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How should workers in the on-demand economy be classified? As contractors, employees, or somewhere in

between? We study this policy question focusing primarily on the welfare of full-time workers, who have

worked as much as employees but have been treated as contractors. We develop a game-theoretic queueing

model with a service platform and two types of workers: full-timers who may choose gig jobs as primary

income sources and commit to high availability for the platform and part-timers who do gigs for supplemental

incomes and have only limited availability. We show that in the status quo of contractor mode, a company

would efficiently differentiate workers’ earnings in peak and off-peak periods to make full-timers commit

upfront (temporal incentive pooling). While part-timers serve as a useful capacity recourse on the spot, to

incentivize their participation the company may trade off the efficiency brought by the temporal incentive

pooling, yet this in turn can create full-timers a positive surplus. As such, when all gig workers are reclassified

as employees (according to, e.g., the California Assembly Bill No. 5) and part-timers exit the market, full-

timers can be undercut (underpaid or underhired) by the profit-maximizing company and end up with lower

welfare. When all are reclassified as “contractors+,” a UK practice that provides incomplete employee benefits

but allows workers to self-join, workers may overjoin such that full-timers’ utilization rate can remain low

and their welfare not effectively enhanced. In light of these issues, we consider a differentiated scheme that

classifies only full-timers as employees and treats part-timers as contractors. This hybrid mode still suffers

from undercutting but curbs overjoining; it may also do less harm to consumers and the platform operator

than uniform classifications. We also study a differentiated dispatch policy that prioritizes full-timers over

part-timers. We demonstrate the potential of this operational approach to counteract both undercutting and

overjoining. Finally, we calibrate the model and apply our insights to the ride-hailing market in California.

1. Introduction

Online platforms have created such disruptive impacts worldwide over the last decade. Perhaps

most notably, with their well-designed mobile apps and advanced information technology, platforms

like Uber completely revolutionize the way the labor force is organized (Tomassetti 2016). Workers

are now given the opportunity to decide by themselves where, when, and how long to work, and

1

http://www.ming.hu
mailto:ming.hu@rotman.utoronto.ca
mailto:zhoupeng.zhang@rotman.utoronto.ca
mailto:jf.wang@cityu.edu.hk


2

they can switch from one platform (e.g., Uber) to another (e.g., Lyft) for better pay at any time

rather than adhering to a nine-to-five schedule. Because of such flexibilities, platform companies

have long treated workers as independent contractors (contractors for short) instead of employees

(Katz 2015). The key issue with the contractor classification is, however, that workers will not be

entitled to employee benefits such as a minimum wage guarantee and unemployment insurance

(Radia 2019).1 While this might not be a big concern for part-time workers, who make up 52–66% of

the workforce and do “gigs” mostly to supplement the income from their full-time jobs, the adverse

impacts can be substantial for full-time workers, who take gig jobs as primary income sources and

have worked as much as full-time employees (Hall and Krueger 2018, Mishel 2018). It has been

reported that after deducting vehicle expenses and self-funded insurance and social security, U.S.

Uber drivers in 2018 earned on average $11.77 an hour, whereas the “average hourly compensation

of workers in the lowest-paid major occupation” is $14.99 (Mishel 2018). Evidence also shows that

gig companies depend on full-timers for a critical portion of their businesses (Parrott and Reich

2020). In other words, full-timers may have been largely exploited.

Regulators around the globe have been attempting to reclassify gig workers so as to enhance their

welfare. Some pieces of legislation, such as the California Assembly Bill No. 5 (AB5), have ruled

that workers on platforms like Uber must be treated as employees (Lazo 2019). Gig workers covered

by this legislation must be provided with complete employee benefits; in particular, they must be

compensated both when working (i.e., utilized) and when waiting for new “gigs” (i.e., idle),2 which

can dramatically increase labor costs and has thus aroused strong reactions from gig companies.3

Alternatively, the Supreme Court of the United Kingdom ruled that Uber drivers must be treated

as so-called contractors+, an intermediate status between contractors and employees, with which

Uber has complied (Schechner and Olson 2021). The ruling requires less workers’ compensation

than AB5: the company only needs to provide workers with some benefits, such as the minimum

wage and holiday pay, and need not compensate workers for their idle time.

The implications of these rulings, especially for the welfare of full-timers, have been unclear. In

the employee mode (EM), though workers will be compensated both when they are utilized and

when they are idle, companies are likely to tighten their control over workers (e.g., set regular

shifts and prohibit multihoming) in order to curtail labor costs and avoid unnecessarily paying for

1 The right to unionize is also critical; see, e.g., https://www.wsj.com/articles/uber-lyft-and-others-launch-campaign-to-
head-off-unions-11646733600.

2 Because workers are “engaged to wait.” See U.S. Department of Labor (2008).

3 Uber, Lyft, and DoorDash funded a ballot initiative campaign (Ballotpedia 2020) and eventually sought exemption from AB5.

https://www.wsj.com/articles/uber-lyft-and-others-launch-campaign-to-head-off-unions-11646733600
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workers’ idle time.4 In response, most part-timers, who treasure the flexibility to earn supplemental

income outside their full-time jobs, will likely quit the market. Yet how are market outcomes

affected by the presence of part-timers? Can full-timers as a whole be better off with complete

employee benefits on the one hand but stronger control assumed by gig companies on the other?

Then in the contractor+ mode (C+M), full-timers will receive fewer benefits than in the EM, but

at the same time, companies will also assume less control as workers need not be compensated for

idle time,5 and thus part-timers may again participate. Will full-timers be better off in the C+M?

To answer these questions, we consider the daily operations of an on-demand service platform,

which is modeled as a queueing network. There are two types of workers: full-time and part-time.

In the status quo, all workers are classified as contractors. In each time period during a day, workers

who participate on the platform will first wait in a virtual queue for consumer requests. Requests

randomly pop up and are assigned to workers on a first-come-first-serve (FCFS) basis or lost if

there is no worker available. Workers start to work (i.e., be en route or serve) as soon as they are

dispatched; after each service, they collect a piece-rate wage from the company and then rejoin the

virtual queue to be dispatched again, on and on until the next period has commenced.

Workers differ in their availabilities for the platform. Full-timers who commit to gig jobs as the

primary income source will be generally available, and they decide upfront whether to commit based

on the expected long-term utility on the platform. Part-timers, in contrast, are mostly occupied

by their primary jobs elsewhere and only have limited availability. In each time period, available

workers will participate if the average earning rate on the platform exceeds their opportunity costs.

Compensation Flexibility Workforce
Uniform Classifications

Contractor (CM) Piece-rate wage
√

Both Full- and Part-timers
Employee (EM) Hourly wage + benefits∗∗ × Only Full-timers
Contractor+ (C+M) Piece-rate wage + benefits∗

√
Both Full- and Part-timers

Differentiated Classification
Hybrid (HM) Full-timers: Hourly wage + benefits∗∗ × Both Full- and Part-timers

Pull-timers: Piece-rate wage
√

* Benefits will be provided only when fulfilling service requests.
** Benefits provided both when fulfilling and waiting for service requests.

Table 1 Worker Classifications in On-Demand Economy

To model the EM, we make the following changes: (i) the company will control the workforce

size and set work schedule; (ii) part-timers will quit the market, yet full-timers can still be enrolled;

and (iii) full-timers hired by the company will receive complete employee benefits. The model for

the C+M will be the same as the contractor mode (CM) except that a wage floor is in order so

that workers will receive prorated benefits when utilized. Table 1 summarizes the modeling details.

4
https://www.law.com/therecorder/2019/03/26/finding-a-third-path-in-bridging-the-employeecontractor-divide/.

5 In fact, Uber still gives drivers in the UK the flexibility to self-join the platform (Schechner and Olson 2021).

https://www.law.com/therecorder/2019/03/26/finding-a-third-path-in-bridging-the-employeecontractor-divide/
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We refer to the EM and C+M as uniform classifications because all workers are homogeneously

reclassified, despite the fact that full-timers need employee benefits more, while part-timers treasure

flexibility. Our primary focus is on full-timers’ welfare, measured by their expected surplus. For

completeness, we also consider the implications for part-timers, consumers, and the company.

As an overview, in the EM, if the lump-sum employee benefit is either low or high enough,

full-timers’ welfare can be lower than in the CM. We term this the undercutting issue. To intuit, in

the CM, the company would efficiently differentiate the earning rates over time (i.e., high earning

rate only in peak periods) to make full-timers commit to the platform upfront (temporal incentive

pooling). To further enroll part-timers, though, the company may offer even higher earning rates

throughout the day, leaving full-timers a positive surplus. Now in the EM, the company will

strictly control workers’ schedules and part-timers exit the market. Though full-timers hired by

the company will be compensated with complete benefits, when the lump-sum benefit is too low,

full-timers can be underpaid and become worse off than in the CM where part-timers generate

them a positive surplus. If, instead, the benefit is too high, the company will only hire a small

number of full-timers and lay off the rest. Full-timers’ welfare will again be lower than in the CM.

In the C+M, full-timers’ welfare may not be effectively enhanced either, and we term the issue

here overjoining. On the one hand, the piece-rate wages in the CM must be high enough to

incentivize both full- and part-timers who may have already overjoined; as a result, the wage floor

in the C+M may even be lower than current wages. On the other hand, when the wage floor does

result in higher wages, though, more full- and part-timers will be attracted to the platform and

cannibalize the time full-timers fulfill services and earn the increased wages. In fact, drivers in

the UK expressed concerns that the C+M “potentially increasing the amount of time many spend

searching for passengers and decreasing their overall pay even more” (Schechner and Olson 2021).

In light of these drawbacks of uniform classifications, we propose two differentiated schemes. We

first consider a hybrid classification in which full-timers are treated as employees while part-timers

are treated as contractors. We show that full-timers will earn as much as in the EM, which implies

that the hybrid mode (HM) still suffers from the undercutting in the EM, but curbs the overjoining

in the C+M. In addition, the HM will do less harm to consumers and the company than the EM;

in some cases, the HM can even make these stakeholders better off than the CM. Second, we take

an operational perspective and study the scheme that prioritizes full-timers over part-timers in

the virtual queue for requests. We demonstrate that this priority scheme could simultaneously

counteract undercutting and overjoining and also make other stakeholders better off than the CM.
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In summary, our work sheds light on the issue of worker classification in the on-demand economy.

We highlight that different types of gig workers have very different motivations and needs—full-

timers rely on gigs as their primary source of income and need employee benefits much, while

part-timers do “gigs” for supplemental income and value the flexibility of gig jobs more. We show

that uniform classifications will not always make full-timers better off than in the current contractor

mode. Differentiated schemes can help counteract issues with uniform classifications while also

moderating the negative impacts on other stakeholders. We provide insights into when and why full-

timers may (not) be better off being reclassified and, at the same time, offer regulatory prescriptions

for potentially more effective classification schemes in the on-demand economy.

2. Literature Review

The paper relates to the recent literature on enhancing the welfare of disadvantaged workers in the

gig economy. Hall et al. (2021) theoretically show that Uber drivers will not benefit from piece-rate

wage increases because their utilization rate will fall over time. Asadpour et al. (2020) show that

a company’s labor cost may grow unbounded if a wage regulation accounts for workers’ utilization

rate, and it can be necessary for the company to limit the workers’ flexibility in work schedules

in order to sustain its business. Benjaafar et al. (2022) find that the average labor welfare will

first increase and then decrease in the labor pool size. Yu et al. (2020) also study labor pool size

regulation, and they show that such regulation can strike a balance between gig workers’ earnings

and the interests of other stakeholders. Tang et al. (2021) investigate operational strategies that

increase the participation rate and welfare of safety-concerned female drivers. Nikzad (2020) finds

that workers will be better off when there are multiple competing platforms than when there is

only a single platform, while Benjaafar et al. (2020) find that workers who multihome on different

platforms can be hurt by the platform competition, as both platforms may pay low wages to prevent

their counterparts from freeriding the labor supply they have costly incentivized. Siddiq and Taylor

(2021) show that workers will be worse off as ride-hailing platforms use autonomous vehicles to

serve riders. Krishnan et al. (2022) show that letting workers opt into a priority dispatching mode

can both enhance workers’ welfare and increase a gig company’s profit. While some papers in this

stream (e.g., Asadpour et al. 2020) have touched on the classification issue, little research has

formally looked at whether gig workers can really be better off in classifications other than the

status quo of CM. The work closest to ours is Hagiu and Wright (2019). The authors consider the

interaction between a gig company and a single worker. We instead develop a framework with a

random inflow of heterogeneous workers and focus on the welfare of those disadvantaged full-timers.
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Our work also relates to the literature on platform operations with self-scheduling workers.

Researchers have studied the capacity management (e.g., Afeche et al. 2018, Gurvich et al. 2019),

pricing (e.g., Cachon et al. 2017, Taylor 2018, Banerjee and Johari 2019, Cachon et al. 2021),

matching (e.g., Chu et al. 2018, Castro et al. 2021, Daniels and Turcic 2021, Feng et al. 2021, Hu

and Zhou 2022), as well as synergies (Lian et al. 2021) and competition among companies (e.g.,

Bernstein et al. 2021). See Benjaafar and Hu (2020) and Hu (2021) for comprehensive reviews.

In particular, there has recently been an employees-vs.-contractors debate in this stream of

literature. Dong and Ibrahim (2020) develop a queueing model with employees as deterministic

servers but contractors as servers who only randomly show up in the system. The authors use

a fluid approximation to analyze when it is optimal for a gig company to hire only employees,

only contractors, or both types of workers. Lobel et al. (2022) study a similar question using a

newsvendor model. In their model, a monopoly faces multiple states of demand distributions; it will

decide the number of employees to hire or the wage to enroll contractors before a demand scenario

realizes. The authors show that compared to employees, contractors are a more flexible resource

as their labor supply can be controlled via the utilization rate. Furthermore, Chakravarty (2021)

and He and Goh (2021) examine how a company can ration market demand between employees

and contractors. All these papers have taken the worker classification as given and focus on a

company’s optimal operational policies. We instead attempt to approach the question of how gig

workers should be classified, with a primary interest in the welfare of full-timers.

While it is tempting to think of the full-timers in our work as the employees in the aforemen-

tioned papers, we shall note that this particular group of contractors function rather as “pseudo-

employees”: indeed, they may commit upfront to high availability for the company to deploy,

yet they also have the flexibility to self-schedule; this second aspect implies that the company

must provide sufficient participation incentives by carefully controlling full-timers’ utilization rates

on spot, similar to how part-time contractors are managed. We complement previous papers by

showing that a hybrid system of contractors (i.e., part-timers) and “pseudo-employees” (i.e., full-

timers) does not necessarily outperform a pure “pseudo-employees” system for the company. The

intuition is that maintaining part-timers’ participation incentives may compromise the company’s

capability of temporal incentive pooling, i.e., generating temporally differentiated earning rates to

make full-timers commit upfront. Nevertheless, we demonstrate that it is exactly via restricting

such a strategy of differentiating earning rates that part-timers make the company generate higher

earnings and, ergo, create a positive externality on their full-time counterparts.
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Methologically, this paper relates to the literature on queueing games (see Hassin and Haviv

2003 for a comprehensive survey). Naor (1969) and Edelson and Hilderbrand (1975) pioneered the

literature by studying monopoly pricing in an observable and unobservable queue, respectively. Our

paper essentially studies a multi-period version of Edelson and Hilderbrand (1975). We investigate

how a company shall motivate some agents to become frequent customers (i.e., full-timers) upfront

while also attracting other infrequent customers (i.e., part-timers) to patronize on the spot, and

how market outcomes hinge on interactions among the service operator and various customers.

Finally, the debate on worker classification is reminiscent of the classic Theory of Firm (Tomas-

setti 2016). See Appendix OA1 for a discussion of relevant work in this impactful school of thought.

3. Model & Equilibrium

Consider the daily operations of a service platform by a gig company. A day is segmented into

T periods, each spanning, e.g., 1 hour. Each period s is either a “peak” (h) or an “off-peak” (l)

period. We use the subscript t to denote the period type, and for conciseness by “period t” we

refer to “a period of type t”. Define βh ∈ (0,1) and βl ≡ 1−βh as the fraction of peak and off-peak

periods in a day, respectively. We model the worker-consumer matching and service processes using

a two-station Jackson network illustrated in Fig. 1. There are two types of workers available for the

platform, full-time and part-time, and the respective labor pool sizes are Mf and Ma.
6 Full-timers

are available during both peak and off-peak periods. Part-timers, in contrast, will be occupied by

their primary jobs elsewhere most of the time. We assume that any part-timer will be available

either only during peak or only during off-peak periods. Let γa,t and Ma,t = γa,tMa denote the

fraction and the pool size of part-timers available in some period t∈ {h, l}, respectively.

The way we model full- and part-timers’ availabilities is admittedly for smplicity; see Besbes

et al. (2022b) for a formal treatment of workers’ heterogeneity in availability during a day. Yet

we have captured parsimoniously that full-timers are more available than part-timers, and this is

consistent with the fact that a full-timer would work much more time than a part-timer (Mishel

2018). Also note that, in reality a part-timer may not be available for the platform during the same

period of time (e.g., peak periods) everyday consistently even for a week, while full-timers can stick

to a platform with high availabilities in the long term (e.g., two years; see Hall and Krueger 2018).

At the beginning of each period, available workers decide whether to join the platform, and we

will detail this decision below. Those who join will first enter and wait in the virtual queue for

6 We treat Mf and Ma as exogenous. According to Hall and Krueger (2018), full-timers tend to be younger people
and those who are currently searching for a “steady” full-time job (rather than already holding one).
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consumer requests. The time between any two consecutive requests is exponentially distributed

with mean 1/µt in period t. The demand rate is strictly higher in peak than in off-peak periods (i.e.,

µh > µl). Requests will be assigned to workers in an FCFS manner—that is, new requests will be

assigned to the worker waiting at the head of the virtual queue or, in the queueing nomenclature,

the “customer” that is “in service”—and lost if there is no worker available. Workers start services

immediately after getting a request, and service times are i.i.d. with mean 1/τ .7 After each service,

workers rejoin the virtual queue for new requests, on and on until the next period commences.

If still available by then, workers will decide whether to keep participating. For each service, the

company collects from consumers a revenue pt > 0. One may interpret pt as the expected price for

a service that hinges on the average service time, the market demand, etc. In reality, the price for

a service may vary according to its random duration. To keep the model parsimonious, we take pt

as fixed in the baseline, and assume the price is strictly higher in peak than in off-peak periods

(i.e., ph > pl). See Section 7.2.1 for an extension with endogenous service prices. Finally, workers

are rewarded either on a per-piece or an hourly basis, depending on how they are classified.

Figure 1 Platform as a Queueing Network

A few modeling details merit further clarification. First, we have abstracted away within-period

market fluctuations (e.g., heavy rain around 3:30 PM that stimulates the demand for Uber). See

Garg and Nazerzadeh (2022) for analysis on stochastic transitions between different market scenar-

ios in relatively short timeframes. Also, we have assumed that workers will stay for the whole time

period once they choose to participate, and within that period, they will always accept the gigs

the company dispatches them to. In practice, workers may, however, stop at any moment within a

period (see, e.g., Krishnan et al. 2022 for a model with workers’ random exits after each service)

and log in again later, and they may reject dispatches if more profitable gigs are anticipated (see,

e.g., Lian et al. 2021, Garg and Nazerzadeh 2022). Our model is yet generally consistent with the

recent structural econometric framework on gig workers’ self-scheduling (e.g., Chen et al. 2020a).

Below we will study market outcomes in three different classification schemes: the contractor

mode, the employee mode, and the contractor+ mode. We adopt the notion of subgame perfect

7 For simplicity, we normalize the service rates across different time periods to be homogeneous (i.e., 1/τh = 1/τl = 1/τ).



9

Nash equilibrium: workers’ participation decisions will be solved first, and then the company’s

profit will be maximized in light of workers’ best responses. We focus on the following outcome

measures: full-timers’ and part-timers’ welfare, the transaction volume, and the company’s profit;

for conciseness, we defer the analysis for part-timers to Section 7.1. Note that, in our queueing

setting, the transaction volume reflects the fill rate, i.e., the extent to which consumers’ requests

can be promptly fulfilled. We thus use the transaction volume as a measure of consumer welfare.

3.1. Contractor Mode

The contractor mode (CM) is arguably the status quo of the on-demand economy. In the CM, in

each period t, the company will pay workers a piece-rate wage wt for fulfilling a service without

guaranteeing that workers can earn the minimum wage or receive any employee benefit over time.

One shall think of wt as the expected wage for a service; in reality, the wage per service may also vary

according to its random duration. We first analyze workers’ joining decisions given w = (wh,wl).

