector 1{Y = y} and the constant vector 1 onto P.,.. We can
write the OLS estimator as

~(ols) /BT o 1T o o . _
p’y|R - (PI(mg)PI(mg)) 1]':)I(mg)]l{YvI(xg) = y} - COOI"dlg,I< (prOJPI(Im(]l{YI(mg) = y}),

zg)

where coordf,z( ) is the function that returns the coordinates of its input vector in the Pz, basis (by as-

g

sumption Pz(,4) has rank |R| and so its columns are linearly independent). To make the comparison even

easier, notice that we can break the projection projy into two steps, writing it instead as projp =
> p J p JPI zg)r p ? g p JPI(zg)r

projpz(mg)r o projp. Letting Y05 = projpz(zg) (1{Y z(zg) = y}), then, we can rewrite our estimators as

[proie.,,, (Yoros)|
A0 (1) = Pr(rg)r ‘ and I&g?;%(y | ) = coords

Y|R Pr(zg) (YprOj)r-

Jereie... (1
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Now, since the individual BISG probabilities are nonnegative and sum to 1, a pair j, k € R of races has per-
fectly dlscrmnnatmg BISG probabilities if and only if the correspondlng columns of P are orthogonal, i..,
PT( ) PI(xg) i = 1. Begin by writing Y ,rj in terms of the PI(zg) basis, so

Yproj = § :CJPI (z9)j

JER

and thus ugf‘ljz(y | j) = c;. Without loss of generality, suppose the ¢; are numbered asc; > c2 > -+ > ¢

We can also expand 1 in the same basis. Since the individual probabilities must sum to one, in fact we have 1 =
ZjeR PI(wg)j'

For the forward direction, we assume ﬂy‘g) (y|j)= ,ug(,)‘lj%(y | j) = ¢;; multiplying out the denominator of the

weighting estimator, we have P\ Y = chT 1 for all j; substituting the basis expansions of Y ;5 and 1,

(zg)j Z(xzg)j
this yields
pT » 5T - R R
Z CkPI(IQ)jPI(xg)k = Z CjPI(zg)jPI(a:g)k‘) SO Z( - Ck;)P I(zg)j PI(mg)k = 0.
kER kER kER

Now fixj € J; = arg max; ¢;; this relation still holds, but now every term in the sum is nonnegative and in

particular ¢; > ¢ forall K € Ji. Therefore we must have P}—(mg)jPI(zg)k = Oforall k ¢ J;. Then fix

J € J2 = argmax;g, ¢j; since lf’—Ir( PI(a:g)l = Oforalll € Jy, every term in the sum is still nonnegative

zg)J
and in particular ¢; > ¢y, forall k € J1 U J. Therefore we must have P;(xg) PI(xg)k: = 0forallk & J1 U Jo.
Proceedmg this way through all sets of common values in the ¢; we find that for all j, k£ € R, either ¢; = ¢ or

PJag)iPran = 0-

For the reverse direction, fix j € R andlet J = {k € R : ¢, = ¢}, so that by assumption Pz(xg)jP T(wg)k = 0
forall k£ € J. Then by the above basis expansion, u§,| })% ax W 1J) = c¢j,and
(wtd) D ker CkP;(zg)jPZ(xg)k i Y kes P;(mg)jPZ(xg)k (ols)

fiyg (Y | 3) = = = = =cj =@y | ). O
| ZkGR PI(a:g)jPI(xg)k’ zkEJ PI(xg)jPI(xg)k |

Theorem 3.4 (Nonparametric Identification Under Assumption A6). Let f : S — RY, d < |S|, with range
f(S). Foranygiveng € Gox € X,z € f(S), andy € Y, define a matrix P € RISKIRI with entries
psr =P(R=71|G =g, X = 2,8 = s)and avectorb € RIS with entriesby = P(Y =y | G =
9, X = x,8 = s). Then under Assumption A6, and assuming knowledge of the joint distribution P(R, G, X, S),
the conditional probabilities P(Y =y | R, f(S) = 2,G = g, X = x) areidentified if and only if both P and the
augmented matrix (P b) bhave rank |R|.

Proof. The argument is identical to the proof of Theorem 3.1.