Part-timers’ Strategy. Recall that part-timers are mostly occupied by their primary jobs and

are assumed to be available for the platform in only one of the total T periods. At the beginning

of each period, available part-timers will participate if the average earning rate rt for that period

exceeds their opportunity cost Ca, which measures how much a part-timer values his or her time

(e.g., the utility for staying with the family, the earning rate on a competing platform) and is

drawn from some distribution with CDF Ga(·).8 For ease of exposition, we will have Ga degenerate

to a fixed ca, a common approach in the ride-hailing literature (see, e.g., Cachon et al. 2017, Sec.

5, Lobel et al. 2022). We define the average earning rate rt as the ratio of the piece-rate wage wt

to the average time it takes to get and fulfill a service request, i.e., rt ≡wt/(Wt+1/τ), where Wt is

the average wait time for a request. We will characterize Wt after clarifying full-timers’ behaviors.

Following the convention in the queueing-game literature (see, e.g., Edelson and Hilderbrand

1975), in any period t, we will consider the mixed strategy equilibrium among part-timers, i.e., each

available part-timer will participate with some probability qa,t ∈ [0,1], which can also be regarded

as the fraction of part-timers that will choose to participate on the platform.

Full-timers’ Strategy. Full-timers are those who may consider choosing gig jobs as their primary

income source. To decide whether to make such a commitment, they compare the expected long-run

utility on the platform u with their outside option u0 in the labor market, which we assume is a

traditional nine-to-five full-time job9. Again we adopt the mixed strategy equilibrium. Let q ∈ [0,1]

8 For simplicity, we abstract away any fixed cost to start working and material expense for staying on the platform (e.g., fuel).

9 With a multi-platform setup, this outside option could be the expected long-run utility on another platform.
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denote the probability that any full-timer commits to the platform. For those 1− q of full-timers

who pick the outside option, we assume they will not participate later similarly as part-timers.

To characterize u and u0, note that a key reason for people to become full-time gig workers

is the flexibility in their work schedule. They can kickstart a shift should they expect a surge

in wage (e.g., during a peak period) or stop working (e.g., in an off-peak period) whenever they

find it not worthwhile continuing. To capture the value of such flexibility, we assume that in

any period t, just as part-timers, committed full-timers will participate if and only if the average

earning rate rt is higher than their opportunity cost Cf . We similarly let the CDF Gf (·) of Cf

degenerate to a fixed point cf , and consider the mixed strategy equilibrium among full-timers.

Let qf,t denote the probability with which committed full-timers participate. Then full-timers’

period-t payoff is qf,t(rt − cf )+, and we define the expected long-run utility on the platform as

u ≡ T
∑

t∈{h,l} βtqf,t(rt − cf )+.10 In contrast, those who choose the outside option have to follow

the schedule set by their employer. To capture the loss of flexibility, we specify the outside option

u0 ≡ T (r0 +b−cf ), where r0 and b are the average earning rate and the lump-sum employee benefit

from that outside job offer, respectively. For simplicity, we normalize b= 0. The functional form

r0− cf (instead of (r0− cf )+) inside u0 reflects the disutility of following a fixed work shift over a

day. We assume r0 > cf and that cf is different from part-timers’ opportunity cost ca (i.e., cf 6= ca).

To pin down full-timers’ commitment probability q, their as well as part-timers’ participation

probabilities qf,t and qa,t in period t ∈ {h, l}, it is necessary to specify the average wait time for a

service request Wt. Since participating workers will circulate on the platform for the entire time

period, our model is essentially a closed queueing network; equivalently, the virtual queue for

consumer requests (see Fig. 1) is a “finite-source” queue with workers’ arrival rate depending on

the difference between the total of participating workers and the number of workers in the service

process. The average wait time to be dispatched is essentially the average sojourn time in the

finite-source queue, which lacks a closed form amenable to analysis (Gross and Harris 1985). To

facilitate the analysis, we follow the literature (e.g., Cachon and Feldman 2011) and approximate

the virtual queue as an infinite-source queue so that Wt takes the form of the average sojourn time

for an M/M/1 queue. In particular, in any period t∈ {h, l}, with Mt ≡ q ·qf,t ·Mf +qa,tMa,t workers

on the platform, the average wait time Wt is 1/(µt− λt), where λt ≡ τMt. This approximation is

generally valid if the labor pool is sufficiently large and the service rate τ is much less than the

rate of service request µt, which roughly align with the reality during peak periods. See Section

7.2.2 for a robustness check with the exact closed queueing network analysis.

10 In reality, full-timers are likely to care more about payoffs in longer timeframes (e.g., a month). We essentially assume that
variations in daily payoffs are mild, and the long-run payoffs can thus be reduced to the expected daily utility u as defined.
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Note though the average wait time Wt, approximated or not, is increasing in the number of

workers participating on the platform. That is, as more workers come to do “gigs”, each of them

waits more to be dispatched; equivalently, their utilization rate becomes lower. As such, given the

same piece-rate wage wt, workers’ average earning rate rt will be lower as more of them participate.

Define Q≡ (q, qf,h, qf,l, qa,h, qa,l) as the outcome of worker participations and R≡ (rh, rl) as the

average earning rates given the piece-rate wages (wh,wl). We term the tuple (Q,R) a market equi-

librium. Lemma 1 shows that the company’s piece-rate wages admit a unique market equilibrium.

Lemma 1. Given any pair of piece-rate wages (wh,wl), there exists a unique (Q,R).

The Company’s Decision. As per Lemma 1, any wage pair (wh,wl) will induce unique transaction

volume λt(wh,wl) in period t∈ {h, l}. The company’s profit maximization problem is then

max
wh,wl

Π = T
∑
t∈{h,l}

βt(pt−wt)λt(wh,wl). (1)

Note again that for now, we will abstract away the company’s optimization over the service price

pt since we have fixed the demand rates µt and the prices pt to keep the model parsimonious.

Denote by w∗ = (w∗h ,w
∗
l ) the optimal piece-rate wages to (1), by r∗ = (r∗h , r

∗
l ) the corresponding

average earning rates in the peak and off-peak periods, and by u∗ the expected long-run utility

for committed full-timers, respectively. Also denote by Q∗ the equilibrium participation outcome

among full- and part-timers, and by S∗ full-timers’ welfare. We define S∗ as the expected surplus

among full-timers who commit to the platform, i.e.,

S∗ ≡ q∗Mf (u∗−u0) = q∗Mf (T
∑
t∈{h,l}

βtq
∗
f,t(r

∗
t − cf )+−u0).

Further denote by λ∗ the transaction volume and by Π∗ the company’s profit in equilibrium. We

will study the CM equilibrium by comparing the market outcomes with and without part-timers

to see how they affect the company’s operations and, thus, full-timers’ welfare. Our analysis here

complements Cachon et al. (2017) by shedding light on the role of part-time service providers who

would not consider joining the platform in the long run but may only participate in the short term.

As we will show in Section 4, part-timers indeed form a driving force behind market outcomes in

different classification schemes.

Proposition 1 (CM Equilibrium). Let S∗fo, λ
∗
fo and Π∗fo denote full-timers’ welfare, the

transaction volume and the company’s profit in the full-timer-only CM equilibrium. We have:

(i) For full-timers, S∗ ≥ S∗fo = 0.There exist M , c and c such that if full-timers’ labor pool Mf ≤

M and part-timers’ opportunity cost ca ∈ (c, c), we have S∗ > 0.
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(ii) For consumers, there exists c′ such that if ca ≥ c′, λ∗ ≥ λ∗fo. (iii) For the company, there exist

c′′, c′′, and c′′′ such that (a) if ca ≥ c′′′, Π∗ ≥Π∗fo and (b) if ca ∈ (c′′, c′′), Π∗ ≤Π∗fo.

Proposition 1(i) says full-timers’ welfare is higher in the CM equilibrium with part-timers than

without. In particular, their welfare will be strictly higher (i.e., S∗ > S∗fo = 0) if their population

is sufficiently low (i.e., Mf ≤ M) while part-timers’ opportunity cost is moderately high (i.e.,

ca ∈ (c, c)). In other words, part-timers create a positive externality on full-timers.

To intuit, recall that full-timers will commit to the platform if the expected utility u is (weakly)

higher than the outside option u0 (i.e., u≥ u0). In the full-timer-only CM, clearly, the company

will choose piece-rate wages w that are just enough to meet this incentive constraint (i.e., u= u0)

since even a strictly positive surplus at best attracts all full-timers available from the labor pool.

More importantly, rather than meet the incentive constraint u= u0 with wages w that generate

constant earning rates over time (i.e., rh = rl), the company can set intertemporally differentiated

earning rates.11,12 Indeed since the market demand is higher in peak than in off-peak periods,

it is most efficient for the company to offer a high (low) earning rate in peak (off-peak) periods

(i.e., rh > rl). We refer to this operational apparatus as the temporal incentive pooling. On the one

hand, the high demand in peak periods generally ensures workers a higher utilization rate than

in off-peak periods, and it is thus much easier for the company to generate the high earning rate

rh using a piece-rate wage in peak periods than in off-peak periods. On the other hand, since the

off-peak market may not need all committed full-timers to serve, offering the low earning rate rl in

off-peak periods has the extra advantage of effectively moderating full-timers’ participation rate.13

Now, in the market with part-timers, when full-timers’ population is relatively small (i.e., Mf ≤

M), the company will also enroll part-timers to better serve the market, either in peak periods

when the demand is surging or throughout the day. When their opportunity cost is sufficiently

high (i.e., ca > c), even the high earning rate rh under the temporal incentive pooling strategy

fails to provide part-timers with enough incentives. As such, the company must pay higher piece-

rate wages to generate higher earning rates than under the pooling strategy (i.e., r′t > rt for some

11 In fact, a common wisdom among full-time gig workers is to seize the “ultra” earning opportunities in peak hours; see, e.g.,
https://therideshareguy.com/everything-i-wish-i-knew-before-becoming-a-full-time-uber-and-lyft-driver/.

12 When full-timers have heterogeneous outside options in the labor market, the company is expected to use the temporal
incentive pooling to target the marginal full-timer whose outside option u0 equals the platform utility u and who thus ends up
with no surplus. Inframarginal full-timers whose outside option u0 <u will have a positive surplus.

13 In reality platforms may sometimes fix the “payout ratio” (i.e., wt/pt = ξ for some constant ξ for all t). This certainly limits
the temporal incentive pooling, since the company may need to raise wages in some periods to align with the payout ratio in
other periods. Yet higher wages also bring in more workers, and the earning rates in those periods will not necessarily increase.
As such, full-timers may again end up with a meager surplus (i.e., u = u0); that is, the company may still do the temporal
incentive pooling under the fixed payout ratio.

https://therideshareguy.com/everything-i-wish-i-knew-before-becoming-a-full-time-uber-and-lyft-driver/
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t∈ {h, l}), which in turn leaves full-timers a positive surplus (i.e., u′ >u0). This result complements

the literature (e.g., Benjaafar et al. 2022) with a fresh insight into the relation between the labor

pool size and welfare. We show that those who commit to high availability (i.e., full-timers) will be

better off if those with limited availability (i.e., part-timers) participate (i.e., labor pool expansion).

While we have seen through Proposition 1(i) that part-timers’ presence is a boon for full-timers,

Proposition 1(iii) implies it could be a bane for the company: it says the company’s optimal profit

can actually be lower with part-timers than without (i.e., Π∗ ≤Π∗fo), and this happens when part-

timers’ opportunity cost ca is in an intermediate range (i.e., (c′′, c′′)). To understand this result,

when the cost ca is either very low (i.e., ca ≤ c′′) or very high (i.e., ca ≥ c′′), part-timers have a

sharp cost advantage or disadvantage over full-timers; the company can then make more profit than

without their presence by either having them or full-timers play the major role in the workforce.

When ca is in the intermediate range, neither worker group has much cost advantage over the

other. However, part-timers’ participation can make it more costly for the company to engage

full-timers to commit upfront. The intuition is that, according to the temporal incentive pooling

strategy, the company offers a high earning rate rh in peak periods. Because part-timers’ oppor-

tunity cost ca is not very high (i.e., ca < c′′), the earning rate rh will attract many part-timers

to participate, which lowers workers’ utilization rates and thus lowers the earning rate to some

r′′h < rh. But then full-timers’ expected utility drops to u′′ < u0, and to keep full-timers engaged,

the company must raise the off-peak earning rate to some r′′l > rl. Yet as our earlier discussion

implies, the “repooled” earning schedule (r′′h , r
′′
l ) will be less efficient than (rh, rl); in other words,

part-timers restrict the company’s capability of temporal incentive pooling to retain full-timers.

3.2. Employee Mode

We make the following assumptions on the company’s operations in the EM.

First, we assume that the company will perform admission control of workers and set a fixed

work schedule. This follows the high-level assumption that gig companies in the EM will impose

strict workplace rules rather than give workers the same flexibility as in the CM. The purpose is to

keep the utilization rate of workers at a reasonable level and avoid paying for workers’ unprofitable

activities. As one supporting example, Hermet, a UK delivery company, required drivers to follow

pre-designed routes and schedules after it started to treat drivers like employees.14 We also assume

that every hired worker will serve both in peak and off-peak periods. Many relevant papers have

adopted essentially the same assumption (e.g., Milner and Pinker 2001, Dong and Ibrahim 2020),

14
https://www.hrmagazine.co.uk/content/features/uber-drivers-are-now-employees-but-is-it-a-victory-for-

workers-rights.

https://www.hrmagazine.co.uk/content/features/uber-drivers-are-now-employees-but-is-it-a-victory-for-workers-rights
https://www.hrmagazine.co.uk/content/features/uber-drivers-are-now-employees-but-is-it-a-victory-for-workers-rights
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implying that it founds a proper benchmark to compare the other classification schemes with. See

Appendix OA3.4 for our discussions on the dynamic scheduling in the EM.

We next assume that part-timers will quit the market while full-timers will still consider joining

the platform. Since full-timers already work as much as full-time employees, they may not mind

trading off some flexibility for more benefits (Sonnemaker 2020). For part-timers, there is abundant

evidence showing that they treasure the flexibility to earn supplemental income outside their full-

time jobs. A delivery company for cannabis dispensaries in the United States reported that half the

drivers left after they were reclassified as employees in 2018, mostly because they did not like the

idea of becoming employees or having to work regular shifts.15 Researchers have also empirically

investigated the negative impacts of reduced schedule flexibility on part-timers’ welfare (see the

discussion in, e.g., Chen et al. 2019, Yu et al. 2022). We do acknowledge that there might be some

part-timers staying on the platform as part-time employees and that some full-timers who highly

value the flexibility might quit as well. Our key insights shall extend to those situations.16

Finally, we assume that for every time unit, whether a worker is waiting for a service request

or fulfilling one, the company will pay (i) an hourly wage r, and (ii) a lump-sum benefit B ≥ 0

that includes any other employee benefit such as unemployment insurance. We assume that the

company can decide r but will take B as fixed. One can think of B as a government mandate level

or the average industry level of employee benefits. In addition, we assume that full-timers’ outside

earning rate r0 is close to the social minimum wage, and the company must set r≥ r0.

It is worthwhile to mention that New York City (NYC) has imposed an earning rate floor

in the local ride-hailing market since 2018 (Asadpour et al. 2020). The employee reclassification

nevertheless differs from the NYC regulation in several critical aspects. First, the NYC regulation

measures workers’ utilizations only every other six months, yet in the EM, companies must record

the working hours on a real-time basis17 and compensate workers even on days when the market

tumbles. Second, the amount of employee benefits the NYC includes in the earning rate floor is

much lower than the complete benefit level in the US service industry in general.18 Finally, as

employers, companies can exert far more control over workers than they could in NYC. Putting

together, the EM is expected to create more profound impacts than the NYC regulation.

15
https://www.theatlantic.com/technology/archive/2018/09/gig-economy-independent-contractors/570307/.

16 One can think of the EM with dynamic scheduling that we study in Appendix OA3.4 as an approximation to such situations.

17 See https://www.dol.gov/agencies/whd/fact-sheets/21-flsa-recordkeeping.

18 In 2018, the amount of benefits mandated by the NYC is $2.22/hour (Asadpour et al. 2020). The national average complete
benefit in the service sector is over $3.9/hour; in the transportation service sector, it is even over $9.6/hour (Table 9 in
https://www.bls.gov/web/ecec/ececqrtn.pdf). Workers’ union right in the EM aggravates companies’ overheads even further.

https://www.theatlantic.com/technology/archive/2018/09/gig-economy-independent-contractors/570307/
https://www.dol.gov/agencies/whd/fact-sheets/21-flsa-recordkeeping
https://www.bls.gov/web/ecec/ececqrtn.pdf
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Full-timers’ Strategy. Given our assumptions, the expected long-run utility from becoming an

employee on the platform is uE = T ((r+B)− cf ), where r+B is the benefit-inclusive earning rate

guaranteed by the company and cf reflects the disutility of following the company’s schedule. Since

their labor market outside option u0 = T (r0− cf ), full-timers would like to be hired for any r≥ r0.

The Company’s Decision. Since all full-timers would like to be hired for any r≥ r0, it is optimal

for the company to set r∗ = r0. The company then only needs to decide the most profitable size of

the workforce. Define rB ≡ r0 +B as the average earning rate for an employee, and λf =Mfτ as

the gross size of the full-time workforce. The platform’s profit maximization problem in the EM is

max
λE≤λf

ΠE ≡ T
∑
t∈{h,l}

βt(pt− rB(
1

µt−λE
+

1

τ
))λE. (2)

Denote by λ∗E the optimal workforce size, which also measures the transaction volume. Also,

denote by S∗E full-timers’ welfare and Π∗E the company’s profit in the EM equilibrium. We define

S∗E ≡ q∗EMf (u∗E − u0) = q∗EMf ·TB, where q∗E = λ∗E/λf . Part-timers’ welfare, in this case, is S̃∗E = 0

as we assume they quit the market altogether. The EM equilibrium is characterized as follows.

Proposition 2 (EM Equilibrium). In the equilibrium of the employee mode, we have

(i) There exists BE such that S∗E increases in B on [0,BE] but decreases in B for B ≥BE.

(ii) The transaction volume λ∗E and the company’s profit Π∗E both decrease in B.

Proposition 2 says full-timers’ welfare S∗E in the EM will first increase and then decrease in the

lump-sum benefit B, while both the transaction volume and the company’s profit will decrease in

B. The properties of λ∗E and Π∗E are intuitive: as B increases, the company’s labor cost increases

so that fewer full-timers will be hired and less profit can be made by the company. For full-timers,

as B increases, some of them will be laid off and lose B, while those who are still employed will be

provided with a higher B. When B is low, the company hires a large number of full-timers, and

the fraction of layoffs is relatively low. Therefore, as B marginally increases, the loss of the layoffs

is less than the gain of the hires, and full-timers’ welfare increases. When B is sufficiently high,

not many full-timers are still hired, and the fraction of layoffs becomes relatively large. As a result,

the loss of the layoffs dominates the gain of the hires, and full-timers’ welfare decreases in B.

3.3. Contractor+ Mode

The UK contractor+ mode (C+M) is an intermediate classification between CM and EM: companies

will provide workers with some employee benefits but not treat them exactly as employees (GOVUK

2021), while gig workers will have flexibility as contractors. In the case of Uber, the company

guarantees that drivers earn the minimum wage and holiday pay, but only for the time they are
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fulfilling service requests; drivers can still set their own work schedules. Such flexibility implies

that part-timers may again participate in the market. As such, C+M is different from CM mainly

in the sense that the piece-rate wages must be higher than rB/τ so that workers receive prorated

employee benefits at least when they are fulfilling services. The company’s problem thus becomes

max
wt≥rB/τ

Π = T
∑
t∈{h,l}

βt(pt−wt)λt(wh,wl). (3)

Denote by S∗+ full-timers’ welfare, λ∗+ the transaction volume and Π∗+ the company’s profit in

equilibrium. To study the C+M equilibrium, it is useful to take CM as a benchmark. In the next

section, we will compare C+M with CM to understand its impacts.

4. Implications of Uniform Classifications

In this section, we aim to understand how market outcomes, especially full-timers’ welfare, will be

affected if all gig workers are reclassified either as employees or as contractors+.

4.1. Issues with Uniform Classifications: Undercutting & Overjoining

We first examine whether full-timers will always be better off as employees rather than as contrac-

tors. Combining Propositions 1(i) and 2, the following theorem summarizes our findings.

Theorem 1 (EM vs. CM for full-timers). Comparing full-timers’ welfare S∗E in the EM

and S∗ in the CM, we have: (i) When S∗ = 0, S∗E ≥ S∗. (ii) When S∗ > 0, there exist B,B such

that S∗E ≤ S∗ if and only if B ≤B or B ≥B.

Theorem 1(i) shows that, if in the CM full-timers end up with a trivial surplus (i.e., S∗ = 0, which

happens if, e.g., only very few part-timers participate in the CM as Proposition 1 implies), they

will indeed be better off as employees than as contractors (i.e., S∗E ≥ S∗). However, if full-timers

in the CM already obtain a positive surplus, Theorem 1(ii) warns that they will be worse off as

employees (i.e., S∗E ≤ S∗) if the lump-sum benefit is sufficiently low or high.