Applying the law of total probability and our conditional independence relation S_IL Y | f(5), R, G, X, we have,
forally € YV,g € G,x € X,ands € S,

P(Y=y|G=gX=2,8=5)= S BY =y | R="r,f(S) = f(s),G = g, X =,5 = 5)
reR

xPR=r|G=9,X=2,5=5)
=Y P(Y =y|R=r,[(5) = f(5),G =g, X =x)

reR
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xPR=r|G=g,X=2,5=s5).

The left-hand side is estimable from the data and the rightmost tetm P(R = 7 | G = ¢, X = 2,5 = s)is
assumed known. So foreachy € Y,z € f(S),g € G,and z € X, this relation is a linear system in unknown
parameters P(Y = y | R = r, f(S) = 5,G = ¢, X = x). These parameters are identified if and only if
this system has a unique solution, i.e. if the coefficient matrix P has rank |R| and so does the augmented matrix

(P D). O

B Additional Small-area Accuracy Evaluation

We evaluate the small-area estimates with two additional measures. First, we calculate the root-mean-square error
(RMSE) of the estimated conditional probabilities by race within each geographic area, and then average this across
all geographic areas. This captures the overall accuracy of the estimates. Second, to measure how well each method
captures relative differences between geographic areas, we calculate the correlation between the estimated and true
conditional probabilities across all geographic areas by race. As in the main text, we remove area-race cells with
fewer than s voters. A set of estimates which uniformly underestimates the proportion of Black voters which are
registered Democrats, but which otherwise correctly orders geographic areas according to their proportion of Black
Democrats, will score high on the correlation measure but also higher in RMSE.

Figure Br summarizes our results, which closely track the findings of Section 4.4. The BIRDiE models are more
accurate at all geographic levels and for both Black and White voters. The weighting estimator performs the worst

of all the methods.

White (71.1%) Black (21.1%) White (71.1%) Black (21.1%)
[}
4 (0]
" 0.25 8 &
s £
=
L ® 0.9
] _ ()
S 0.20 H\x 2 Method
8 [0
S < ./-\. -e— BIRDIE (mixed)
iead E -5~ BIRDIE (sat)
h < 081 -
= J——" = - Threshold
& 0.104 z res
S S -= Weighting
) _—O ©
= 0,054 2 071
o]
O
0.00 T T T T T T T T T T : :
County ZIP Tract County ZIP Tract County ZIP Tract County  ZIP Tract
BISG geographic precision BISG geographic precision

Figure Br: Accuracy of small-area estimates by race, as measureed by root-mean-square error (RMSE;
lower is better) and the correlation between the estimates and ground truth (bigher is better).

C Sensitivity Analysis
C.1 Local sensitivity analysis

In this section, we develop a sensitivity analysis that assesses how the bias in BISG race probabilities affect the esti-
mates of racial disparities. In particular, we consider a setting where Assumptions A2 and A1 may be violated but
Assumption A4 still holds. For example, consider the existence of unobserved confounder that affects some or all of
the variables except the outcome, i.e., (R, S, G, X). Thisleads to the violation of Assumption A2, but Assumption
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A4 continues to be satisfied so long as such unobserved confounder does not affect the outcome. Unfortunately,
even inaccurate BISG predictions can still lead to biased estimates of racial disparities.

Specifically, if either the Census data are inaccurate, or the conditional independence relation does not hold S L
G, X | R, then the BISG predictions P will differ from the “true” individual race probabilities P* = P(R |
G, X, S). Our goal is to quantify how an error in these probabilities P* — P shifts the posterior and hence the
estimates of racial disparities.

Denote by 75 the posterior constructed using the error-corrected BISG race probabilities P; + 0; as the input
probabilities for the model (see Equation (3)), where mg+ is the true posterior with 8; = P} — P;. Estimating
how 7 and 75 differ in general is difficult, but we focus on the settings where 6 is small enough to make a linear
approximation appropriate. In sum, we aim to quantify how the small error in BISG probabilities can alter the
estimates of racial disparities.

For clarity, in this section we will use 8., x,v; to denote the model parameter or function thereof that represents
©(Y; | Ri = r, Gy, X;). This mirrors the notation of most of the specific models discussed in Section 3.2 above.
Then define the following perturbation weight, which represents the ratio of posterior based on the biased and
error-corrected BISG race probabilities:

N T *
0. vy «(O1]Y
(1 G, X, ,) ~ s (0]Y,G,X,S)

w(O,8%) = ! ’

Then, using a local linear approximation, we write the bias for a particular quantity of interest g(©) as

dEr,lg©)]|" . "
Erp.[9(0)] ~ Ealg(0)] = T XN 5 o))
I P
dlog w(©, 8 T .
= Cov, (g(0). LEUOD| ) e o)), ©
do 5—0

where the second equality is due to Theorem 2.1 of (Giordano et al., 2018; see also the idea of local sensitivity from
Gustafson, 1996).
With this representation, we can bound the total error in E [¢(©)] for sufficiently small § as the following theorem
shows.
Theorem C.x (Bias Bound). Define 0y, = % Then for any input probabilities with total ervor || 6*||* =

Sy 1671 < A%

|Er[9(0)] — Exlg(®)]] 5 A|[Cova(9(®), D) )

as A\ — 0.

Proof. This is immediate from (6) once we compute

N
dlogw(©,8)  d Zlog - 0.5, x.v,0i
do; doy i=1 OEiXiYiPi

0% xv.0;
_ 4 log (1 + 71'_G2X1Y’A )

1 % OTGz'XiYi

0% v 0 T D
14 et 0.g,xy P
0.c,x,v,Pi
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_ OTGiXiYi
ogixim(Pz‘ +8;)

and evaluate at § = 0, since the worst-case bias for a fixed total error can be obtained by having the maximum

allowable 6 point in the direction of the gradient of log w(©, d). O

The theorem shows that once researchers choose the amount of total error A, then the bound on the shift in
a quantity of interest can be computed readily from posterior draws. It is important to note that both §* and
Cov,(g(0), D) are vectors whose dimension depends on the sample size N. Thus, all else being equal, their norms
will each grow as v/N. However, each entry Cov, (g(©), ;) will tend to shrink as N increases, since each ob-
servation exerts less leverage on the overall posterior. Thus the overall impact of the sample size on the bound in
Equation (7) may depend on specific features of the data. In particular, and as should be expected, the error is
not guaranteed to vanish as N — o0. Practitioners should evaluate Equation (7) under a range of plausible A to
understand how robust their findings are to worst-case linear violations of Assumptions A2 and Al.

C.2 OLS sensitivity analysis

For a different understanding of the effect of a particular 9, we can derive a result on the error in conditional proba-
bility estimates under the OLS estimator and particular configurations of 8. Unlike Theorem C.1, this result holds
across all sizes of §, and not just asymptotically as ||d]] — 0. However, it applies to the OLS estimator, which,
while unbiased, we do not recommend in practice. Despite this difference, we expect many of the qualitative con-
clusions to hold for BIRDiE models. The effect of any particular § can of course be calculated directly by re-fitting
the model to new race probabilities.

Here, we will work with a fixed y € ) and among the subset of individuals with a particular g € Gandz € X.
Then for notational simplicity we let fi 1% be the vector of estimates of PY=y|RG=g,X =2x),and p
the corresponding true probabilities. Similarly, we write P for the matrix of individual race probability estimates
for the subset of individuals with g € G and x € X’; elsewhere in the text this would be notated ]?’Z(xg)

Proposition C.2 (OLS Bias from incorrect P) Let Assumption A4 bold. If the OLS estimator i ¥ is calculated
using race probabilities P which differ from the true probabilities P* = P + 8, then its bias satisfies

E[p®™] - p=(PTP)'PTop
Proof. We can write the OLS estimate as
'a(ols — (PTP) 1PT]1Y =y.