We term the issue in the EM undercutting. Recall that in the CM, part-timers’ participation

limits the company’s capability of temporal incentive pooling and thus creates a positive externality

on full-timers (Proposition 1(i)). Now in the EM, the profit-maximizing company strictly controls

workers’ schedules; part-timers quit the market due to the loss of flexibility, and so vanishes the

positive externality on full-timers. Given that the company compensates each full-timer hired as an

employee at the flat rate rB, if the lump-sum benefit B is too low (i.e., B ≤B), full-timers will be

underpaid and clearly not better off than in the CM. If B is sufficiently high (i.e., B ≥B), we have

discussed in Proposition 2 that many full-timers will be laid off by the company (underhiring), and
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their losses of the benefit B will render the full-timers’ overall welfare once again lower than in the

CM. We illustrate the negative impacts of underpaying and underhiring in Fig. 2(a).

Note, though, Benjaafar et al. (2022) show that gig workers will always be better off if regulators

impose a floor for their average earning rates on the platform. Their finding, however, hinges on

the assumption that workers are still allowed to join the platform freely. Our work instead stresses

that the company can strictly control workers after regulators reclassify them as employees, and

full-timers can be undercut by this fundamental change in the company’s operations.

Hagiu and Wright (2019) find a similar issue in the EM. However, their work and ours differ

on why a gig worker may earn more as a contractor. In Hagiu and Wright (2019), the company

delegates the operation to and shares the final revenue with a contractor. In some cases, the

contractor will choose the action that not only maximizes the company’s profit but also leaves

himself a surplus. We show instead that a full-time contractor can have a surplus thanks to the

high earnings driven by part-time contractors’ participation. Indeed, as we show in Proposition

1(i), without part-timers, a fill-timer will never receive a utility higher than their outside option,

even if the company has delegated to him the pivotal decisions of when to participate.

Our results suggest that regulators should exercise caution on employee reclassification because

whether full-timers will be better off hinges on their income levels as contractors. Researchers have

not settled on how much gig workers earn currently. Using data from Uber, Hall and Krueger (2018)

find that in a U.S. city such as San Francisco, after adjusting for expenses, an Uber driver’s hourly

income is higher than that of an employee taxi driver. In contrast, based on an online survey of

1,121 Uber and Lyft drivers in the U.S., Zoepf et al. (2018) find that 74% of drivers earn less than

the minimum wage, and some of them even lose money after accounting for vehicle expenses. As

such, it is imperative for regulators first accurately to measure full-timers’ incomes as contractors.

(a) EM: undercutting (b) C+M: overjoining

Figure 2 Issues of Uniform Classifications
Note. βh = 0.2,Mf = 2,Ma = 34, γa,h = 0.8, µh = 40, µl = 25, τ = 2, ph = 45, pl = 18, r0 = 9, cf = 8, ca = 16.

We now turn to the implications of C+M.
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Theorem 2 (C+M vs. CM for full-timers). Comparing full-timers’ welfare S∗+ in the

C+M and S∗ in the CM, there exist B+,B+ such that if B ≥B+, we have S∗+ ≤ S∗. For B ≤B+, we

have S∗+ ≥ S∗ and (i) If B ≤B0
+ ≡mint∈{h,l} τw

∗
t − r0, we have S∗+ = S∗. (ii) If the labor pool size of

full-timers Mf ≥M+ for some M+, we have S∗+ = S∗ = 0. (iii) When S∗ > 0, we have (S∗+−S∗)/S∗

decreases in part-timers’ labor pool size Ma.

Recall that the C+M implements a wage floor rB/τ to ensure that workers received prorated

employee benefits for the time they fulfill services. According to Theorem 2, this wage floor can

backfire and hurt full-timers if the benefit B is sufficiently high (i.e., B ≥ B+). The intuition is

that the wage floor can be so high that the platform has to shut down in many periods over a day.

When B is at a moderate level (i.e., B ≤B+), Theorem 2(i) says when the lump-sum benefit is

too low (i.e., B ≤B0
+), the wage floor in the C+M will not even enforce at the equilibrium piece-

rate wages in the CM (i.e., rB/τ ≤mint∈{h,l}w
∗
t ), and thus full-timers will certainly not be strictly

better off than in the CM. Theorem 2(ii) says full-timers’ welfare will never be enhanced should

their labor pool size be sufficiently large. Furthermore, Theorem 2(iii) implies that the increase in

full-timers’ welfare will taper off in markets where there are potentially many part-timers.

We term the inefficiency here workers’ overjoining, which is due to their flexibility to self-schedule

both in the CM and C+M. First, Theorem 2(i) pertains to workers’ overjoining in the CM: the

more workers joining, the longer the wait times and thus the higher the piece-rate wage w∗t in the

CM to incentivize workers. As such, unless the benefit B is sufficiently high, the wage floor rB/τ

will be too low to enforce and improve full-timers’ welfare. This result complements Benjaafar et al.

(2022) assume that the wage floor will always enforce in a similar setting.

Theorem 2 parts(ii) and (iii) are driven by workers’ overjoining in the C+M. Though workers are

not overjoining until their own welfare becomes worse off than in the CM, their behaviors certainly

slow down the process of enhancing full-timers’ welfare. For Theorem 2(ii), because full-timers’

labor pool size is sufficiently large (i.e., Mf ≥M+), the average wait time for a request will be too

long (and thus the earning rates too low) if all of them join the platform. Hence, some full-timers

will never commit nor participate, and the expected long-run utility on the platform u must equal

their outside option u0. In the C+M, at first, the wage floor raises the piece-rate wages, the earning

rates, and thus the platform utility u. This attracts full-timers on the outside to the platform,

ignoring that their participation will increase the average wait time and thus lower the utilization

rate for all workers. In fact, new full-timers will keep joining until the expected utility u falls back

to u0. Hence, full-timers will end up with no surplus for any B (i.e., S∗+ = S∗ = 0).
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Finally, Theorem 2(iii) is related to part-timers’ overjoining. At first, when the labor pool size

Ma is sufficiently low, not many of those who are occupied by their primary jobs elsewhere will be

available at any time during the day, and as a result, the market will be mostly served—and thus

the prorated benefits in the C+M will be mostly harvested—by full-timers. As Ma increases, more

people are available on a part-time basis; as they enter the market, the relative amount of time

full-timers fulfill service requests and earn the benefits is cannibalized. Hence, full-timers’ welfare

will increase on a much smaller scale than when there are fewer part-timers in the labor pool. We

illustrate the inefficiencies associated with workers’ overjoining in Fig. 2(b).

4.2. Implications for Consumers and the Company

We now briefly discuss how consumers and the company will be affected when gig workers are

reclassified as employees or contractors+. In the on-demand service setting, consumers’ welfare

hinges on two factors: the price and the fill rate. Intuitively, in uniform classifications, service prices

will rise as gig companies’ labor costs increase and thus hurt consumers. Given that, we will focus

here on the fill rate measured by the daily average transaction volume λ≡ T
∑

t∈{h,l} βtλt.

Theorem 3 (Implications for Consumers). For the transaction volume λ∗E in the EM, λ∗+

in the C+M, and λ∗ in the CM, we have (i) For B+ in Theorem 2 and some B′+ ≤B+, we have

λ∗+ ≤ λ∗ if B ≥B+ and λ∗+ ≥ λ∗ if B ∈ [B′+,B+]. (ii) There exists B′ such that λ∗E ≤ λ∗ iff B ≥B′.

Theorem 3 says compared with the CM, consumers can be worse off both in the EM and the

C+M when the lump-sum benefit B is sufficiently high. In the EM this is consistent with the

undercutting issue: given that part-timers will quit the market due to the loss of flexibility and

the company will underhire full-timers when the benefit B is sufficiently high, the fill rate will

naturally be lower than in the CM. In the C+M this is because the platform has to shut down in

many periods due to the high wage floor rB/τ , as we have discussed in Theorem 2.

When B is in an intermediate range (i.e., B ∈ [B′+,B+]), consumers can become better off in

the C+M than in the CM. This result aligns with the overjoining issue we have identified: as the

wage floor rB/τ raise the piece-rate wages the company will pay, more full- and part-timers will

be attracted to the platform and fulfill consumer requests than in the CM.

Theorem 4 (Implications for the Company). Comparing the company’s profit Π∗E in the

EM, Π∗+ in the C+M, and Π∗ in the CM, we have Π∗ ≥Π∗+ and Π∗ ≥Π∗E. In addition, there exist

B′ and B
′

such that if B ≤B′ or B ≥B′, we have Π∗+ ≥Π∗E.
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Theorem 4 shows that the company will end up with the highest profit in a free market (i.e.,

CM). That the company’s profit will be higher in the CM than in the C+M (i.e., Π∗ ≥ Π∗+) is

straightforward, as the wage floor rB/τ in the C+M shrinks the set of feasible piece-rate wages.

To see why the company will make more profit in the CM than in the EM (i.e., Π∗ ≥Π∗E), on

the one hand, unlike in the EM where only full-timers can be employed, in the CM, the company

can enroll both full- and part-timers in a nimble fashion: it can make full-timers commit upfront as

the base capacity, complement the base with part-timers in peak periods and shrink the base via

a low earning in off-peak periods, or it can also “hybridize” the workforce all day long. One way

or another, the company in the CM can scale the service capacity up to the level that is at least

as efficient as in the EM in any period; we term this dynamic capacity configuration.19

On the other hand, while in the EM the company has to constantly guarantee minimum earnings

and employee benefits, in the CM it can incentivize full-timers with temporally differentiated

earning rates: it would offer a high earning rate in peak periods—the market demand and thus

the service price are higher than in off-peak periods anyway—but provide a relatively low earning

rate in off-peak time. Importantly, contingent on whether part-timers are enrolled, the company

can fine-tune an earning rate schedule to both make full-timers commit upfront and incentivize

part-timers on the spot, if at all. As we did in Section 3, we coin this the temporal incentive pooling.

Finally, to understand that the company will make more profit in the C+M than in the EM for

either sufficient low (B ≤B′) or high (B ≥B′) lump-sum benefit, when B is sufficiently low, the

wage floor in the C+M will not enforce, and therefore the company will make the same amount of

profit as in the CM. When the benefit B becomes sufficiently high, since the company only has to

afford workers’ prorated employee benefits in the C+M but is required to provide complete benefits

in the EM, the adverse impact of the mounting labor cost is more substantial in the EM. Whether

the C+M will still ensure the company such a profit advantage over the EM for intermediate B

(i.e., B ∈ [B′,B
′
]), however, is unclear: on the one hand, the negative impact of extra labor cost

in the EM is not that significant; on the other hand, the wage floor rB/τ in the C+M impedes

the company’s capability of temporal incentive pooling, i.e., the company is no longer able to

strategically differentiate the earning rates in different time periods as much as it could in the CM.

To conclude, we have investigated the potential drawback of current regulations. Neither the EM

nor the C+M will always enhance full-timers’ welfare, let alone other stakeholders’ interests can

be compromised. Note, though, the uniform classifications essentially require that all workers be

19 The caveat is, of course, that in the EM, the company can also adjust the service capacities (e.g., hiring extra part-time
employees in peak periods) throughout the day. See Appendix OA3.4 for an extension with the dynamic scheduling in the EM.
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provided with some employee benefits. The company could have saved the benefits on part-timers

and redistributed them to full-timers. We will closely examine this intuition in the next section.

5. Implications of Differentiated Schemes

In light of the issues with uniform classifications, in this section, we will study two differentiated

schemes that treat full- and part-timers separately. Below we will first analyze an alternative worker

classification and then study an operational strategy as a companion.

5.1. Hybrid Mode: A Differentiated Worker Classification

In the hybrid mode (HM),20 we propose that the company treats part-timers as contractors but

full-timers as employees. The practical foundation for this scheme is that, e.g., Uber gives workers

extra bonuses for their persistent participation (Chen et al. 2020b). Clearly, full-timers are more

likely to be rewarded than part-timers. Also note that, we contribute to the work on the hybrid

workforce (e.g., Lobel et al. 2022) by (a) capturing the imperfect utilization of employees (i.e.,

employees also wait for new services) and (b) comparing the HM with the CM, which is essentially

a “semi-HM” consisting of contractors (i.e., part-timers) and “pseudo-employees” (i.e., full-timers).

To set up, think of the HM as an upgrade from the EM. For full-timers, the company will hire at

least as many of them as it would do in the EM and will pay those who are hired rB for every time

unit on the platform. Recall that λ∗E is the optimal workforce size in the EM. Now the company

can also enroll part-timers as contractors, i.e., allow them to self-schedule and compensate them

on a per-piece basis. Define qHa,t ∈ [0,1] as the participation probability and λHa,t = qHa,tγa,tMaτ as

the effective arrival rate of part-timers in any period t ∈ {h, l}, respectively. Lemma 1 implies the

uniqueness of qHa,t given any piece-rate wage wt. The company’s problem in the HM is thus

max
λH≥λ∗E ,wh,wl

ΠH ≡ T
∑
t∈{h,l}

βt((pt− rB(
1

µt−λH −λHa,t(wt)
+

1

τ
))λH + (pt−wt)λHa,t(wt)). (4)

Denote by λ∗H the optimal size of full-time workforce, S∗H full-timers’ welfare, and Π∗H the company’s

profit in the HM equilibrium. It is useful first to compare the HM with the EM as follows.

Theorem 5 (HM vs. EM). We have S∗H = S∗E, λ∗H ≥ λ∗E and Π∗H ≥Π∗E.

Theorem 5 conveys a positive message: to classify gig workers discriminatorily will improve over

reclassifying all of them as employees because full-timers will earn as much as in the EM while

consumers and the company will both be better off.

20 Despite the same terminology, the “hybrid mode” in Hagiu and Wright (2019) is essentially our C+M where the worker is
entitled to a fraction of employee benefits.
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The result for full-timers indicates that the company will hire as many full-timers in the HM as

in the EM since full-timers’ welfare in both scenarios take the form qMfB, where q is the fraction of

full-timers hired by the company. The intuition is that q affects the company’s profit in two ways:

as q increases, on the one hand, it increases the transaction volume throughout the day, but on

the other hand, it increases workers’ idleness and makes it more costly to hire each full-timer. The

fraction q∗E optimally balances such a trade-off in the EM. In the HM, part-timers’ participation

increases the period-t average wait time from 1/(µt− q∗Eλf ) in the EM to 1/(µt− q∗Eλf − q
H,∗
a,t λa,t),

and thus makes it more costly to hire λ∗E many full-timers. As such, the company in the HM will

lower q to rebalance the trade-off between the transaction volume and the labor cost. Yet with the

requirement λH ≥ λ∗E, the optimal size of full-time workforce λ∗H in the HM must equal λ∗E.

The equivalence of full-timers’ welfare implies that the HM inherits the undercutting issue in

the EM but curbs the overjoining issue found in the C+M. That is, while full-timers in the HM

may still suffer from the company’s strict control over their compensation and joining rate, they

can be sheltered from their own and their part-time counterpart’s overjoining. In particular, in

the discussion of Theorem 2(iii), we show that in the C+M the lump-sum benefit B that shall

be distributed to full-timers will be cannibalized by part-timers, whereas here in the HM, full-

timers’ weflare S∗H = S∗E and will no longer be adversely affected by part-timers’ self-interested

participation. Moreover, Theorem 2(i) shows that the C+M can fail to enhance full-timers’ welfare

with a relatively low B since full- and part-timers are already overjoining in the CM, and Theorem

2(ii) implies that full-timers’ welfare may not be improved in the C+M even with a sufficiently

large B due to their own overjoining. In stark contrast, Proposition 2(i) and Theorem 5 together

imply that full-timers’ welfare in the HM can be effectively enhanced as long as B > 0.

As our previous discussion implies, the caveat of the HM is that the company would hire fewer

full-timers without the requirement λH ≥ λ∗E, and full-timers’ welfare would thus be lower in the

HM than in the EM; in other words, the undercutting issue could be intensified. Yet as long it is

not too costly for regulators to enforce the requirement λH ≥ λ∗E (e.g., through auditing companies’

recruitment), the adverse impact of the HM on full-timers can be limited.

Finally, for consumers and the company, if the company enrolls no part-timers at all, clearly,

both the transaction volume and the company’s profit in the HM will be the same as in the EM.

Given the ability to treat part-timers as contractors, the company will realize a higher transaction

volume and make more profit in the HM than in the EM. In fact, both measures in the HM can

even be higher than in the CM. The following proposition formalizes this result.



23

Proposition 3 (HM vs. CM for Consumers and the Company). Suppose q∗E = 1 when

B = 0. There exists a BH such that if B ≤BH , we have λ∗H ≥ λ∗ and Π∗H ≥Π∗.

We explain Proposition 3 as follows: We know that the company will hire as many full-timers in

the HM as in the EM (i.e., λ∗H = λ∗E). When the lump-sum benefit B is not very high (i.e., B ≤BH),

the optimal size of full-time workforce λ∗H in the HM will be relatively high, but the expected

labor cost for each service fulfilled by a full-timer in period t, rB(Wt + 1/τ), can be lower than

the optimal piece-rate wage w∗t in the CM. More importantly, because full- and part-timers can

be compensated differentially, it also becomes relatively less expensive for the company to engage

part-timers. As such, the company can either incentivize as many part-timers to participate as in

the CM but with a wage lower than w∗t or strategically enroll more part-timers than in the CM.

The company can thus achieve higher transaction volume and make more profit than in the CM.

Corollary 1 (HM vs. CM). For B defined in Theorem 1 and BH defined in Proposition 3,

if B ≤BH , we have S∗H ≥ S∗, λ∗H ≥ λ∗ and Π∗H ≥Π∗ iff B ∈ [B,BH ].

(a) For Full-timers (b) For Consumers (c) For the Company

Figure 3 Implications of the Hybrid Mode
Note. βh = 0.1,Mf = 3,Ma = 12, γa,h = 0.6, µh = 40, µl = 25, τ = 2, ph = 45, pl = 18, r0 = 12, cf = 7, ca = 8.

Together with Theorem 1, Proposition 3 implies that the HM can be a valid alternative to uniform

classifications given that it may enhance full-timers’ welfare without making other stakeholders

worse off than in the CM. Corollary 1 formalizes this argument, and Fig. 3 helps illustrate it.

5.2. Full-Timers’ Priority: A Differentiated Operational Policy

As a companion to the classification approaches, we now study an operational scheme in the CM:

when assigning requests, the company prioritizes full-timers, who depend on gigs for a living, over

part-timers, who do gigs only for supplemental income.21 Denote this scenario by CπM, with “π”

referring to the priority. Note that in practice, platforms are experimenting with similar approaches;

see Krishnan et al. (2022) for an example on Lyft. We complement Krishnan et al. (2022) by

differentiating between full- and part-timers and focusing on the welfare implications for full-timers.

21 One may be concerned that such a dispatch policy renders the platform too much control over workers. We can let the
platform randomly prioritize a subgroup of full-timers over the other full-timers and all the part-timers.
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We first analyze how workers’ joining decisions will be affected. For full-timers, because of their

priority, the virtual queue for requests now operates independently of part-timers’ participation. In

particular, the average wait time for a request in period t becomes W π
f,t = 1/(µt−qπ ·qπf,tλf ) for any

commitment probability qπ and participation probability qπf,t that meet qπ ·qπf,t <µt/λf and infinity

otherwise. For part-timers, their expected wait times now become longer as full-timers are being

prioritized. To be specific, the average wait time for any part-timer in period t is W π
a,t = 1/((µt−

qπ ·qπf,tλf )(µt−qπ ·qπf,tλf −qπa,tλa,t)/µt), for any participation probability qπa,t < (µt−qπ ·qπf,tλf )/λa,t

and infinity otherwise; see section 4.4.3 in Gross and Harris (1985) for details.

One may already notice that this operational scheme can simultaneously counteract both under-

cutting and overjoining. Unlike in the EM, full-timers can self-schedule and will be paid on a

piece-rate basis; thanks to part-timers’ participation, again, there can be high earning rates that

result in a positive surplus. And in contrast to the C+M, full-timers’ utilization rate and hence the

expected utility on the platform will no longer be adversely affected by part-timers’ overjoining

(though full-timers themselves may still overjoin). Denote by S∗π full-timers’ welfare in the CπM

equilibrium. We formalize the potential of CπM to counteract overjoining as follows.

Proposition 4 (CπM vs. CM for full-timers). If part-timers’ participation probability

qπ,∗a,t > 0 in the CπM equilibrium for both t ∈ {h, l}, we have S∗π ≥ S∗; in particular, if S∗ > 0, we

have S∗π >S
∗ and that (S∗π −S∗)/S∗ will increase in part-timers’ labor pool size Ma.

Proposition 4 says that in the CπM, as long as there are some part-timers participating through-

out the day (i.e., qπ,∗a,t > 0 for both t ∈ {h, l}), full-timers’ total welfare will be higher than in the

CM. In particular, as per Proposition 4, conditional on that full-timers’ welfare is positive in the

CM (i.e., S∗ > 0), their welfare will increase at a larger scale in the CπM as more people become

available part-time (i.e., Ma increases). Such results are in stark contrast to Theorem 2, which

implies that full-timers’ welfare either may not be enhanced or can be enhanced but at a slower

rate due to part-timers’ overjoining. As such, one can see that the dispatch priority is enhancing

the positive externality part-timers impose on full-timers, which we highlighted in Proposition 1(i).

Note, though, if due to full-timers’ priority part-timers’ waiting disutility increases too much

(happens when, e.g., full-timers’ labor pool Mf is rather large), the company may only enroll few

of them if at all (i.e., qπ,∗a,t close to 0), given the higher financial incentive they now require. Yet in

such cases the wages will generally be too low to make full-timers better off than in the CM.

Finally, we briefly discuss the implications for consumers and the company.

Proposition 5 (CπM vs. CM for Consumers and the Company). There exists cπ such

that if ca ≤ cπ, we have λ∗π ≥ λ∗ and Π∗π ≥Π∗.
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Proposition 5 says if part-timers’ opportunity cost is relatively low (i.e., ca ≤ cπ), the CπM can

make both consumers and the company better off than in the CM. To intuit, suppose the company

tends to enroll at least as many workers, full- or part-time, in the CπM as in the CM to serve

the market. Because of their priority, full-timers’ average wait time is shorter in the CπM than in

the CM, and the company can use lower piece-rate wages in the CπM to make them commit and

participate. In contrast, part-timers’ average wait times become longer; yet thanks to a sufficiently

low opportunity cost ca, the total labor cost to incentivize part-timers to participate up to similar

levels as in the CM shall not increase too much. As such, the company shall be able to maintain the

transaction volume at a lower cost and thus make more profit in the C+M than in the CM, as the

extra expense of incentivizing part-timers can be less than the savings from enrolling full-timers.

(a) For Full-timers (b) For Consumers (c) For the Company

Figure 4 Implications of the Priority Mode
Note. βh = 0.2,Mf = 4,Ma = 16, γa,h = 0.6, µh = 40, µl = 25, τ = 2, ph = 45, pl = 18, r0 = 8, cf = 6.

We use the numerical example in Fig. 4 to corroborate results in Proposition 5. Also note that,

in this example, if ca ≤ cπ, full-timers’ welfare will also be higher in the CπM than in the CM,

implying that the CπM can be a valid alternative to uniform classifications as well.

6. Numerical Study

In this section, we calibrate the parameters in our model using real-world data and numerically

review our insights. Our motivation is the California Assembly Bill No. 5. The bill was signed

into law in 2019, attempting to reclassify gig workers as employees; however, Uber and other gig

companies successfully sought exemption from the law in 2020. Our experiment is conducted at the

city level with data for 2019. We predict market outcomes for 137 California cities in which Uber

claims to be available22 and our model predicts active operations. Table 2 provides the summary

statistics at the city level. See Online Appendix OA1 for the parameter calibration and data sources.

Figures 5, 6 and 7 display our model’s predictions for full-timers, consumers, and the company,

respectively. In each figure, sub-figures (a) and (b) show the implications of uniform classifications,

22
https://www.uber.com/global/en/cities/.

https://www.uber.com/global/en/cities/
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Mean SD Median Min Max
βh 0.200 0 0.200 0.200 0.200
γa,h 0.600 0 0.600 0.600 0.600
Mf 0.289 0.765 0.148 0.051 8.591
Ma 3.223 7.179 1.751 0.821 76.467

Event rate parameters (#/hour)
µh 3.589 8.110 1.916 0.928 86.835
µl 2.567 5.801 1.370 0.664 62.111
τ 2.891 0.226 2.932 2.092 3.457

Pecuniary parameters (2019 USD)
ph 24.559 1.826 24.555 9.522 30.692
pl 9.446 0.702 9.444 3.662 11.805
r0 12.139 0.586 12.000 12.000 15.000
cf 9.711 0.469 9.600 9.600 12.000
ca 23.234 4.902 23.065 14.733 39.498
B 6.961 0.117 7.005 6.820 7.558

Note. N = 137 cities.
Table 2 Summary Statistics of Calibrated Parameters

(a) (EM − CM)/CM (b) (C+M − CM)/CM (c) (HM − CM)/CM (d) (CπM − CM)/CM

Figure 5 Implications for Full-timers

(a) (EM − CM)/CM (b) (C+M − CM)/CM (c) (HM − CM)/CM (d) (CπM − CM)/CM

Figure 6 Implications for Consumers

(a) (EM − CM)/CM (b) (C+M − CM)/CM (c) (HM − CM)/CM (d) (CπM − CM)/CM

Figure 7 Implications for the Company

and sub-figures (c) and (d) demonstrate those of differentiated schemes. We quantify the impli-

cations as the percentage change in certain variables relative to the benchmark of the CM. The
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results are aggregated at the county level by averaging city-level outcomes. In the online version,

we color an area green if a change is positive, red if it is negative, and grey if the change is not

very significant in scale. According to sub-figures (a) in these three figures, we see that the EM

may backfire and hurt full-timers (e.g., 10.3% welfare decrease in the county of Ventura), and the

negative impacts on consumers and the company will be substantial. Sub-figures(b) imply that the

wage floor in the C+M may not enforce in many cities, and correspondingly the negative impacts

on other stakeholders are less significant than in the EM. Indeed, our model predicts that the wage

floor rB/τ will enforce only in 16.67% of all the cities during off-peak periods. Then sub-figures (c)

show that full-timers will earn as much as in the EM and, in a majority of cities, will be better

off than in the CM or C+M (i.e., the overjoining issue can be curbed). The negative impacts on

other stakeholders also become less pronounced than in the EM: relative to the EM, the nega-

tive impacts on consumers and the company will, on average, contract by 58.55% and by 60.38%,

respectively. Finally, sub-figures (d) show that, unlike the HM, the CπM can avoid backfiring and

hurting full-timers, and its negative impacts on consumers and the company are even more modest.

Note that, for this empirical analysis, we essentially abstract each city as a “representative block”

and predict outcomes therein to illustrate the first-order insights our model has offered. For more

accurate evaluations, one may wish to replicate our model and fine-tune the parameters to match

the primitives in different blocks and, importantly, add the dynamics of workers’ relocation (e.g.,

Bimpikis et al. 2019). Results then depend on the market demand for trips with different origins

and destinations, workers’ entry and relocations, the company’s dispatching policy and so forth.

7. Discussions

In this section, we will first study the part-timers’ welfare and the aggregate worker welfare and

then relax certain assumptions in the baseline to examine the robustness of our main findings.

7.1. Implications for Part-timers & Aggregate Worker Welfare

Proposition 6 (Implications for Part-timers). Recall that S̃∗, S̃∗E, S̃∗+, S̃∗H and S̃∗π denote

part-timers’ welfare in the CM, EM, C+M, HM and CπM, respectively. We have (i) If ca ≥ c̃ for

some c̃, S̃∗ = 0; otherwise, there exists M̃ such that if part-timers’ labor pool size Ma ≤ M̃ , we have

S̃∗ > 0. (ii) S̃∗E = S̃∗H = 0. (iii) For B+,B+ defined in Theorem 2, if B ≥B+, we have S̃∗+ ≤ S̃∗; for

B ≤B+, we have S̃∗+ ≥ S̃∗ and for S̃∗ > 0, (S̃∗+ − S̃∗)/S̃∗ decreases in part-timers’ labor pool size

Ma. (iv) There exists c̃π ≤ c̃ such that if ca ∈ [c̃π, c̃], we have S̃∗π ≤ S̃∗.

It is worthwhile to highlight Proposition 6(iii). In Theorem 2(iii) we show that the positive

impact of C+M on full-timers will taper off as more people become available on a part-time basis;
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here Proposition 6(iii) implies that the positive impact of C+M on part-timers themselves also

attenuates as their population grows.

Combining Proposition 6 and our previous results on full-timers’ welfare, we summarize the

findings on workers’ aggregate welfare as below.

Proposition 7 (Implications for Aggregate Worker Welfare). Let S∗, S∗E, S∗+, S∗H

and S∗π denote workers’ total welfare in the CM, EM, C+M, HM and CπM, respectively. We have

(i) S∗E = S∗H and there exist B≤ B such that S∗E = S∗H ≥ S∗ if and only if B ∈ [B,B]. (ii) For B+,B+

defined in Theorem 2, if B ≥B+, we have S∗+ ≤ S∗; for B ≤B+, we have S∗+ ≥ S∗ and for S∗ > 0, if

Mf = γM for some constant γ ∈ (0,1), (S∗+− S∗)/S∗ decreases in the aggregate labor pool size M .

(iii) There exist c′π and c′π such that if ca ∈ (c′π, c
′
π), we have S∗π > S∗.

We would like to comment on Proposition 7(iii) in particular, which says the aggregate workers’

welfare would be higher in the CπM than in the CM if part-timers’ opportunity cost is at a moderate

level (i.e., ca ∈ [c′π, c
′
π]). To intuit, since part-timers’ opportunity cost is not very high, the company

will afford to enroll a number of them in the CπM; this implies that part-timers’ earning rates

cannot be very low, even though they are deprioritized and their utilization rates become lower

in general. In the meanwhile, full-timers’ welfare is clearly enhanced thanks to their priority over

part-timers and the higher piece-rate wages the company pays in order to incentivize part-timers.

7.2. Robustness Checks

We now conduct robustness checks of our main findings, i.e., the issues with uniform regulations

(Theorems 1 & 2) and the performances of differentiated schemes (Section 5), in several extensions.

7.2.1. Endogenous Service Price We first endogenize service prices ph and pl charged from

consumers. To this end, we denote by µt,0 the market potential in period t ∈ {h, l}. Upon arriving

at the platform, each consumer draws a valuation V randomly from a distribution F and will

patronize if and only if (A) there are idled workers who are ready to begin services immediately and

(B) V exceeds the service price pt, and will leave the platform otherwise.23 As such, the effective

demand rate in period t is µt(pt) = µt,0F (pt). We then plug such effective demand rates into the

company’s profit functions and let the company jointly optimize prices and wages in different

schemes. Numerical results in Appendix OA3.1 confirm most of our main insights.

It is worthwhile to highlight one new finding: contrary to Theorem 2, the C+M may now hurt full-

timers even for an intermediate benefit level B; see Fig. OA.3(b) for an illustration. To understand

23 This modelling approach aligns with the gig economy literature (see, e.g., Cachon et al. 2017, Banerjee and Johari 2019).
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this, we have discussed in the baseline that workers are overjoining in the C+M, and this can

reduce workers’ utilization rates, i.e., each of them spends more time waiting to be dispatched.

Now, the company also raises service prices as the wage floor rB/τ pushes up the piece-rate wages.

This leads to decreases in the market demand µt(pt), which further reduce workers’ utilization

rates. Eventually, the decrease in utilization rates will become more significant than the increase

in piece-rate wages, and this results in a decrease in workers’ earnings and their welfare.

7.2.2. Exact Closed Queueing Network Analysis In Section 3, we clarify that our model

is essentially a finite-source queue; we follow the literature and approximate the system as an

infinite-source queue to facilitate the analysis in the baseline. Here we will execute the exact closed

queueing network analysis to stress-test the managerial insights we have derived. Suppose in period

t we have Mt workers (full-time and part-time combined) participating on the platform. According

to Gross and Harris (1985), when workers are dispatched FCFS, the average wait time for any

worker to be dispatched is Wt = Lt/(τ(Mt − Lt), where Lt = π0

∑Mt

i=1 i ·
(
Mt
i

)
i!(τ/µ)i denotes the

expected number of workers waiting to be matched and π0 = 1/(1 +
∑Mt

i=1

(
Mt
i

)
i!(τ/µ)i) denotes

the stationary probability of there being no worker waiting, or equivalently, all Mt workers being

fulfilling services; see Appendix OA3.2 for more details. We observe numerically all of our key

insights continue to hold given this exact formulation.

7.2.3. Alternative Dispatching Policy Another underlying assumption for our model is

that requests are assigned to workers on a first-come-first-served (FCFS) basis. In the ride-hailing

setting, for example, this implies that new requests in a zone will be assigned to drivers who have

arrived earlier than others; in reality, however, it is oftentimes those workers who are geographically

closer to the riders that get dispatched first. As such, here we will replace the FCFS queueing-

foundational wait time Wt in our model with that W̃t under an alternative dispatching policy. In

particular, we consider the Nearest Neighbor matching in ridehailing (e.g., Feng et al. 2021, Besbes

et al. 2022a) and approximate the wait time in a fluid manner as W̃t = 1/µt+(1/L̃t) ·(e/
√
L̃t)+(1−

1/L̃t) · W̃t, where L̃t denotes the average number of workers waiting to be dispatched; by Little’s

Law, we have L̃t = λtW̃t. The first term on the right-hand side of the formulae is the expected

time for the next consumer to pop up, the second term measures the average en route time to pick

up the consumer if a worker is the nearest (with e being the constant for the pick-up time when

L̃t = 1), and the third term renews the waiting process if the worker is not the nearest. Again, our

numerical studies confirm the robustness of all key insights. See Appendix OA3.3 for more details.



30

8. Concluding Remarks

This paper speaks to the recent policy debate over worker classification in the on-demand economy.

We highlight the difference between full-timers and part-timers and focus on the welfare of the

latter, who have served effectively as employees yet have not been provided with the benefits that

they need and deserve. We show that classification schemes overlooking the heterogeneity among

gig workers will cause problems both with workers being undercut and with workers overjoining.

We propose schemes that differentiate both in classifications and from an operational perspective

and demonstrate the potential of these schemes to improve over uniform classifications.

Our theoretical framework serves as a basis for better understanding the worker classification

issue. For ease of exposition, we assume that part-timers will be absent in the EM because of their

strong preference for the flexibility of being contractors. However, it would be useful to further

microfound part-timers’ decisions and support this assumption analytically. Another interesting

extension would be to consider generally distributed opportunity costs Cf and Ca. Compared to the

baseline with degenerate cost distributions, it will be more challenging for the company to control

workers’ participation in the CM indirectly via piece-rate wages. The company may thus make a

higher profit in the EM than in the CM, given its ability to directly administer the workforce.

Many other directions are worthy of further exploration. One promising avenue is to consider the

setting with competing platforms. In fact, the on-demand economy is marked by the coexistence

of competing platforms and workers having the flexibility to switch between platforms (i.e., mul-

tihoming). In the CM, the platform competition (particularly during peak periods) can result in

higher earning rates than in the single platform setting with temporal incentive pooling and thus

leave full-timers a positive surplus. The overjoining issue in the C+M can be moderated as multi-

homing workers will split among different platforms. In the EM, companies may prohibit workers’

multihoming so as to avoid paying “idle” workers who are actually busy serving on competing

platforms, yet they may also compete upfront to hire full-timers as employees, which may alleviate

the undercutting issue. Finally, we expect that treating workers differentially will still be valuable,

and it will be interesting to study the competition among platforms with hybrid workforces.
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Online Appendix to

“Implications of Worker Classification in On-Demand Economy”

OA1. Literature Review: Worker Classification & The Theory of Firm

Predating the intense debate on worker classification is the puzzle of organizational design. While

the Agency Theory (Alchian and Demsetz 1972) and the long-run relational Theory of Firm (ToF

hereafter; Williamson 1975, Holmstrom and Tirole 1989) would predict that the contractor (or

owner-operator) mode shall be the dominant organization form for transportation service firms, in

reality what really prevails is a hybrid mode of contractors and a significant number of employee

drivers (see, e.g., Sherer et al. 1998, Nickerson and Silverman 2003). Over the years, organizational

economists have investigated why firms would deploy different classes of human resources. Consis-

tent with classic organizational theories, researchers find that contractors generally have stronger

incentives to perform quality jobs (given that they are residual claimants) and they also help firms

save payroll taxes, extra administrative costs and so forth (see, e.g., Baker and Hubbard 2004,

Cappelli and Keller 2013, Rawley and Simcoe 2013). On the other hand, though, hiring employ-

ees gives firms considerable mileage to better coordinate the workforce, improve service qualities,

cope with environmental uncertainties and build the firm reputation (see, e.g., Sherer et al. 1998,

Nickerson and Silverman 2003), which create and buttress firms’ competitive advantages (Barney

1991). Such discussions are reminiscent of the classic “Make-or-Buy” problem and the theory on

Vertical Integration (Lafontaine and Slade 2007): indeed, for firms hiring employees is essentially

to make products/services in-house (i.e., integration), while deploying contractors is analogous to

procuring from outside suppliers for product/services (i.e., dis-integration).

Research along this line implicitly presumes that different human resources have been treated and

classified in a legally proper manner in the first place, be them as employees or as contractors. The

acute issue today is, however, that platform companies’ practices of worker classification are legally

very controversial, and so far there lack well-functioning laws in general to discipline companies’

behaviors in the new terrain of on-demand economy.

The crux here is, while the ToF has offered profound insights for understanding the scale and the

form of an organization (Coase 1937, Williamson 1975), it offers much less clearcut prescriptions on

how to (legally) define the statuses of different human resources deployed in the organization. For

one thing, the classic ToF delineates the boundary of a firm by dichotomizing objects related to the

firm’s operations into two batches, with and without the firm’s direct control; in the on-demand

economy, however, gig workers are simultaneously controlled by platforms over some aspects of
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their jobs and have much flexibility in the other aspects (mainly the work schedule). Perhaps more

importantly, even with gig workers being included in the boundary of firms like Uber, the ToF

does not directly inform what object within a firm’s boundary really defines its commercial nature.

In fact, Uber and other companies insist that they are not transportation service companies, but

are instead intermediaries whose goals are to better match buyers (i.e., consumers) and sellers

(i.e., workers) and support individual entrepreneurships by providing independent workers with

an unprecedented amount of flexibility over their work schedules. See Tomassetti (2016) for how

Uber’s narrative has impeded the legal process of worker reclassification.

Though this paper does not intend to investigate how the classic ToF might resolve its potential

limitations so as to advise the worker classification issue, we contend that broader impacts of worker

classification shall be examined from many other social-economic perspectives to complement the

insights from the ToF. We wish to demonstrate through our work that the worker heterogeneity

can be one such perspective going forward, and to this end we shed light on potential consequences

of different classification schemes, with a main focus on full-timers’ welfare.
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OA2. Details on Section 6 Numerical Study
OA2.1 Methodologies for Parameter Calibration

We now discuss how we calibrate the parameters for the numerical study in Section 6.

• The fraction of a day in peak times βh: we set βh = 0.2. Peak times normally last for 2 to 3

hours in the morning (e.g., 7 to 9 or 10AM) and then at dawn (e.g., 5PM to 7 or 8PM); see, e.g.,

Rayle et al. (2016), Allon et al. (2023). We set total peak hours being 4.8 hours in a day and round

up βh to be 0.2. We find that the numerical outcomes are not sensitive to the specific value of βh.

• The fraction part-timers being available in peak periods γa,h: According to Chen et al. (2020a),

part-timers (“infrequent drivers” as they refer to) are more likely to come to work during 8-10AM

in the morning and 6-8PM in the evening, which are typical peak times in a city. In light of stylized

fact, we set γa,h = 0.6. Robustness checks with other γa,h ranging from 0.6 to 0.8 show that the

numerical outcomes are not very sensitive to the exact value of γa,h either.

• Full- and part-timers’ labor pool sizes Mf and Ma and the request rates in peak and off-peak

periods µh and µl. We calibrate these parameters first for San Francisco and then for other cities.

For rates of service requests, The San Francisco city provides ridehailing data on hourly pickups

and drop-offs for every “transportation analysis zone” (TAZ) over a week. As we have commented

at the end of Section 6, in this paper we have essentially abstracted each city as a “representative

block”. As such, we calibrate µ using the average transaction volume among all TAZs. In particular,

µh uses the transaction volume from 7-9AM in the morning and 5-8PM at dawn, and µl uses the

data during the rest of time in a day. Given that transactions are more likely to take place downtown

than in other areas, we weigh each TAZ with respect to the intensity of economic activities, which

we proxy directly using the transaction volume. Then as in Hu et al. (2021), we estimate µh and

µl as the weighted average number of pickups.

For labor pool sizes, we similarly estimate Mf and Ma at the block-level. To this end, we first

collect the total number of registered drivers in San Francisco M, and then average it over TAZs

to obtain the block-level total labor pool size M . We assume full-timers’ fraction in the labor pool

is consistent with γ, the percentage of persons without health insurance under the age of 65. We

then obtain Mf = γM and Ma = (1− γ)M .

To further clarify a few items: first, since the data sources above document the aggregate trans-

action volume of Uber and Lyft, we rescale the pickups and drop-offs by Uber’s market share in the

U.S., which is about 69.9% in 201924. Second, the data provided by San Francisco was collected in

2016, and we re-scale all parameters according to the ratio of San Francisco’s population in 2019 to

24 https://www.statista.com/statistics/910704/market-share-of-rideshare-companies-united-states/.

https://www.statista.com/statistics/910704/market-share-of-rideshare-companies-united-states/
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that in 2016. Finally, for the other cities in California, we estimate these parameters by re-scaling

according to the ratio of the city’s population to that of San Francisco in 2019.