As shown in Theorem 3.2, under Assumption A4, P(Y =y | R = r,G = ¢, X = x) is linear in the true P*.
Thuslettinge =1Y =y —P(Y =y | R =r,G = g, X = x), we can substitute and find

uols) (f) P)_lf)T(P*[J,—i-e’f)

PTP)-1pT ((15 + )+ 5).

awh

Taking an expectation, since E[e] = 0 we find
B[] = (PTP)'PT (P + o)u)
= p+(PTP)T'PT(dp);
rearrangement yields the result. O

34



EsTiMATING RacIAL D1sPARITIES WHEN RACE 1s NOoT OBSERVED SEPTEMBER §, 2023

Informally, for BISG error § to cause problems with the OLS estimate, two things must happen. First, within
individuals it must be “correlated” (i.e., have nonzero inner product) with the true conditional probabilities p.
Since §; must always sum to zero, practically, this means that positive BISG errors must tend to occur in racial
groups which have a relatively high occurrence of outcome y: P(Y =y | R=r,G = ¢, X —z) > P(Y =
y | G = g,X — x). Second, the vector dpt (where each entry measures this “correlation” between errors and
relative frequencies) must be correlated the BISG probabilities themselves P. For example, if §;p is positive and
tends to be larger for individuals with a high BISG probability of being Hispanic, then the overall OLS estimator
the conditional probability of Y = y among Hispanics will be biased upwards.

While Proposition C.2 applies within a (G, X) cell, if the same conditions hold across all (G, X') combinations,
then the overall poststratified estimator will be similarly biased.

D Surname Groupings for North Carolina Robustness Analysis

We classify every surname in the voter file into one of nine groups, each containing surnames from one or more of 22
surname groups that we provide in the replication data and software. These groups are organized mainly around
different regions of the world and different waves of immigration to the United States. To create the surname
groups, each individual in the 1930 Census data was classified into one of the 22 groups. Then among the set of
individuals with each surname, the group with the highest number of individuals relative to the whole population
was assigned to that surname. For example, while most people named “Smith” fall into the Anglosphere group
(containing 3rd or more generation White U.S. residents as of 1930, as well as immigrants from the U.K., Canada,
Australia, etc.), there are relatively more Smiths among Black people than any other of the 22 groups. Thus “Smith”
is assigned to the Black surname group. The full code for creating the 22 surname groupings from the 1930 Census
data is available in the replication materials.

Because of the demographics of the United States, as well as limitations of the source data there is more geo-
graphic specificity in the surname groupings for some regions (e.g., Europe) than for others (e.g., South America
and Africa). We collapse the 22 surname groups to nine for the robustness analysis in Section 4 based on the de-
mographics of North Carolina specifically and to minimize the computational burden of performing the robust
analysis.

The so roughly most frequent surnames in each group, along with a brief description of the group, are listed below.
We stress that for the purposes of sensitivity analysis, the surname groups need only be correlated with countries of
origin and racial subgroups. Perfect alignment is neither possible nor necessary.

Anlglosphere and Black surname group. Surnames which are relatively more prevalent among 3rd-or-more
generation White U.S. residents and Black U.S. residents in 1930.

1. SMITH . LEWIS 21. HALL 31. COLLINS 41. COX
2. WILLIAMS 12. ROBINSON 22. CAMPBELL 32. STEWART 42. WARD
3. BROWN 3. WALKER 23. MITCHELL 33. MORRIS 43. RICHARDSON

4. JONES 14. ALLEN 24. CARTER 34. COOK 44. WATSON
5. DAVIS 15. WRIGHT 25. ROBERTS 35. ROGERS 45. BROOKS
6. TAYLOR 16. SCOTT 26. PHILLIPS 36. MORGAN 46. WOOD

7. MOORE r7. HILL 27. EVANS 37. COOPER  47.JAMES
8.JACKSON 18. GREEN 28. TURNER 38. BAILEY 48. BENNETT
9. WHITE 19. ADAMS 29. PARKER 39. REED 49. GRAY

10. CLARK 20. BAKER 30. EDWARDS  40. HOWARD so. HUGHES
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First wave European immigration surname group. Surnames associated with German, Nordic, and Irish

immigrants.
1. JOHNSON 1. BURNS 21. CARROLL 31. SCHULTZ 41. HIGGINS
2. ANDERSON  12. OLSON 22. RILEY 32. PEARSON 42. OCONNOR
3. NELSON 13. WAGNER 23. BURKE 33. BARRETT 43. QUINN
4. MURPHY 14. MEYER 24. LARSON  34. BECK 44. SWANSON
5. PETERSON 15. SCHMIDT 25. CARLSON 35. POWERS 4s5. FITZGERALD
6. KELLY 16. RYAN 26. OBRIEN 36. LEONARD 46. CHRISTENSEN
7. SULLIVAN 7. DUNN 27. LYNCH 37. BENSON 47. MANNING
8. MURRAY 18. KELLEY 28. HANSON  38. LYONS 48. MCLAUGHLIN
9. MCDONALD 19. HANSEN 29. WEBER 39. MCCARTHY 49. DOYLE