• Next, the service rate τ and service prices ph and pl. Rayle et al. (2016) estimate that the

average length of a ride-hailing trip 1/τSF in San Francisco is about 22.1 minutes. For any other

city in California, we estimate τcity using the formula

1/τcity = (Congestioncity/CongestionSF ) · (AvgTravelDistcity/AvgTravelDistSF ) · (1/τSF ).

Here Congestioncity is the congestion index of a particular city, which negatively correlates the the

average travelling speed, and AvgTravelDistcity is the average daily travel distance among citizens

in that city. We collect both the congestion data and the travel distance data from the US Bureau

of Transportation Statistics.

For service prices, we first estimate an average price p in each city. Uber’s service price (i.e.,

trip fare) p consists of two components: a fixed and a variable fee. The fixed fee is the sum of

a base fare and a booking fee for each trip. We assume the fixed fee is constant across cities as

this component mostly reflects the cost of platform management. The variable fee depends on the

average trip length and can thus be estimated in a fashion similar to τ . Due to the availability of

data, we take the average trip fare in the city of Los Angeles as a benchmark. The exact formula

for calibration is pcity = FixFee+ (AvgTravelDistcity/AvgTravelDistLA) · V arFeeLA. We resale

the price for each city according to the consumer price indices in 2019.

We then calibrate the peak and off-peak period prices ph and pl as follows. We suppose the

transaction volume in peak periods account for θh = 80% of the total volume in a day, and that in

off-peak periods is naturally 1− θh = 20%. We further assume that the average surge multiplier is

k= 2.6 , i.e., ph = k · pl. Then given that θhph + (1− θh)pl = p, we compute pl = p/(k · θh + (1− θh)).

To check whether the calibration for service prices is sensible, we run the following regression:

pi = η0 + η1p̂i + εi for i = 1, ...,137, where pi is the calibrated average price for city i, and p̂i =

θ̂h,iph,i+(1− θ̂l,i)pl,i and θ̂h,i are the predicted average price and the predicted peak volume portion

based on the calibrated parameters, respectively. The regression results in a statistically significant

(p-value < 0.001) coefficient η̂1 = 1.001 and also an insignificant (p-value = 1) intercept η̂0 =

−1e−13. This implies that the calibrated prices (pi) and the predicted prices (p̂i) match with each

other, which suggests that our initial estimation for the peak volume portion θh and the average

surge multiplier k generally make sense.

• We estimate full-timers’ earning rate for the labor market outside opion r0 as the social

minimum wage set in each city. For full-timers’ opportunity costs cf , according to Chen et al.



5

(2019)’s estimation, following a rigid work schedule can downsize workers’ surplus (i.e., r0− cf for

full-timers) to around 20% of their total earnings (i.e., r0 for full-timers). We thus calibrate cf as

cf = (1− 20%) · r0. For part-timers’ opportunity cost ca, we calibrate it as the median-level hourly

wage: for each city, we first collect the median household income Mcity, and then estimate ca as the

individual hourly wage mcity using the formula mcity = Mcity/(1916 ∗ Avg Household Laborcity),

where 1916 is the average annual hours worked according to the U.S. Bureau of Labor Statistics

and Avg Household Laborcity estimates the average number of people in a household who are active

in the labor market.

According to our calibration, the average ratio of part-timers’ opportunity cost to full-timers’

opportunity cost, ca/cf , is about 2.2. This aligns with the empirical finding in Chen et al. (2020a)

that “frequent drivers [(i.e., full-timers)] have half as large reservation wages as compared to the

infrequent drivers [(i.e., part-timers)].”

• Finally, for the lump-sum benefit B, we first compute the difference between the hourly lump-

sum employee benefit in “production, transportation, and material moving” industries and the

minimum employee benefit available in the labor market across American (recall that we have

normalized the employee benefit from full-timers’ outside job b= 0). We then rescale the parameter

for each city according to the consumer price indices in 2019.

OA2.2 Data Sources for Parameter Calibration

Parameter Source
βh Rayle et al. (2016), Allon et al. (2023)

γa,h Chen et al. (2020a)

Mf & Ma # Registered drivers: https://www.sfcta.org/sites/default/files/2019-02/TNCs_Today_112917_0.pdf

% Without health insurance under 65: https://www.census.gov/quickfacts/fact/table/CA/HEA775220

% Low wage: https://laborcenter.berkeley.edu/low-wage-work-in-california-data-explorer/

µh & µl Ridehailing: https://www.sfcta.org/sites/default/files/2019-06/trip_stats_taz_0.csv, Population by city

τ Mean trip duration: Rayle et al. (2016),

Congestion index: https://www.bts.gov/content/annual-roadway-congestion-index, Average travel distance

ph & pl Trip fare: https://www.ridesharingdriver.com/how-much-does-uber-cost-uber-fare-estimator/

Average travel distance, Consumer price index

r0 & cf Chen et al. (2019), State min wage: https://www.dir.ca.gov/dlse/faq_minimumwage.htm,

Local min wage: https://laborcenter.berkeley.edu/inventory-of-us-city-and-county-minimum-wage-ordinances/

ca Median household income: https://www.census.gov/quickfacts/fact/table/CA,US/INC110220

Annual hours worked: https://www.bls.gov/opub/mlr/cwc/work-schedules-in-the-national-compensation-survey.pdf

Persons per household: https://www.census.gov/quickfacts/fact/table/CA/HSD310220

% Civilian labor force: https://www.census.gov/quickfacts/fact/table/CA/LFE041220, Chen et al. (2020a)

B https://www.bls.gov/web/ecec/ececqrtn.pdf, Consumer price index

Population: https://www2.census.gov/programs-surveys/popest/tables/2010-2019/cities/totals/SUB-IP-EST2019-ANNRES-06.xlsx
Average travel distance: https://data.bts.gov/Research-and-Statistics/Trips-by-Distance/w96p-f2qv
Consumer price index: https://www.dir.ca.gov/oprl/capriceindex.htm

Table 3 Data Sources for Parameter Calibration

https://www.sfcta.org/sites/default/files/2019-02/TNCs_Today_112917_0.pdf
https://www.census.gov/quickfacts/fact/table/CA/HEA775220
https://laborcenter.berkeley.edu/low-wage-work-in-california-data-explorer/
https://www.sfcta.org/sites/default/files/2019-06/trip_stats_taz_0.csv
https://www.bts.gov/content/annual-roadway-congestion-index
https://www.ridesharingdriver.com/how-much-does-uber-cost-uber-fare-estimator/
https://www.dir.ca.gov/dlse/faq_minimumwage.htm
https://laborcenter.berkeley.edu/inventory-of-us-city-and-county-minimum-wage-ordinances/
https://www.census.gov/quickfacts/fact/table/CA,US/INC110220
https://www.bls.gov/opub/mlr/cwc/work-schedules-in-the-national-compensation-survey.pdf
https://www.census.gov/quickfacts/fact/table/CA/HSD310220
https://www.census.gov/quickfacts/fact/table/CA/LFE041220
https://www.bls.gov/web/ecec/ececqrtn.pdf
https://www2.census.gov/programs-surveys/popest/tables/2010-2019/cities/totals/SUB-IP-EST2019-ANNRES-06.xlsx
https://data.bts.gov/Research-and-Statistics/Trips-by-Distance/w96p-f2qv
https://www.dir.ca.gov/oprl/capriceindex.htm
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OA2.3 Results for Part-timers & Aggregate Worker Welfare

Here we supplement with the results for part-timers as well as for the aggregate worker welfare.

Fig. OA.1 shows that in general the impacts of different classification/operational schemes on part-

timers are not very significant. This is mainly because part-timers’ opportunity cost ca is fairly

high according to our calibration and therefore they will mostly end up with trivial surpluses in

any scenario. As such, the implications for the aggregate worker welfare (Fig. OA.2) generally align

with what are for the full-timers (Fig. 5).

(a) (EM − CM)/CM (b) (C+M − CM)/CM (c) (HM − CM)/CM (d) (CπM − CM)/CM

Figure OA.1 Implications for Part-timers

(a) (EM − CM)/CM (b) (C+M − CM)/CM (c) (HM − CM)/CM (d) (CπM − CM)/CM

Figure OA.2 Implications for Aggregate Worker Welfare
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OA3. Robustness Checks
OA3.1 Endogenous Service Prices

Note that for numerical studies we assume the distribution of consumer valuation V is uniform.

We define the consumer welfare as CS =
∑

t∈{h,l} βtλtE[V − pt|V ≥ pt], where λt is the transaction

volume in period t, pt is the service price, and the term E[V −pt|V ≥ pt] is the expected consumer

surplus from a transaction.

(a) EM: undercutting (b) C+M: overjoining

Figure OA.3 Issues of Uniform Classifications (Robust. Check - Endogenous Service Prices)
(βh = 0.2,Mf = 2,Ma = 34, γa,h = 0.8, µh,0 = 40, µl,0 = 15, τ = 2, V ∼U [5,50], r0 = 9, cf = 8, ca = 16)

(a) For Full-timers (b) For Consumers (c) For the Company

Figure OA.4 Implications of the Hybrid Mode (Robust. Check - Endogenous Service Prices)
(βh = 0.1,Mf = 2,Ma = 18, γa,h = 0.6, µh,0 = 40, µl,0 = 25, τ = 2, V ∼U [5,50], r0 = 8, cf = 6, ca = 14)

(a) For Full-timers (b) For Consumers (c) For the Company

Figure OA.5 Implications of the Priority Mode (Robust. Check - Endogenous Service Prices)
(βh = 0.2,Mf = 2,Ma = 18, γa,h = 0.8, µh,0 = 40, µl,0 = 25, τ = 2, V ∼U [5,50], r0 = 8, cf = 6)

The numerical results in Fig. OA.3 to Fig. OA.5 corroborate our key findings from the baseline;

we still observe that uniform classifications may not enhance full-timers’ welfare relative to the
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status quo of the CM due to either the undercutting issue in the EM or the overjoining issue in

the C+M, and that differentiated schemes (i.e., the HM and the CπM) can improve over uniform

approaches and the CM as well. In Section 7.1 we have also discussed a new finding in the C+M:

that is, contrary to Theorem 2, the C+M may now hurt full-timers even for an intermediate benefit

level B; see Fig. OA.3(b) for an illustration.



9

OA3.2 Exact Closed Queueing Network Analysis

The wait time formulae we provide in Section 7.2.2 applies to both full- and part-timers in the

CM, C+M and HM and also to full-timers in the EM. For the priority mode CπM, we first compute

full-timers’ average wait time W π
f,t and the overall wait time W π

t using the approach in Gross and

Harris (1985), and then back out part-timers’ wait time as W π
a,t = (W π

t −θπfW π
f,t)/θ

π
a , where θπf and

θπa denote the fractions of full- and part-timers in the aggregate worker arrival process, respectively;

On the one hand, because full-timers’ priority only changes the order of workers but not the total

times workers being dispatched in any time unit, the overall wait time W π
t , i.e., the average wait

time between full- and part-timers, in the system can be computed using the same formulae for the

FCFS scenario. On the other hand, because full-timers are prioritized, to them the whole system

operates as if with no part-timer, and thus their average wait time W π
f,t can also be calculated

using the FCFS formulae, with the total number of workers Mt be replaced by the total of only

full-timers Mf,t.

(a) EM: undercutting (b) C+M: overjoining

Figure OA.6 Issues of Uniform Classifications (Robust. Check - Exact Closed Queueing Network Analysis)
(βh = 0.2,Mf = 2,Ma = 34, γa,h = 0.8, µh = 40, µl = 25, τ = 2, ph = 45, pl = 18, r0 = 9, cf = 8, ca = 16)

(a) For Full-timers (b) For Consumers (c) For the Company

Figure OA.7 Implications of the Hybrid Mode (Robust. Check - Exact Closed Queueing Network Analysis)
(βh = 0.1,Mf = 2,Ma = 8, γa,h = 0.6, µh = 40, µl = 25, τ = 2, ph = 45, pl = 18, r0 = 12, cf = 7, ca = 8)

We now discuss how we derive θπf and θπa , the fractions of full- and part-timers in the aggregate

worker arrival process. Note that, the total times workers are dispatched in any time unit, or

equivalently, the aggregate arrival rate of workers is λπt =Mt/(W
π
t + 1/τ), and the arrival rate of
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(a) For Full-timers (b) For Consumers (c) For the Company

Figure OA.8 Implications of the Priority Mode (Robust. Check - Exact Closed Queueing Network Analysis)
(βh = 0.2,Mf = 2,Ma = 18, γa,h = 0.6, µh = 40, µl = 25, τ = 2, ph = 45, pl = 18, r0 = 8, cf = 6)

full-timers is λπf,t = Mf,t/(W
π
f,t + 1/τ). The intuition is that, in a closed system with an average

wait time W , the expected number of services a worker can complete is 1/(W + 1/τ). Then given

that there are M workers in the system the total times workers arrive and get dispatched must

be M/(W + 1/τ). The fractions of full- and part-timers in the arrival process are then given by

θπf,t = λπf,t/λ
π
t and θπa,t = 1−θπf,t, respectively, and we can back out part-timers’ wait time W π

a,t using

the equation θπf,tW
π
f,t + θπa,tW

π
a,t =W π

t .

The numerical results in Fig. OA.6 to Fig. OA.8 corroborate our key findings from the baseline;

we still observe that uniform classifications may not enhance full-timers’ welfare relative to the

status quo of the CM due to either the undercutting issue in the EM or the overjoining issue in

the C+M, and that differentiated schemes (i.e., the HM and the CπM) can improve over uniform

approaches and the CM as well.
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OA3.3 Alternative Dispatching Policy

Similarly as in the extension with the exact closed-network formulation, here in the CπM we also

back out average wait time for part-timers as W π
a,t = (W π

t − θπfW π
f,t)/θ

π
a , where θπf and θπa denote

the fractions of full- and part-timers in the aggregate worker arrival process, respectively. Also note

that, throughout the numerical analysis we set ē, the average pickup time when there is only one

worker in a zone, to be 1/10.

The numerical results in Fig. OA.9 to Fig. OA.11 corroborate our key findings from the baseline;

we still observe that uniform classifications may not enhance full-timers’ welfare relative to the

status quo of the CM due to either the undercutting issue in the EM or the overjoining issue in

the C+M, and that differentiated schemes (i.e., the HM and the CπM) can improve over uniform

approaches and the CM as well.

(a) EM: undercutting (b) C+M: overjoining

Figure OA.9 Issues of Uniform Classifications (Robust. Check - Alternative Dispatching Policy)
(βh = 0.2,Mf = 2,Ma = 34, γa,h = 0.8, µh = 40, µl = 25, τ = 2, ph = 45, pl = 18, r0 = 9, cf = 8, ca = 16)

(a) For Full-timers (b) For Consumers (c) For the Company

Figure OA.10 Implications of the Hybrid Mode (Robust. Check - Alternative Dispatching Policy)
(βh = 0.1,Mf = 5,Ma = 20, γa,h = 0.6, µh = 40, µl = 25, τ = 2, ph = 45, pl = 18, r0 = 12, cf = 7, ca = 8)
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(a) For Full-timers (b) For Consumers (c) For the Company

Figure OA.11 Implications of the Priority Mode (Robust. Check - Alternative Dispatching Policy)
(βh = 0.2,Mf = 4,Ma = 16, γa,h = 0.6, µh = 40, µl = 25, τ = 2, ph = 45, pl = 18, r0 = 8, cf = 6)
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OA3.4 Dynamic Scheduling in the Employee Mode

In the baseline, we have assumed that the company will maintain a constant team of employees

over the day. While this aligns with the literature on hybrid workforce (e.g., Milner and Pinker

2001, Dong and Ibrahim 2020), it admittedly misses the practice of dynamic scheduling in the

service industry (see, e.g., Kamalahmadi et al. 2021). As such, we now let the company dynamically

adjust the number of employees to serve on the platform period by period. Specifically, we assume

that still only full-timers can be hired. For part-timers, while the company may offer part-time

positions for them to fill, such positions are not likely to be as flexible as self-scheduled shifts in

the contractor mode; for example, workers may no longer be able to choose to work only on some

days in a week but not on the other, or even worse, they may have to “stand by” and respond to

the company’s urgent scheduling notices (Kamalahmadi et al. 2021). As such, we do not expect

many part-timers to have a strong intension to fulfill those part-time positions. For simplicity, we

assume that still part-timers will (mostly) exit the market.

Denote this alternative EM as EdM. Further denote the workforce sizes for peak and off-peak

periods as λEd,h and λEd,l, respectively. One may interpret λEd,l as the company’s base service

capacity throughout the day, and λEd,h−λEd,l as part-time employees the company hires to better

the demand in peak periods.25,26 Note that, for full-timers who are hired only as part-time employ-

ees, they may not be eligible for all the employee benefits a full-time employee will be entitled to.

As Yu et al. (2022) have highlighted, employees who work less than 20 hours a week may not get

retirement benefits or health insurance. We thus assume that for these full-timers, the earning rate

will be rαB = r0 +αB for some discount α∈ (0,1).

Given our setup above, the company’s profit optimization problem in the EdM is

max
(λ
Ed,h

,λ
Ed,l

)∈[0,λf ]2
ΠEd ≡ βh(ph−rαB(

1

µh−λEd,h
+

1

τ
))(λEd,h−λEd,l)+

∑
t∈{h,l}

βt(pt−rB(
1

µt−λEd,t
+

1

τ
))λEd,l.

Denote by λ∗
Ed,h

and λ∗
Ed,l

the optimal workforce sizes. Further define q∗
Ed,t

= λ∗
Ed,t

/λf as the

fraction of full-timers in the labor pool Mf that are hired in period t∈ {h, l}. We particularly focus

one two outcomes measures in the equilibrium, full-timers’ welfare S∗
Ed

and the company’s optimal

profit Π∗
Ed

. In particular, full-timers’ welfare is defined as S∗
Ed

=Mf ·T (q∗
Ed,l

B+(q∗
Ed,h
−q∗

Ed,l
)βhαB).

We compare the outcomes in the EdM and CM and highlight the following findings.

25 We implicitly assume that full-timers who are hired only as part-time employees will be able to find another
part-time job for the time they are not hired on the platform.

26 Lemma OA.11 in the Appendix implies that the optimal service level in peak periods λ∗Ed,h will indeed be higher
than that in off-peak periods λ∗Ed,l (i.e., λ∗Ed,h −λ∗Ed,l ≥ 0).
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Proposition 8 (EdM vs. CM). Compare full-timers’ welfare and the company’s profit in the

EdM and CM, we have

(i) There exist BEd ,BEd such that if B ≤BEd or B ≥BEd, we have S∗
Ed
≤ S∗.

(ii) If the fraction of part-timers available in off-peak periods γa,l ≤ γa for some γa, we have

Π∗ ≥Π∗
Ed

.

Proposition 8(i) implies that the undercutting issue we have identified in the EM persists in the

EdM: full-timers still face being underpaid by the company when the benefit is sufficiently low (i.e.,

B ≤BEd) or being underhired when the benefit is sufficiently high (i.e., B ≥BEd).

For the company, recall that we show in Theorem 4 that the optimal profit in the CM Π∗ is

always higher than that Π∗E in the EM (i.e., Π∗ ≥ Π∗E). Now with the company being able to

dynamically schedule in the EdM, Proposition 8(ii) implies that the profit premium in the CM

requires an extra condition to hold: that the fraction of part-timers available in off-peak periods

shall be relatively small (i.e., γa,l ≤ γa).

To understand why the profit premium in the CM may evaporate (i.e., Π∗ ≤Π∗E) otherwise (i.e.,

γa,l > γa), first recall that in the EM the workforce is constant over time (i.e., λ∗E,h = λ∗E,l), and

that the company makes a higher profit in the CM than in the EM thanks to two operational

apparatuses, dynamic capacity configuration and temporal incentive pooling : on the one hand, the

company can at least match the service level in the EM by nimbly sourcing the labor supply

from full- and part-timers, and on the other hand the company can lower the total labor cost by

differentiating the earning rates throughout the day, rather than maintaining a constant earning

level. See Section 4.2 for more details.

Now, in the EdM the company dynamically schedules and the service level is higher in peak

periods than in off-peak periods (i.e., λ∗
Ed,h
≥ λ∗

Ed,l
). To match the service levels in the EdM, the

company in the CM shall generate a relatively high (low, respectively) earning rate rh during

peak (rl off-peak, respectively) periods, otherwise there will be too few workers joining during

peak periods (i.e., λ∗h ≤ λ∗Ed,h) but too many of them joining in off-peak periods (i.e., λ∗l ≥ λ∗Ed,l).