10. KENNEDY 20. CUNNINGHAM  30. WALSH 40. ERICKSON  50. BRADY

Second wave European immigration surname group. Surnames associated with Eastern European, Italian,
Jewish, Russian, Greek, and other Southern European immigrants.

1. FOX . ZIMMERMAN 21 KLINE 31. KATZ 41. NICHOLAS
2. NICHOLS 2. KLEIN 22. BERGER 32. MARINO 42. ROSENBERG
3. HOFFMAN 3. GROSS 23. STEIN 33. BRUNO 43. ROSSI

4. NEWMAN 14. GOODMAN 24. RAYMOND 34. MOSER 44. SINGER

s. SCHNEIDER 15. SHERMAN 25. FRIEDMAN 35. GOLDSTEIN 45. ABRAMS

6. KELLER 16. WOLF 26. LEVY 36. GOLDBERG 46. ACKERMAN
7. GREGORY 17. KRAMER 27. NOVAK 37. KAPLAN 47. HELLER

8. SCHWARTZ 18. NICHOLSON 28. KAUFMAN 38. KESSLER 48. STERN

9. COHEN 19. WEISS 29. LEVINE 39. ROMANO 49. SCHAFER

10. BECKER 20. RUSSO 30. LEHMAN 40. FINK so. SHAPIRO

East Asian surname group. Surnames associated with Chinese, Japanese, and Korean immigrants.

. LEE . BOWEN  21. HORNE 31. HAN 41. LIANG
2. YOUNG 1. LIU 22. XIONG  32. LAU 42. SUN

3. WONG 3. PAUL 23. LIM 33. MA 43. JUNG

4. WANG 14. CHAN 24. TANG 34. PUCKETT 44.ZHOU
5. PARK 15. TODD 25. CHO 35. CHIN 45. GEE

6. MAY 16. ZHANG 26. CHENG 36. GIL 46. ZHAO
7.JOSEPH 17. LANG 27. KANG 37. XU 47. SHIN

8. LOWE 18. YU 28. LAW 38. SONG 48. OHARA
9. CHANG 19. CHOI 29. CRAFT  39. KAY 49. ZHU

ro. LIN 20. MOON  30. NG 40.STROUD  s0. YEE
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South Asian surname group. Surnames associated with Indian and Southwest Asian immigrants.

1. WILSON

2. THOMAS

3. PATEL

4. STEVENS

5. WOODS

6. SHAW

7. FERGUSON
8. RAY

9. WILLIS

10. GEORGE

. CARR

2. SINGH
3. BISHOP
14. MANN
15. FRANCIS
16. GILL

17. YATES

18. MARSH
19. ROY

20. KAUR

21. DAVID 3. MOHAMED  41. SAMUEL

22. HOWE 32. BOGGS 42. SEWELL

23. HAHN 33. KUMAR 43. HASSAN

24. GOOD 34. WESTON 44. SADLER

25. JOHN 35. BEATTY 4s5. PINTO

26. OSBORN 36. SWAIN 46. MAJOR

27. ABRAHAM 37. GOMES 47. BARNHART
28. RODRIGUES 38.JACOB 48. CARMICHAEL
29. PEREIR A 39. TOLBERT 49. MUHAMMAD
30. SHARMA 40. PAYTON so. GUPTA

Southeast Asian and Pacific surname group. Surnames associated with Southeast Asian and Pacific Islander
immigrants, including Vietnamese and Filipino immigrants.

. MILLER . SILVA 21. HUANG

2. MARTIN 2. SANTOS  22. WU

3. KING 3. GREENE 23. ROWE
4.NGUYEN  14.LI 24. BAUTISTA
5. KIM 15. LE 25. HOUSTON
6. LONG 16. YANG 26. LAM

7. TRAN 17. LITTLE 27. HUYNH

8. CHEN 18. MORAN 28. HO

9. WEBB 19. PHAM 29. CHUNG
10. GORDON 20. RAMSEY 30. TRUONG

3. PHAN  41. HOANG

32. VO
33. VU
34. LU

42. CASH
43. BUI
44. CHU

35. NGO 4s5. SINCLAIR
36. TAN 46. SORIANO
37. HONG 47. ZHENG
38. DANG  48. LESLIE

39. DO
40. LY

49. ANGEL
so. DUONG

Non-Cuban Hispanic surname group. Surnames associated with Mexian and Latin American immigrants,
not including Cuban immigrants, and Puerto Rican residents.

. GARCIA

2. RODRIGUEZ
3. MARTINEZ

4. HERNANDEZ
5. LOPEZ

6. PEREZ

-. SANCHEZ

8. RAMIREZ

9. TORRES

10. FLORES

1. RIVERA 21. MENDOZA
2. GOMEZ 22. RUIZ

1. DIAZ 23. CASTILLO
14. CRUZ 24. GONZALES
15. REYES 25. VASQUEZ
16. MORALES 26. ROMERO
17. GUTIERREZ 27. MORENO
18. ORTIZ 28. HERRER A
19. RAMOS 29. MEDINA
20. CHAVEZ 30. AGUILAR
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31. CASTRO 41. ALVARADO
32. FERNANDEZ 42. DELGADO

33. VARGAS 43. PENA

34. GUZMAN 44. CONTRERAS
35. MENDEZ 45. SANDOVAL
36. MUNOZ 46. GUERRERO
37. SALAZAR 47. RIOS

38. GARZA 48. ESTRADA

39. SOTO 49. ORTEGA

40. VAZQUEZ so. NUNEZ
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Cuban surname group.

1. GONZALEZ
2. ALVAREZ

3. JIMENEZ

4. BOWMAN

5. DAVIDSON
6. ACOSTA

7. MOLINA

8. MIRANDA

9. CASTANEDA
10. BALL

“Other” surname group.

. SUAREZ
2. CONNER
3. SANTANA
14. DECKER
15. SKINNER
16. ABBOTT

18. PONCE
19. PALACIOS
20. SLOAN

21. CRANE
22. FRYE
23. PARRA
24. MAYO
25. DAVIES

26. BLANCO
17. GARRISON  27. WITT

28. CARRASCO

29. ALONSO

30. HAINES

Surnames associated with Cuban immigrants.

SEPTEMBER §, 2023

31. SARGENT 41. MARRERO

32. GORE 42. VALDES

33. ZIEGLER 43. OLIVA

34. TOMLINSON  44. MCCLENDON
35. LOWRY 4s5. QUEEN

36. PAGAN 46. MCCORD

37. LORD 47. CRESPO

38. CARBAJAL 48. CORNEJO

39. BETANCOURT 49. DUMAS

40. PATINO

so. BUENO

Surnames not associated with one of the other categories, including those associ-

ated with later Western European immigration, Middle Eastern & North African-associated surnames, Native-
associated surnames and Afro-Carribean-associated surnames.

1. PERRY

2. HENRY

3. HUNT

4. ROSE

s. PIERCE

6. PETERS

7. KNIGHT

8. RICHARDS
9. MORRISON
10. JACOBS

u. WELCH
2. DAY

1. STANLEY
14. HOPKINS
15. LAMBERT
16. NORRIS
17. WALTERS
18. STEELE
19. BUSH

20. WOLFE

21. SIMON

22. CUMMINGS

23. CHANDLE
24. SHARP

25. BARBER
26. GRIFFITH
27. PACHECO
28. CROSS

R

29. GOODWIN

30. MULLINS
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31. FRANCO

32. HAMMOND
33. CLARKE

34. WATERS

35. FRANK

36. ANDRADE
37. LLOYD

38. FRENCH

39. OWEN

40. CHARLES

41. MCKENZIE
42. BEIL

43. COCHRAN
44. NASH

45. BRYAN

46. MEYERS

47. CARSON

48. WILKINSON
49. ATKINSON
so. VINCENT
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