However, to generate the high earning rate rh and match the service level λ∗
Ed,h

in the EdM during

peak periods is more costly than to generate the same rh but match the service level λ∗h in the EM,

since there are now more workers joining (i.e., λ∗
Ed,h
≥ λ∗h) and their utilization rate is lower. As a

result, the total labor cost can be higher in the CM than that in the EdM.

While the company can lower the total labor cost by generating a lower earning rate during

peak periods or even homogenizing the earning rates throughout the day, the service level in the

CM will then become inefficiently low (high, respectively) during peak (off-peak, respectively)
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periods compared with that in the EdM. In a nutshell, there is a tension between dynamic capacity

configuration and temporal incentive pooling, and the company is no longer guaranteed to make a

higher profit in the CM than in the EdM.

Now, if the fraction of part-timers available in off-peak periods is relatively large (i.e., γa,l >γa),

part-timers available in peak periods are relatively scarce. Chances are that the company may

not be able to even match the service levels at all (particularly during peak periods). Even if

the EdM service levels can be attainted, to that end the company may still rely on differentiated

earning rates rh > rl to control workers’ joining rates (particularly during off-peak periods given

the relatively excessive number of part-timers). As such, the company may indeed end up with a

lower profit than in the EdM. See Fig. OA.12 for an illustration.

Figure OA.12 Optimal Profit CM vs. EdM
Note. βh = 0.2,Mf = 24,Ma = 16, µh = 45, µl = 15, τ = 2, ph = 45, pl = 18, r0 = 12, cf = 8, ca = 15.
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OA4. Proofs

Throughout the proofs we will drop the total time periods T in full-timers’ utility functions

(u= T
∑

t∈{h,l} qf,t(rt − cf )+), their outside option (u0 = T (r0 − cf )), the transaction volume (λ=

T
∑

t∈{h,l} βtλt) and the company’s profit (Π = T
∑

t∈{h,l} βt(pt −wt)λt) for notational ease. Also,

unless clarified otherwise, we will generally assume that the labor pool size is sufficiently small

such that in both peak and off peak periods the gross arrival rates of full- and part-timers are less

than the demand rates (i.e., µt > λf + λa,t for t ∈ {h, l}). This is for the completeness of results:

given our queueing-foundational setup, if in any period t we have µt ≤ λf +λa,t, then the company

cannot let all workers participate as otherwise the system will be extremely overloaded. As such,

to assume µt > λf + λa,t for t ∈ {h, l} is to include all possible cases of worker participation under

consideration. In addition, expressions for monotonicity (i.e., increasing, decreasing) and magni-

tude comparison (i.e., higher/larger, lower/smaller) will be used in the non-strict sense unless (a)

declared otherwise, and (b) when we are comparing workers’ opportunity costs (ie.., full-timers’ cf

and part-timers ca), as we have assumed in Section 3 that cf 6= ca.

Proof of Lemma 1

Recall the two-stage game in our model: full-timers decide whether to commit in stage 0, and

then in stage 1 both committed full-timers and part-timers will decide whether to participate.

Further define Qq = (qf,h, qf,l, qa,h, qa,l) as workers’ participation equilibrium in stage 1 (or a stage-1

equilibrium) given that a fraction q of all full-timers have committed in stage 0 and given piece-rate

wages (wh,wl). We will establish the uniqueness of a market equilibrium (Q,R) in two steps.

Step 1: We show that given wh, wl and full-timers’ commitment probability q, there exists a

unique stage-1 equilibrium (Qq,R). Suppose instead the equilibrium is not unique in some period

t. That is, there exist at least two nonidentical tuples (qf,t, qa,t, rt) and (q′f,t, q
′
a,t, r

′
t). By definition

of equilibrium, we have

wt = rt(
1

µt− q · qf,tλf − qa,tλa,t
+

1

τ
) = r′t(

1

µt− q · q′f,tλf − q′a,tλa,t
+

1

τ
) (OA.1)

Suppose rt > r′t. Then (OA.1) implies that q · qf,tλf + qa,tλa,t < q · q′f,tλf + q′a,tλa,t, which in turn

implies that at least one of the following inequalities must hold: qf,t < q
′
f,t, and qa,t < q

′
a,t. Suppose

first qf,t < q′f,t. This implies that qf,t ∈ [0,1), which requires the equilibrium earning rate rt = cf ,

i.e., full-timers’ participation cost. But then r′t < rt = cf , which renders q′f,t = 0, contradicts. Then

suppose qa,t < q
′
a,t. Similarly, this implies that qa,t ∈ [0,1) and rt = ca, yet we then have r′t < rt = ca

and q′a,t = 0. Again contradiction. Hence we must have rt = r′t and thus qf,t = q′f,t and qa,t = q′a,t. A

similar argument will show that the case with rt < r
′
t is impossible either.
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Step 2: We now proceed to show that given wh, wl, there exists a unique equilibrium commitment

probability q among full-timers and thus, based on Step 1, a unique market equilibrium (Q,R).

For conciseness, we will assume ca > cf . The case with ca < cf can be verified similarly.

Suppose first the period-t piece-rate wage wt ≤ cf (1/(µt − qλf ) + 1/τ). We claim that the only

stage-1 equilibrium for period t is qf,t = max{(µt− 1/(wt/cf − 1/τ))/(qλf ),0}, qa,t = 0 and rt = cf .

Any part-timer participating (i.e., qa,t > 0) implies rt ≥ ca > cf , yet this in turn implies that all full-

timers will participate (i.e., qf,t = 1), which renders the average wage time Wt = 1/(µt− qλf −λa,t)

and thus the average earning rate rt = wt/(Wt + 1/τ)< cf . But then no full-timer will choose to

participate (i.e., qf,t = 0). Contradiction.

Then as wt migrates to (cf (1/(µt− qλf )+1/τ), ca(1/(µt− qλf )+1/τ)], we have qf,t = 1, qa,t = 0,

and rt = wt/(1/(µt − qλf ) + 1/τ) ∈ (cf , ca]. And for wt ∈ (ca(1/(µt − qλf ) + 1/τ), ca(1/(µt − qλf −

λa,t) + 1/τ)], we have qf,t = 1, qa,t = max{(µt− qλf −1/(wt/ca−1/τ))/λa,t,0}, and rt = ca. Finally,

for wt > ca(1/(µt−qλf −λa,t)+1/τ), we have qf,t = qa,t = 1 and rt =wt/(1/(µt−qλf −λa,t)+1/τ).

Define q̂−a,t = (µt − λa,t − 1/(wt/ca − 1/τ))/λf , q̂a,t = (µt − 1/(wt/ca − 1/τ))/λf and q̂f,t = (µt −

1/(wt/cf − 1/τ))/λf . By reverting the relation between the piece-rate wage wt and full-timers’

commitment probability q, we summarize the average earning rate rt as follows:

rt(q) =


wt/(1/(µt− qλf −λa,t) + 1/τ) if q≤ q̂−a,t,
ca if q ∈ [q̂−a,t, q̂a,t],

wt/(1/(µt− qλf ) + 1/τ) if q ∈ [q̂a,t, q̂f,t],

cf otherwise.

And similarly full- and part-timers’ participation probabilities qf,t and qa,t as

qf,t(q) =

{
1 if q≤ q̂f,t,
max{µt−1/(wt/cf−1/τ)

qλf
,0} otherwise

, qa,t(q) =

{
1 if q≤ q̂a,t,
max{µt−qλf−1/(wt/ca−1/τ)

λa,t
,0} otherwise.

We illustrate rt(q) against q in Fig OA.13.

Figure OA.13

Observe that rt is decreasing in q but also increasing in wt. Hence full-timers’ utility on the

platform u(q) = βh(rh(q)− cf )+ +βl(rl(q)− cf )+ will decrease in q but increase in wh and wl. Recall
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that full-timers’ outside option u0 ≡ r0 − cf . By the definition of mixed strategy equilibrium, we

shall have (i) q = 1 if u(1)≥ u0, (ii) q = 0 if u(0)≤ u0, and (iii) q ∈ (0,1) and is determined by the

equation u(q) = u0 if u0 ∈ (u(1), u(0)). The decreasing behavior of u(q) and the assumptions that

ca 6= r0 and r0 > cf ensures the uniqueness of q. �

Remark. The Proof of Lemma 1 yields several results that be useful for verifying other results.

See Section OA5.1 for details.

Proof of Proposition 1

Proof of Proposition 1(i) We first verify that S∗fo = 0. As we note in Section 3, the full-timer-

only CM is essentially a CM where part-timers’ opportunity cost ca is sufficiently high that none

of them will ever participate for any piece-rate wage or during any period. As such, the analysis

we have completed so far for a general CM in the Proof of Lemma 1 and related also applies here.

Suppose instead S∗fo = q∗foMf (u∗fo − u0) > 0, where q∗fo denotes the equilibrium commitment

probability among full-timers. This implies that u∗fo > u0 and, according to Lemma OA.8, that

full-timers’ committed probability q∗fo = 1 and the existence of some period t with the average

earning rate r∗fo,t > r0 and committed full-timers’ participation probability qfo,∗f,t = 1. Then Lemma

OA.1 implies that the optimal piece-rate wage the company has chosen for period t must be

w∗fo,t = r∗fo,t(1/(µt − λf ) + 1/τ). Yet this wage is obviously suboptimal: the company can make a

strictly higher profit by instead paying wεfo,t = (r∗fo,t − ε)(1/(µt − λf ) + 1/τ) for some small ε > 0

such that r∗t −ε > r0, q∗ = 1 and qfo,tf,t = 1; that is, the company can lower the wage without reducing

the number of workers who choose to participate. Contradiction.

We now verify the conditions for S∗ > 0. According to the proof for Proposition 1(iii) below, we

have the following results.

Lemma. For ca ∈ (r0, (r0−βhcf )/βl), if S∗ > 0, the company’s optimal profit Π∗ must be

Π∗,+ ≡ max
(qa,h,qa,l)∈[0,1]2

∑
t∈{h,l}

βt(pt− ca(
1

µt−λf − qa,tλa,t
+

1

τ
))(λf + qa,tλa,t). (OA.2)

If instead S∗ = 0 in the CM, the company’s optimal profit Π∗ must be

Π∗,0 ≡max{ max
(q,qa,l)∈[0,1]2

βh(ph−
r0−βlca

βh

(
1

µh− qλf
+

1

τ
))qλf + βl(pl− ca(

1

µl− qλf − qa,lλa,l
+

1

τ
))(qλf + qa,lλa,l),

max
(q,qa,h)∈[0,1]2

βh(ph− ca(
1

µh− qλf − qa,hλa,h
+

1

τ
))(qλf + qa,hλa,h) + βl(pl−

r0−βhca
βl

(
1

µl− qλf
+

1

τ
))qλf ,

max
rh∈(ca,

r0−βlcf
βh

),q∈[0,1]

βh(ph− rh(
1

µh− qλf −λa,h
+

1

τ
))(qλf +λa,h) + βl(pl−

r0−βhrh
βl

(
1

µl− qλf
+

1

τ
))qλf ,

max
(q,qf,l)∈[0,1]2

βh(ph−
r0−βlcf

βh

(
1

µh− qλf −λa,h
+

1

τ
))(qλf +λa,h) + βl(pl− cf (

1

µl− qf,l · qλf
+

1

τ
))qf,l · qλf}.
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proof. See Lemma OA.3 and the Proof. Full-timers’ welfare is positive in the CM equilibrium

(i.e., u∗ >u0) if and only if the optimal earning rates r∗h = r∗l = ca > r0. �

We verify in the proof for Proposition 1(iii) that Π∗,+ is decreasing in ca while Π∗,0 is generally

first decreasing and then increasing in ca. As a result, there shall exist c≤ c such that if ca ∈ (c, c)

we have Π∗,+ >Π∗,0— and thus the company will leave a positive surplus to full-timers in the CM

equilibrium. �

Proof of Proposition 1(ii)

By solving the program (OA.25), we derive the equilibrium transaction volume (λ∗fo,h, λ
∗
fo,l) in

the full-timer-only CM as follows,

(λ∗fo,h, λ
∗
fo,l) =


(λf , λf ) if λf ≤ µl−

√
µlτcf
plτ−cf

(min{λf , µh−
√

µhτr
‡
h

phτ−r
‡
h

}, µl−
√

µlτcf
plτ−cf

) otherwise
. (OA.3)

We now study the transaction volume in a general CM where both full- and part-timers may par-

ticipate. Let c̄′ defined in Proposition 1(ii) equal r‡h ≡ (r0−βlcf )/βh, and let part-timers’ opportunity

cost ca > c̄′. Lemma OA.2 in the Appendix OA.4 shows that the company’s profit maximization

with respect to piece-rate wages is equivalent to find out the optimal average earning rates as well

as workers’ participation probabilities. We show in Lemma OA.5 that when ca > c̄′ in the general

CM the optimal average earning rates (r∗h , r
∗
l ) must be one of the following options: (ca, ca), (ca, cf ),

(r‡h, ca), and (r‡h, cf ); for any option, we can show that the corresponding transaction volume λ∗t will

be higher than (OA.3) for any t ∈ {h, l}. Below we will elaborate with the case (r∗h , r
∗
l ) = (ca, cf ).

The other three cases can be verified similarly.

For r∗h = ca and r∗l = cf , since ca > r‡h, we have u∗ =
∑

t∈{h,l} βtq
∗
f,t(r

∗
t − cf )+ > u0, which implies

that full-timers’ commitment probability q = 1. Also, according to the discussion in the Proof of

Lemma 1, we must have q∗f,h = 1, q∗a,h ∈ [0,1], q∗f,h ∈ [0,1] and q∗a,h = 0. As such, the company’s

optimization problem must be

max
(qa,h,qf,l)∈[0,1]2

βh(ph− ca(
1

µh−λf − qa,hλa,h
+

1

τ
))(λf + qa,hλa,h) +βl(pl− cf (

1

µl− qf,lλf
+

1

τ
))qf,lλf .

Clearly we have λ∗h = λf + q∗a,hλa,h ≥ λ∗fo,h and λ∗l = min{λf , µl−
√
µlτcf/(plτ − cf )} ≥ λ∗fo,l. �

Proof of Proposition 1(iii) Part I. In the first part of the proof, we verify the existence of a

c̄′′′ such that if part-timers’ opportunity cost ca > c̄
′′′, we have Π∗ ≥Π∗fo.

Define c̄′′′ = (r0−βlcf )/βh > r0 > cf . We show in Lemma OA.2 that the company’s optimization

problem in the CM is equivalent to choosing the optimal earning ratesR and workers’ participations

Q. When ca > c̄
′′′, a feasible solution for the company is to set the earning rate during peak periods
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rh = c̄′′′ and then the earning rate during off-peak periods rl = cf , both of which strictly lower

than part-timers’ opportunity cost ca. Then according to Lemma OA.2, no part-timers will ever

participate in any period (i.e., qa,h = qa,l = 0); full-timers will equilibrate among themselves with a

mixed commitment strategy (i.e., q ∈ [0,1]), and committed full-timers will all participate during

peak periods (i.e., qf,h = 1) but probabilistically do so during off-peak periods (i.e., qf,l ∈ [0,1]).

The company’s optimization in the CM is then

max
(q,qf,l)∈[0,1]2

βh(ph− c̄′′′(
1

µh− qλf
+

1

τ
))qλf +βl(pl− cf (

1

µl− qf,l · qλf
+

1

τ
))qf,l · qλf ,

which is exactly the company’s problem in the full-timer-only CM defined in (OA.25). As such, we

must have Π∗ ≥Π∗fo. �

Proof of Proposition 1(iii) Part II. In the second part of the proof, we verify the existence of

c′′ ≤ c̄′′ such that if part-timers’ opportunity cost ca ∈ [c′′, c̄′′], we have Π∗ ≤Π∗fo.

To proceed, consider ca ∈ (r0, (r0−βhcf )/βl). The key to the proof is to show that under such a

condition the company’s profit Π will first decrease but then increase in ca. To this end, below we

will go over all earning rates that are potentially optimal (specified in Lemma OA.3) and study

the structural property of the company’s profit function should any pair of such earning rates be

optimal indeed.

Case I: rh = rl = ca. In this case the company’s profit Π∗ will be decreasing in ca. To see this,

both in peak and off-peak periods part-timers will participate with mixed strategies while com-

mitted full-timers will always participate; in particular, full-timers in this case will all commit to

working on the platform as the expected utility is strictly higher than their outside option (i.e.,

u=
∑

t∈{h,l} βt(rt− cf )+ >u0). The company’s optimization problem is thus to control part-timers’

participation probabilities qa,h and qa,l, i.e.,

max
(qa,h,qa,l)∈[0,1]2

βh(ph−ca(
1

µh−λf − qa,hλa,h
+

1

τ
))(λf +qa,hλa,h)+βl(pl−ca(

1

µl−λf − qa,lλa,l
+

1

τ
))(λf +qa,lλa,l),

which, as one can verify using the Envelope theorem, will decrease in ca.

Case II: rh = (r0−βlca)/βh, rl = ca. We claim that the company’s profit Π∗ will decrease in ca in

this case. To see this, first notice that (r0−βlca)/βh ∈ (cf , ca) given that ca ∈ (r0, (r0−βhcf )/βl). As

such, during peak periods all committed full-timers will participate but no part-timers will do so.

Similarly, because rl = ca, during off-peak periods still all committed full-timers will participate yet

this time part-timers will participate with a mixed strategy. Also note that full-timers will commit

with a mixed strategy since the expected utility on the platform exactly equals their outside option
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(i.e., u=
∑

t∈{h,l} βt(rt− cf )+ = u0). Hence, the company’s optimization problem is thus to control

full-timers’ commitment probability q and part-timers’ participation probability qa,l, i.e.,

max
(q,qa,l)∈[0,1]2

βh(ph−
r0−βlca

βh

(
1

µh− qλf
+

1

τ
))qλf +βl(pl− ca(

1

µl− qλf − qa,lλa,l
+

1

τ
))(qλf + qa,lλa,l).

By applying the Envelope theorem with respect to ca, we have

dΠ∗

dca
= (

1

µh− qλf
+

1

τ
)qλf − (

1

µl− qλf − qa,lλa,l
+

1

τ
)(qλf + qa,lλa,l)

=
−qa,lλa,l

τ
+

qλf
µh− qλf

− qλf + qa,lλa,l
µl− qλf − qa,lλa,l

< 0,

which implies that the company’s optimal profit will decrease in ca.

Case III: rh = ca, rl = (r0 − βhca)/βl. We claim that in this case the company’s profit Π∗ will

either (1) increase, or (2) decrease, or (3) first decrease but then increase in ca. To see this, given

rh and rl, similarly as in Case III one can verify that (1) during peak periods, all committed full-

timers will participate but part-timers will participate with a mixed strategy, (2) during off-peak

periods still all committed full-timers will participate but no part-timers will do so, and (3) full-

timers will commit with a mixed strategy since the expected utility on the platform exactly equals

their outside option. Hence, the company’s optimization problem is thus to control full-timers’

commitment probability q and part-timers’ participation probability qa,h, i.e.,

max
(q,qa,h)∈[0,1]2

βh(ph− ca(
1

µh− qλf − qa,hλa,h
+

1

τ
) )( qλf + qa,hλa,h)

+ βl(pl−
r0−βhca

βl

(
1

µl− qλf
+

1

τ
))qλf .(OA.4)

For this optimization problem, given any q > 0, the optimization with respect to qa,h yields the

following solution,

q∗a,h = min{1,
(µh−

√
µhτca
phτ−ca

− qλf )+

λa,h
},

where x+ = max{x,0}. Define λ̄h = µh−
√
µhτca/(phτ − ca) and λ̄h

′
= µh−

√
µhτca/(phτ − ca)−λa,h.

Plugging q∗a,h into the problem (OA.4), we have

Π∗ = max{ maxqλf≤λ̄h′ Π1 ≡ βh(ph− ca(
1

µh− qλf −λa,h
+

1

τ
))(qλf +λa,h)

+ βl(pl−
r0−βhca

βl

(
1

µl− qλf
+

1

τ
))qλf , (OA.5)

maxqλf∈[λ̄h
′,λ̄h] Π2 ≡ βh(ph− ca(

√
phτ − ca
µhτca

+
1

τ
))(µh−

√
µhτca
phτ − ca

)
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+ βl(pl−
r0−βhca

βl

(
1

µl− qλf
+

1

τ
))qλf . (OA.6)

maxqλf≥λ̄h Π3 ≡ βh(ph− ca(
1

µh− qλf
+

1

τ
))qλf

+ βl(pl−
r0−βhca

βl

(
1

µl− qλf
+

1

τ
))qλf .} (OA.7)

Further define λ̄l = µl−
√
µlτrl/(plτ − rl). To understand the impact of ca on Π∗, a key step is to

pin down the optimal q∗ for Π∗, which in turn hinges on the structural properties of Π1 defined in

(OA.5) and Π2 defined in (OA.6). Note that, we have

dΠ1

dq
∝ βh(ph− ca(

µh

(µh− qλf −λa,h)2
+

1

τ
)) +βl(pl−

r0−βhca
βl

(
µl

(µl− qλf )2
+

1

τ
)), (OA.8)

dΠ2

dq
∝ pl−

r0−βhca
βl

(
µl

(µl− qλf )2
+

1

τ
), (OA.9)

dΠ3

dq
∝ βh(ph− ca(

µh

(µh− qλf )2
+

1

τ
)) +βl(pl−

r0−βhca
βl

(
µl

(µl− qλf )2
+

1

τ
)), (OA.10)

where the notation x∝ y implies that x= ky for some irrelevant constant k. One may notice that

all the derivatives above are decreasing in q; in other words, all of Π1, Π2 and Π3 are concave in q.

In addition, qλf = λ̄h
′

and qλf = λ̄l are roots for the first and the second summand in (OA.8), and

qλf = λ̄h is the root for the first summand in (OA.10), respectively. We proceed with the following

three scenarios.

Scenario A: λ̄l ≥ λ̄h. First, for qλf ≤ λ̄h
′
, one can verify that dΠ/dq= dΠ1/dq > 0 for all qλf ≤ λ̄h

′
,

and this implies that the locally optimal (i.e., for qλf ≤ λ̄h
′
) commitment probability q∗loc must be

q∗locλf = λ̄h
′
. We thus have

Π∗1 ≡ maxqλf≤λ̄h′ Π1 = βh(ph− ca(
√
phτ − ca
µhτca

+
1

τ
))(µh−

√
µhτca
phτ − ca

)

+ βl(pl−
r0−βhca

βl

(
1

µl− (µh−
√

µhτca
phτ−ca

−λa,h)
+

1

τ
))(µh−

√
µhτca
phτ − ca

−λa,h)

Next, for qλf ∈ [λ̄h
′
, λ̄h], because λh ≤ λl, one can verify that dΠ/dq = dΠ2/dq > 0 for all qλf ≤

[λ̄h
′
, λ̄h], and this indicates that the locally optimal (i.e., for qλf ∈ [λ̄h

′
, λ̄h]) commitment probability

q∗loc must be q∗locλf = λ̄h. Hence,

Π∗2 ≡ maxqλf∈[λ̄h
′,λ̄h] Π2 = βh(ph− ca(

√
phτ − ca
µhτca

+
1

τ
))(µh−

√
µhτca
phτ − ca

)

+ βl(pl−
r0−βhca

βl

(
1

µl− (µh−
√

µhτca
phτ−ca

)
+

1

τ
))(µh−

√
µhτca
phτ − ca

),

which is higher than maxqλf≤λ̄h′ Π1 given the concavity of Π2.
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Finally, for qλf ≥ λ̄h, one can verify that dΠ/dq = dΠ3/dq > 0 at qλf = λ̄h and dΠ/dq < 0 at

qλf = λ̄l. With the concavity of Π3, this indicates that the locally optimal (i.e., for qλf ≥ λ̄h)

commitment probability q∗loc must be such that dΠ/dq= 0 at q= q∗loc, and this λ?f ≡ q∗locλf ∈ (λ̄h, λ̄l).

We thus have

Π∗3 ≡ maxqλf≥λ̄h Π3 = βh(ph− ca(
1

µh−λ?f
+

1

τ
))λ?f +βl(pl−

r0−βhca
βl

(
1

µl−λ?f
+

1

τ
))λ?f ,

which is higher than maxqλf∈[λ̄h
′,λ̄h] Π2 because of the concavity of Π3. Therefore, the (globally)

optimal commitment probability q∗ for Π∗ must be q∗λf = λ?f .

With q∗ and q∗a,h, we can derive the transaction volume in peak and off-peak periods respectively

as λ∗h = λ∗l = λ?f . Applying the Envelope theorem to Π∗ defined in (OA.4) with respect to ca, we

have

dΠ∗

dca
= −(

1

µh−λ∗h
+

1

τ
)λ∗h + (

1

µl−λ∗l
+

1

τ
)λ∗l > 0,

which implies the optimal profit Π∗ will increase in ca.

Scenario B: λ̄l ∈ [λ̄h
′
, λ̄h]. We claim that in this subcase the optimal q∗ for Π∗ will be λ̄l. To see

this, first, for qλf ≤ λ̄h
′
, one can verify that dΠ/dq= dΠ1/dq > 0 for all qλf ≤ λ̄h

′
, and this implies

that the locally optimal (i.e., for qλf ≤ λ̄h
′
) commitment probability q∗loc must be just q∗locλf = λ̄h

′
.

We thus have

Π∗1 = maxqλf≤λ̄h′ Π1 = βh(ph− ca(
√
phτ − ca
µhτca

+
1

τ
))(µh−

√
µhτca
phτ − ca

)

+ βl(pl−
r0−βhca

βl

(
1

µl− (µh−
√

µhτca
phτ−ca

−λa,h)
+

1

τ
))(µh−

√
µhτca
phτ − ca

−λa,h)

Next, for qλf ∈ [λ̄h
′
, λ̄h], since now we have λ̄l ∈ [λ̄h

′
, λ̄h], one can verify that dΠ/dq= dΠ2/dq≥ 0

for qλf ≤ λ̄l and dΠ/dq < 0 otherwise. With the concavity of Π2, this indicates that the locally

optimal (i.e., for qλf ∈ [λ̄h
′
, λ̄h]) commitment probability q∗loc must be q∗locλf = λ̄l. Hence,

Π∗2 = maxqλf∈[λ̄h
′,λ̄h] Π2 = βh(ph− ca(

√
phτ − ca
µhτca

+
1

τ
))(µh−

√
µhτca
phτ − ca

)

+ βl(pl−
r0−βhca

βl

(

√
plτ − rl
µlτrl

+
1

τ
))(µl−

√
µlτrl
plτ − rl

),

which is higher than maxqλf≤λ̄h′ Π1 because of the concavity of Π2.

Finally, for qλf ≥ λ̄h, one can verify that dΠ/dq= dΠ3/dq≤ 0 for any q such that qλf ≥ λ̄h. Hence

the locally optimal (i.e., for qλf > λ̄h) commitment probability q∗loc must be q∗locλf = λ̄h and

Π∗3 = maxqλf≥λ̄h Π3 = βh(ph− ca(
√
phτ − ca
µhτca

+
1

τ
))(µh−

√
µhτca
phτ − ca

)
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+ βl(pl−
r0−βhca

βl

(
1

µl− (µh−
√

µhτca
phτ−ca

)
+

1

τ
))(µh−

√
µhτca
phτ − ca

),

which is clearly lower than maxqλf∈[λ̄h
′,λ̄h] Π2. Therefore, the (globally) optimal commitment prob-

ability q∗ for Π∗ must be q∗λf = λ̄l ∈ [λ̄h
′
, λ̄h].

Now, with q∗ and q∗a,h, we can derive the transaction volume in peak and off-peak periods respec-

tively as

λ∗h = µh−
√

µhτca
phτ − ca

, λ∗l = µl−
√

µlτrl
plτ − rl

.

By applying the Envelope theorem to Π∗ defined in (OA.4) with respect to ca, we have

dΠ∗

dca
= −(

1

µh−λ∗h
+

1

τ
)λ∗h + (

1

µl−λ∗l
+

1

τ
)λ∗l ,

which will increase in ca because (1) λ∗h is decreasing in ca, and (2) λ∗l will increase in ca given that

rl is decreasing in ca. Hence, it is possible that (1) dΠ∗/dca > 0 (and thus Π∗ is increasing in ca),

(2) dΠ∗/dca < 0 (and thus Π∗ is decreasing in ca), or (3) dΠ∗/dca is first negative but then positive

(and thus Π∗ is first decreasing but then increasing in ca).

Scenario C: λ̄l < λ̄h
′
. For qλf ≤ λ̄h

′
, one can verify that dΠ/dq = dΠ1/dq > 0 at qλf = λ̄l and

dΠ/dq < 0 at qλf = λ̄h
′
. With the concavity of Π1, this indicates that the locally optimal (i.e.,

for qλf ≤ λ̄h
′
) commitment probability q∗loc must be such that dΠ/dq = 0 at q = q∗loc, and this

λ?f ≡ q∗locλf ∈ (λ̄l, λ̄h
′
). We thus have

Π∗1 = maxqλf≤λ̄h′ Π1 = βh(ph− ca(
1

µh−λ?f −λa,h
+

1

τ
))(λ?f +λa,h) +βl(pl−

r0−βhca
βl

(
1

µl−λ?f
+

1

τ
))λ?f .

Next, for qλf ∈ [λ̄h
′
, λ̄h], since now we have λ̄l < λ̄h

′
, one can verify that dΠ/dq= dΠ2/dq≤ 0 for all

qλf ≥ λ̄l
′
. With the concavity of Π2, this indicates that the locally optimal (i.e., for qλf ∈ [λ̄h

′
, λ̄h])

commitment probability q∗loc must be q∗locλf = λ̄h
′
. Hence,

Π∗2 = maxqλf∈[λ̄h
′,λ̄h] Π2 = βh(ph− ca(

√
phτ − ca
µhτca

+
1

τ
))(µh−

√
µhτca
phτ − ca

)

+ βl(pl−
r0−βhca

βl

(
1

µl− (µh−
√

µhτca
phτ−ca

−λa,h)
+

1

τ
))(µh−

√
µhτca
phτ − ca

−λa,h),

which is clearly lower than maxqλf≤λ̄h′ Π1.

Finally, for qλf ≥ λ̄h, one can verify that dΠ/dq= dΠ3/dq≤ 0 for any q such that qλf ≥ λ̄h. Hence

the locally optimal (i.e., for qλf > λ̄h) commitment probability q∗loc must be q∗locλf = λ̄h and

Π∗3 = maxqλf≥λ̄h Π3 = βh(ph− ca(
√
phτ − ca
µhτca

+
1

τ
))(µh−

√
µhτca
phτ − ca

)
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+ βl(pl−
r0−βhca

βl

(
1

µl− (µh−
√

µhτca
phτ−ca

)
+

1

τ
))(µh−

√
µhτca
phτ − ca

),

which is clearly lower than maxqλf∈[λ̄h
′,λ̄h] Π2. Therefore, the (globally) optimal commitment prob-

ability q∗ for Π∗ must be q∗λf = λ?f ∈ (λ̄l, λ̄h
′
).

Now, with q∗ and q∗a,h, we can derive the transaction volume in peak and off-peak periods respec-

tively as

λ∗h = λ?f +λa,h, λ
∗
l = λ?f .

By applying the Envelope theorem to Π∗ defined in (OA.4) with respect to ca, we have

dΠ∗

dca
= −(

1

µh−λ∗h
+

1

τ
)λ∗h + (

1

µl−λ∗l
+

1

τ
)λ∗l ,

⇒ d2Π∗

dc2
a

= (
µl

(µl−λ∗l )2
− µh

(µh−λ∗h)2
)
dq∗

dca
. (OA.11)

Recall the first-order derivative defined in (OA.8). For q= q∗, we have

d2Π

dqdca
=
d2Π1

dqdca
∝ − µh

(µh−λh)2
+

µl

(µl−λl)2
,

which implies that q∗ will increase in ca and thus dq∗/dca ≥ 0 if and only if −µh/(µh−λh)
2 +µl/(µl−

λl)
2 ≥ 0. Therefore, d2Π∗/dc2

a defined in (OA.11) must be positive, which implies that dΠ∗/dca

will increase in ca. Hence, as with Scenario B, it is possible that (1) dΠ∗/dca > 0 (and thus Π∗ is

increasing in ca), (2) dΠ∗/dca < 0 (and thus Π∗ is decreasing in ca), or (3) dΠ∗/dca is first negative

but then positive (and thus Π∗ is first decreasing but then increasing in ca).

Case IV: rh ∈ (ca, (r0 − βlcf )/βh), rl = (r0 − βhrh)/βl. Given that rl = (r0 − βhrh)/βl ∈ (cf , r0),

similarly as in Case IV one can verify that (1) during peak periods, all committed full-timers and

available part-timers will participate, (2) during off-peak periods still all committed full-timers will

participate but no part-timers will do so, and (3) full-timers will commit with a mixed strategy

since the expected utility on the platform exactly equals their outside option. Hence, the company’s

optimization problem is thus to control full-timers’ commitment probability q and the earning rate

during peak periods rh, i.e.,

max
rh∈(ca,

r0−βlcf
βh

),q∈[0,1]
βh(ph− rh(

1

µh− qλf −λa,h
+

1

τ
))(qλf +λa,h)

+ βl(pl−
r0−βhrh

βl

(
1

µl− qλf
+

1

τ
))qλf .

As ca increases, one can see that the feasibility space (i.e., (ca,
r0−βlcf
βh

)× [0,1]) shrinks. This implies

that the company’s optimal profit Π∗ will decrease in ca.
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Case V: rh = (r0−βlcf )/βh, rl = cf . Similarly as in Case I, one can verify that Π∗ in this case will

be constant in ca.

In summary, we have verified that the function value in any Case from I to IV is either increasing,

or decreasing or first decreasing and then increasing in ca. As such, the company’s optimal profit

Π∗, which is the maximum among all the functions from Case I to IV, must be first decreasing

and then increasing in ca in general.27 Since the optimal profit Π∗fo in the full-timer-only CM is

constant of ca, there shall exist c′′, c′′ such that Π∗ ≤Π∗fo if ca ∈ [c′′, c′′].28

Proof of Proposition 2

We first verify Proposition 2(ii). Note that,

∂2ΠE

∂q∂B
=−(

∑
t∈{h,l}

βtµt
(µt− qλf )2

+
1

τ
)λf < 0,

which implies that the optimal fraction of full-timers to hire q∗E and thus the equilibrium transaction

volume λ∗E = q∗Eλf are decreasing in B. Then for part(iii), using the envelop theorem, we have

∂ΠE/∂B =−(
∑

t∈{h,l} βt/(µt−q∗Eλf )+ 1
τ
)q∗Eλf < 0, which implies that the company’s optimal profit

Π∗E is also decreasing in B.

We now verify part(i). We essentially attempt to verify that ∂S∗E/∂B will first be positive and

then negative as B increases. To this end, note that the first-order condition with respect to λ∗E is∑
t∈{h,l}

βtpt− rB(
∑
t∈{h,l}

βtµt
(µt−λ∗E)2

+
1

τ
) = 0⇒B =

∑
t∈{h,l} βtpt∑

t∈{h,l}
βtµt

(µt−λ∗E)2
+ 1

τ

− r0.

As such, the analysis of ∂S∗E/∂B can be transformed to that of ∂S∗E/∂λ
∗
E. For simplicity let y≡ λ∗E.

Further define νp =
∑

t∈{h,l} βtpt. After some algebraic manipulations, we have

∂S∗E
∂y

= νp

3− 2
1
τ +

βhµh

(µh−y)
2

µh
µh−y

+
βlµl

(µl−y)
2

µl
µl−y

1
τ +

βhµh

(µh−y)
2 +

βlµl

(µl−y)
2

1
τ

+ βhµh
(µh−y)2

+ βlµl
(µl−y)2

− r0 (OA.12)

Given that
∂S∗E
∂y
|y=0 =

νp
1
τ

+ βh
µh

+ βl
µl

− r0 > 0, lim
y→µl

∂S∗E
∂y

=−∞,

27 Since there are only finite number of functions from Case I to IV, there can be only a finite number of interactions
between any two of them, and therefore there are only finite number of segments. Take the maximum among all
functions on each segment. Suppose on one such segment the maximum value is first decreasing and then increasing
(in ca). Then clearly the function value to the left of this segment can only be decreasing (in ca), and to the right
of this segment can only be increasing (in ca). Similar arguments can be made should the function value on this
particular segment is increasing or decreasing in ca.

28 For [c′′, c′′] to be nonempty, we need extra conditions on other primitives. For conciseness, we omit the discussion
here and elsewhere on similar issues.
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it suffices to show that ∂S∗E/∂y has only one zero point on (0, µl). The key is then to show that

∂S∗E/∂y is decreasing in y. Note that, the denominator in the first component of (OA.12) is increas-

ing in y. Hence it is sufficient to verify that the nominator is decreasing in y. This is verified as

follows,

∂
∂y

(
1
τ

+ βhµh
(µh−y)2

µh
µh−y

+ βlµl
(µl−y)2

µl
µl−y

1
τ

+ βhµh
(µh−y)2

+ βlµl
(µl−y)2

)

=

2y
τ

(
βhµh

(µh−y)4
+ βlµl

(µl−y)4

)
+
(

βhµ
2
h

(µh−y)4
+

βlµ
2
l

(µl−y)4

)(
1
τ

+ βhµh
(µh−y)2

+ βlµl
(µl−y)2

)
+ 2βhβlµhµl(µh−µl)2y

(µh−y)4(µl−y)4(
1
τ

+ βhµh
(µh−y)2

+ βlµl
(µl−y)2

)2 ≥ 0.�

Proof of Theorem 1

The results follow by combining Propositions 1 and 2. �

Proof of Theorem 2
Proof of Theorem 2 Part I

Define B+ = τph − r0. For B ≥ B+, the wage floor rB/τ is higher than even the service price in

peak periods (i.e., rB/τ ≥ ph). The company then shuts down and full-timers’ welfare in the C+M

equilibrium S∗+ = 0≤ S∗.

Next define B+ = τpl− r0. For B ≤B+, the wage floor rB/τ is lower than service prices in both

peak and in off-peak periods (i.e., rB/τ ≤ pt for t ∈ {h, l}), and the company will keep operating

throughout the day. We now verify that for B ≤B+, the full-timers’ welfare in the C+M is (weakly)

higher than in the CM (i.e., S∗+ ≥ S∗). If the wage floor rB/τ in the C+M indeed raises the optimal

piece-rate wage in any period (i.e., w∗+,t ≥w∗t for t∈ {h, l}), then according to the Proof of Lemma

1, the average earning rates both in peak and off-peak periods and thus full-timers’ welfare will be

higher in the C+M than in the CM (i.e., S∗+ ≥ S∗). Chances are that the optimal piece-rate wages

in the CM may be sufficiently low in some periods but sufficiently high in the others; as the wage

floor rB/τ in the C+M pushes up the low wages in some periods, the company may no longer find

it optimal to pay the same high piece-rate wages in the other periods as in the CM (think about

the temporal incentive pooling strategy we analyze in Section 3.1). As a result, the wage floor rB/τ

may result in higher wages in the C+M than in the CM in some periods but lower wages in the

others (i.e., w∗+,t ≥ w∗t but w∗+,−t < w∗−t for some t ∈ {h, l}) Below we will show that even in such

cases we still have S∗+ ≥ S∗.

Lemma. We have S∗+ ≥ S∗ even when w∗+,t ≥w∗t but w∗+,−t <w
∗
−t for some t∈ {h, l}.
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Proof. Suppose the opposite is true, i.e., S∗ > S∗+. This implies that S∗ > 0, which in turn

implies that ca > r0 according to Lemma OA.10. To streamline the discussion, we focus on the case

with ca ∈ (r0, (r0−βhcf )/βl). The underlying rationale applies to the other cases.

As we show in the Proof of Proposition 1, when ca ∈ (r0, (r0− βhcf )/βl), for full-timers’ welfare

to be strictly positive in the CM equilibrium (i.e., S∗ > 0), the optimal piece-rate wages must be

w∗t = ca(1/(µt − λf − q∗a,tλa,t) for t ∈ {h, l}, where q∗a,t are the optimal solutions to the following

concave optimization program,

max
(qa,h,qa,l)∈[0,1]2

∑
t∈{h,l}

βt(pt− ca(
1

µt−λf − qa,tλa,t
+

1

τ
))(λf + qa,tλa,t).

Now suppose the wage floor rB/τ in the C+M is lower than w∗h but higher than w∗l ; that is, the wage

floor will only enforce in off-peak periods (i.e., w∗+,l ≥ rB/τ ≥w∗l ). But then there is no need for the

company to strictly lower the wage in peak periods, since (a) wh =w∗h ≥ rB/τ is still feasible in the

C+M and (b) the concavity of the company’s profit ensures that any w >w∗h will be suboptimal.

Therefore, we must have w∗+,h =w∗h , but this (together with w∗+,l ≥w∗l ) contradicts that w∗+,t ≥w∗t
but w∗+,−t <w∗−t for some t ∈ {h, l}. Such a contradiction also exists when the wage floor rB/τ in

the C+M is lower than w∗l but higher than w∗h . �

Proof of Theorem 2 Part II

We now verify Theorem 2 parts(i), (ii) and (iii) in order.

For Part(i), if B ≤ mint∈{h,l} τw
∗
t − r0, the wage floor rB/τ in the C+M will be lower than

mint∈{h,l}w
∗
t ; that is, the wage floor will not enforce. Thus, the C+M boils down to the CM.

For Part(ii), we define M̄+ ≡ µh/τ . That Mf ≥ M̄+ implies that full-timers’ gross arrival rate

λf =Mfτ ≥ µh >µl. Then the equilibrium commitment probability among full-timers q∗+ must be

strictly less than 1 in the C+M. To see this, suppose instead q∗+ = 1. Lemma OA.7 implies that

there must be a t ∈ {h, l} such that committed full-timers’ participation probability qf,t = 1. But

then the transaction volume in that period λt ≥ λf ≥ µh, and this will render the average wait

time on the platform prohibitively long, which in turn drives the average earning rate rt down to

zero and thus reduces qf,t to 0 as well. Contradiction. As such, we shall always have q∗+ < 1 and,

according to Lemma OA.8, full-timers’ surplus S∗+ equals 0 in the C+M equilibrium.

We now verify Part(iii). The idea for the proof is that, we will analyze how the equilibrium

average earnings rates r∗+,h and r∗+,l in the C+M is determined by the wage floor rB/τ , and then

show that both r∗+,h and r∗+,l—and thus the full-timers’ expected utility u∗+ in equilibrium—are

decreasing in the labor pool size of part-timers Ma. Note that, Lemma OA.10 implies that to have
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S∗ > 0 we must have ca > r0. For succinctness, below we elaborate the idea with the case where

ca ∈ (r0, (r0−βhcf )/βl). The remaining scenarios (i.e., ca > (r0−βhcf )/βl) can be verified similarly.

In the Proof of Proposition 1(i), we show that when ca ∈ (r0, (r0−βhcf )/βl), if full-timers’ surplus

S∗ > 0 in the CM equilibrium, the company must have set the optimal earning rates as r∗h = r∗l = ca.

As such, all full-timers will commit to the platform and participate all day long, and the company’s

profit maximization problem is to control part-timers’ participation probabilities qa,h and qa,l; see

the Lemma in the Proof of Proposition 1(i) for more details. Denote the optimal part-timers’

participation probabilities in the CM by q∗a,h and q∗a,l. Then according to Lemma OA.2, the optimal

piece-rate wages in the CM are essentially

w∗t = ca(
1

µt−λf − q∗a,tλa,t
+

1

τ
), t∈ {h, l}.

Now, suppose B is sufficiently low such that rB/τ ≤mint∈{h,l}w
∗
t . Then clearly the optimal piece-

rate wages in the C+M are the same as in the CM, and so are the corresponding average earning

rates, i.e., r∗+,h = r∗+,l = ca. Then suppose rB/τ >w
∗
h while rB/τ ≤w∗l , which imply that the off-peak

wage w∗l in the CM is still feasible (and thus still optimal) in the C+M while the peak wage w∗h is no

longer so. To pin down the optimal piece-rate wage during peak periods for the C+M, notice that

the company’s profit function (OA.2) is concave in part-timers’ participation probability qa,h. This

implies that the constraint wh ≥ rB/τ will push up part-timers’ participation probability qa,h until

it reaches 1; that is, the optimal peak wage w∗+,h will equal rB/τ , the corresponding average earning

rate r∗+,h will still be ca, and the optimal participation probability qa,h be such that w∗+,h = rB/τ .

If qa,h has already reach 1, then all available workers, full-time or part-time, are attracted to the

platform. Hence the corresponding average earning rate r∗+,h = rB/τ/(1/(µh − λf − λa,t) + 1/τ),

which will be higher than ca. In summary, we have

r∗+,h =

ca if rB ≤ τ · ca( 1
µh−λf−λa,h

+ 1
τ
),

rB/τ
1

µh−λf−λa,t
+ 1
τ

otherwise,

which can be verified to decrease in part-timers’ gross arrival rate λa,t and thus their labor pool

size Ma.

For the remaining cases (i.e., the one with rB/τ ≤w∗h but rB/τ >w
∗
l and the one with rB/τ >w

∗
t

for t ∈ {h, l}), one can similarly verify that the optimal average earning rates r∗+,h and r∗+,l in the

C+M will decrease in Ma. Therefore, full-timers’ expected utility u∗+ in the C+M equilibrium must

be decreasing in Ma as well. We thus have

S∗+−S∗

S∗
=
u∗+
u∗
− 1 =

u∗+
ca− cf

− 1

decreasing in Ma. �
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Proof of Theorem 3

The result for EM versus CM follows Proposition 2(ii) and that the transaction volume λ∗ in the

CM is constant of B.

For C+M versus CM, See Proof of Theorem 2 Part I for the existence of B+. Define B
′
+ ≡

maxt∈{h,l} τw
∗
t − r0, where w∗t denotes the optimal piece-rate wage in the CM. For B ≥ B′+, the

wage floor rB/τ in the C+M will be higher than the optimal wages in the CM both in peak and in

off-peak periods. Hence the optimal wages in the C+M must be higher than those in the CM both

in peak and in off-peak periods, i.e., w∗+,t ≥ w∗t for t ∈ {h, l}. Then according to the monotonicity

of the transaction volume which we establish in Corollary OA.6, we have λ∗+ ≥ λ∗. �

Proof of Theorem 4
Proof of Theorem 4 Part I

The inequality Π∗+ ≤Π∗ immediately follows the fact that the wage floor rB/τ in the C+M shrinks

the set of feasible piece-rate wages for the company.

Proof of Theorem 4 Part II

We next verify the result that the company’s optimal profit is lower in the EM than in the CM,

i.e., Π∗E ≤Π∗. To this end, recall that λ∗E denotes the optimal workforce in the EM, and below is

the company’s optimal profit in the EM

Π∗E = βh(ph− rB(
1

µh−λ∗E
+

1

τ
))λ∗E +βl(pl− rB(

1

µl−λ∗E
+

1

τ
))λ∗E

≤ Π̄∗E ≡ βh(ph− r0(
1

µh−λ∗E
+

1

τ
))λ∗E +βl(pl− r0(

1

µl−λ∗E
+

1

τ
))λ∗E, (OA.13)

and the inequality is given by that Π∗E is decreasing in the lump-sum benefit B, which we show

in Proposition 2. Also recall that we use λa,h and λa,l to denote part-timers’ arrival rates and

λh and λl to denote the participation rates of full- and part-timers combined during peak and

off-peak periods in the CM, respectively. Finally, recall the presumption that for full-timers, their

reservation earning rate r0 is strictly higher than their average time value cf , i.e., r0 > cf , and note

that for simplicity we assume ca 6= r0 and ca 6= cf .

The key to the proof is properly lower bounding the company’s optimal profit Π∗ in the CM—

which can be done by specifying a feasible earning rate schedule (rh, rl) and a worker participation

rate schedule (λh, λl)—and then show that such a lower bound is already higher than Π∗E. To

proceed, consider the following cases.

Case I: ca > r0 > cf . In this case, it is essentially more costly for the company to incentivize

part-timers than full-timers. One feasible pair of piece-rate wages for the company (wh,wl) in the



32

CM is such that the induced earning rates in both peak and off-peak periods rh and rl equal to

full-timers’ reservation earning rate r0. Then no part-timers will ever participate since the average

earning rate in either period is strictly less than their time value, i.e., rt < ca for t∈ {h, l}, whereas

committed full-timers will participate in both periods since rh = rl > cf . As such, the company can

set the committing probability among full-timers q to be exactly the optimal fraction of full-timers

to hire in the EM q∗E, and workers’ participation rates in the CM will thus be λh = λl = λ∗E. Then

by construction the feasible piece-rate wages (wh,wl) are

wh = r0(
1

µh−λ∗E
+

1

τ
),wl = r0(

1

µl−λ∗E
+

1

τ
).

Plugging (wh,wl) in the company’s profit function Π, we obtain a lower bound for the company’s

optimal profit Π∗ in the CM and we can then compare Π∗ and Π∗E as follows.

Π∗ ≥ βh(ph− r0(
1

µh−λ∗E
+

1

τ
))λ∗E +βl(pl− r0(

1

µl−λ∗E
+

1

τ
))λ∗E ≥Π∗E.

Case II: ca ∈ (cf , r0). Compared with Case I, it essentially becomes less costly for the company

to incentivize part-timers. We further break down the analysis into four subcases.

Case II.A: λa,t ≥ λ∗E for any t ∈ {h, l}. A feasible solution for the company in the CM is to set

rh = rl = ca. As such, only part-timers will ever join the platform because for the full-timers the

expected utility of working on the platform u= βh(rh− cf )+ + βl(rl− cf )+ = ca− cf <u0 = r0− cf .

Then the company’s problem is to optimally control part-timers’ joining rates in each period. In

particular, the company can set part-timers’ participation probability during peak periods qa,h =

λ∗E/λa,h and similarly that during off-peak periods as qa,l = λ∗E/λa,l. We thus have λt = qa,tλa,t = λ∗E

for t∈ {h, l} and

Π∗ ≥ βh(ph− ca(
1

µh−λ∗E
+

1

τ
))λ∗E +βl(pl− ca(

1

µl−λ∗E
+

1

τ
))λ∗E

≥ βh(ph− r0(
1

µh−λ∗E
+

1

τ
))λ∗E +βl(pl− r0(

1

µl−λ∗E
+

1

τ
))λ∗E ≥Π∗E

Case II.B: λa,h < λ∗E and λa,l ≥ λ∗E. A feasible solution for the company in the CM is to set

rh = (r0 − βlca)/βh > ca and rl = ca. Then for full-timers, the utility of working on the platform

u= βh(rh − cf )+ + βl(rl − cf )+ = u0, which implies that in stage 0 there will be a mixed-strategy

equilibrium among full-timers, i.e., each full-timer will choose to commit with some probability

q ∈ [0,1]. Note that, because rh > cf and rl > cf , those committed full-timers will all participate in

both peak and off-peak periods; in other words, the effective worker participation rate is at least

qλf in both periods.
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Now, because rl = ca, during off-peak periods there will be a mixed strategy equilibrium among

part-timers, i.e., each part-timer participates with some probability qa,l ∈ [0,1]. In contrast, as

rh = (r0 − βlca)/βh > ca, during peak-periods all part-timers would love to participate. As such,

the service level during peak periods is λh = qλf + λa,h, and that during off-peak periods is λl =

qλf + qa,lλa,l. Given the conditions λa,h < λ∗E and λa,l ≥ λ∗E, the company can find such q and qa,l

that enforce λh = λl = λ∗E. Then we have

Π∗ ≥ βh(ph−
r0−βlca

βh

(
1

µh−λ∗E
+

1

τ
))λ∗E +βl(pl− ca(

1

µl−λ∗E
+

1

τ
))λ∗E.

Then combined with the inequality (OA.13),

Π∗−Π∗E ≥ −βh(
r0−βlca

βh

− r0)
λ∗E

µh−λ∗E
+βl(r0− ca)

λ∗E
µl−λ∗E

≥ βl(r0− ca)(
λ∗E

µl−λ∗E
− λ∗E
µh−λ∗E

)≥ 0.

The last inequality holds because µh ≥ µl.

Case II.C: λa,h > λ∗E and λa,l ≤ λ∗E. Recall λ†E,t, t ∈ {h, l} we have defined in Lemma OA.11. If

λa,l ≥ λ†E,l, the company can set rh = rl = ca and then make qa,h = λ∗E/λa,h and qa,l = λ†E,l/λa,l. Then

the company’s profit

Π∗ ≥ βh(ph− ca(
1

µh−λ∗E
+

1

τ
))λ∗E +βl(pl− ca(

1

µl−λ†E,l
+

1

τ
))λ†E,l

≥ βh(ph− r0(
1

µh−λ∗E
+

1

τ
))λ∗E +βl(pl− r0(

1

µl−λ∗E
+

1

τ
))λ∗E ≥Π∗E.

If instead λa,l <λ
†
E,l, suppose first λa,h−λa,l ≤ λ†E,h−λ

†
E,l. The company can still set rh = rl = r0

and choose a committing probability q among full-timers such that λl = qλf + λa,l = λ†E,l; then

naturally we have λh = qλf +λa,h ∈ (λ∗E, λ
†
E,h]. As such,

Π∗ ≥ βh(ph− r0(
1

µh−λh

+
1

τ
))λh +βl(pl− r0(

1

µl−λ†E,l
+

1

τ
))λ†E,l ≥Π∗E,

where the last inequality is essentially given by Lemma OA.11.

Then suppose λa,h−λa,l ≥ λ†E,h−λ
†
E,l. The analysis for this scenario follows essentially the same

idea as in the upcoming Case II.D. We thus omit the discussion here.

Case II.D: λa,t ≤ λ∗E for any t∈ {h, l}. Recall λ†E,h and λ†E,l that we have defined previously.

First, suppose λa,h >λa,l and λa,h−λa,l ≤ λ†E,h−λ
†
E,l. Then the company can set rh = rl = r0 and

make sure full-timers’ committing probability q satisfy

λh = qλf +λa,h ∈ [λ∗E, λ
†
E,h], λl = qλf +λa,l ∈ [λ†E,l, λ

∗
E].
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Then we have

Π∗ ≥ βh(ph− r0(
1

µh−λh

+
1

τ
))λh +βl(pl− r0(

1

µl−λl

+
1

τ
))λl

≥ βh(ph− ca(
1

µh−λ∗E
+

1

τ
))λ∗E +βl(pl− ca(

1

µl−λ∗E
+

1

τ
))λ∗E ≥Π∗E,

of which the second inequality is given by the definitions of λ†E,h and λ†E,l as well as the concavity

of company’s profit ΠE in workforce λ; see the proof of Lemma OA.11 for more details.

Next, we consider the scenario with λa,h > λa,l but λa,h − λa,l ≥ λ†E,h − λ
†
E,l. Denote the term

µt −
√
µtτr0/(ptτ − r0) defined in Lemma OA.11 as λ̄E,t. We shall examine the following sub-

scenarios.

(a) λf ≤ λ̄E,l < λ̄E,h. According to Lemma OA.11, we have λ∗E = λ†E,h = λ†E,l = λf . If λa,h− λa,l ≤

λ̄E,h−λf , the company can set rh = rl = r0 and choose a committing probability q among full-timers

such that

λh = qλf +λa,h ∈ (λf , λ̄E,h], λl = qλf +λa,l = λf .

As such, we have

Π∗ ≥ βh(ph− r0(
1

µh−λh

+
1

τ
))λh +βl(pl− r0(

1

µl−λf
+

1

τ
))λf ≥Π∗E.

If λa,h−λa,l > λ̄E,h−λf , the company can set rh = ca, rl = (r0−βhca)/βl and choose a committing

probability q among full-timers and a participation probability qa,h among part-timers during peak

periods such that

qλf + qa,hλa,h = λ̄E,h, qλf +λa,l = λf .

We then have

Π∗ ≥ βh(ph− ca(
1

µh− λ̄E,h
+

1

τ
))λ̄E,h +βl(pl−

r0−βhca
βl

(
1

µl−λf
+

1

τ
))λf

and, combining the inequality (OA.13),

Π∗−Π∗E ≥ βh(r0− ca)(
1

µh− λ̄E,h
+

1

τ
)λ̄E,h−βh(r0− ca)(

1

µl−λf
+

1

τ
)λf ≥ 0.

The last inequality holds because λ̄E,h > λ̄E,l ≥ λf and

λ̄E,h
µh− λ̄E,h

− λf
µl−λf

≥ λ̄E,h
µh− λ̄E,h

− λ̄E,l
µl− λ̄E,l

=

√
µh(phτ − r0)
√
τr0

−
√
µl(plτ − r0)
√
τr0

≥ 0.
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(b) λ̄E,l < λf < λ̄E,h. By definition we have λ†E,h = λf and λ†E,l = λ̄E,l. If λa,h − λa,l ≤ λ̄E,h − λ̄E,l,

the company can set rh = rl = r0 and choose a committing probability q among full-timers such

that

λh = qλf +λa,h ∈ [λf , λ̄E,h], λl = qλf +λa,l = λ̄E,l.

As such, we have

Π∗ ≥ βh(ph− r0(
1

µh−λh

+
1

τ
))λh +βl(pl− r0(

1

µl− λ̄E,l
+

1

τ
))λ̄E,l ≥Π∗E.

If λa,h−λa,l > λ̄E,h− λ̄E,l, the company can set rh = ca, rl = (r0−βhca)/βl and choose a committing

probability q among full-timers and a participation probability qa,h among part-timers during peak

periods such that

qλf + qa,hλa,h = λ̄E,h, qλf +λa,l = λ̄E,l.

We then have

Π∗ ≥ βh(ph− ca(
1

µh− λ̄E,h
+

1

τ
))λ̄E,h +βl(pl−

r0−βhca
βl

(
1

µl− λ̄E,l
+

1

τ
))λ̄E,l

and thus, similarly as in the sub-scenario (a),

Π∗−Π∗E ≥ βh(r0− ca)(
1

µh− λ̄E,h
+

1

τ
)λ̄E,h−βh(r0− ca)(

1

µl− λ̄E,l
+

1

τ
)λ̄E,l ≥ 0.

(c) λ̄E,l < λ̄E,h ≤ λf . By definition we have λ†E,h = λ̄E,h and λ†E,l = λ̄E,l. If λa,h− λa,l ≤ λ̄E,h− λ̄E,l,

the company can set rh = rl = r0 and choose a committing probability q among full-timers such

that

λh = qλf +λa,h ∈ [λ∗E, λ̄E,h], λl = qλf +λa,l ∈ [λ̄E,l, λ
∗
E].

We then have

Π∗ ≥ βh(ph− r0(
1

µh−λh

+
1

τ
))λh +βl(pl− r0(

1

µl−λl

+
1

τ
))λl

≥ βh(ph− ca(
1

µh−λ∗E
+

1

τ
))λ∗E +βl(pl− ca(

1

µl−λ∗E
+

1

τ
))λ∗E ≥Π∗E,

of which the second inequality is given by the definitions of λ†E,h and λ†E,l as well as the concavity

of company’s profit ΠE in workforce λ.

If λa,h − λa,l > λ̄E,h − λ̄E,l, then the current sub-scenario is essentially equivalent to the sub-

scenario (b). Following the discussion there one can see that again Π∗ ≥Π∗E.

Finally, we discuss the scenario with λa,h ≤ λa,l. The company can set rh = (r0−βlca)/βh, rl = ca

and find such q and qa,l that enforce λh = λl = λ∗E. Then we have

Π∗ ≥ βh(ph−
r0−βlca

βh

(
1

µh−λ∗E
+

1

τ
))λ∗E +βl(pl− ca(

1

µl−λ∗E
+

1

τ
))λ∗E.
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Then combined with the inequality (OA.13),

Π∗−Π∗E ≥ −βh(
r0−βlca

βh

− r0)
λ∗E

µh−λ∗E
+βl(r0− ca)

λ∗E
µl−λ∗E

≥ βl(r0− ca)(
λ∗E

µl−λ∗E
− λ∗E
µh−λ∗E

)≥ 0.

The last inequality holds because µh ≥ µl.

Case III: ca < cf < r0. In this case, it is essentially less costly for the company to incentivize

part-timers than full-timers. Similarly as in Case II, here we will proceed with four subcases.

Case III.A: λa,t ≥ λ∗E for any t ∈ {h, l}. One can follow the same analysis as in Case II.A and

verify that Π∗ ≥Π∗E.

Case III.B: λa,h <λ
∗
E and λa,l ≥ λ∗E. The company can set rh = (r0−βlcf )/βh, rl = ca and choose a

committing probability q among full-timers and a participation probability qa,l among part-timers

during off-peak periods such that qλf +λa,h = λ∗E and qa,lλa,l = λ∗E. We then have

Π∗ ≥ βh(ph−
r0−βlcf

βh

(
1

µh−λ∗E
+

1

τ
))λ∗E +βl(pl− ca(

1

µl−λ∗E
+

1

τ
))λ∗E,

Π∗−Π∗E ≥ −βh(
r0−βlcf

βh

− r0)
λ∗E

µh−λ∗E
+βl(r0− ca)

λ∗E
µl−λ∗E

≥ βl(r0− cf )(
λ∗E

µl−λ∗E
− λ∗E
µh−λ∗E

)≥ 0.

Case III.C: λa,h > λ∗E and λa,l ≤ λ∗E. Recall λ†E,h and λ†E,l we defined previously in Case II. If

λa,l ≥ λ†E,l, the company can set rh = rl = ca and then make qa,h = λ∗E/λa,h and qa,l = λ†E,l/λa,l. Then

the company’s profit

Π∗ ≥ βh(ph− ca(
1

µh−λ∗E
+

1

τ
))λ∗E +βl(pl− ca(

1

µl−λ†E,l
+

1

τ
))λ†E,l

≥ βh(ph− r0(
1

µh−λ∗E
+

1

τ
))λ∗E +βl(pl− r0(

1

µl−λ∗E
+

1

τ
))λ∗E ≥Π∗E.

If instead λa,l <λ
†
E,l, suppose first λa,h−λa,l ≤ λ†E,h−λ

†
E,l. The company can set rh = rl = r0 and

choose a committing probability q among full-timers such that λl = qλf +λa,l = λ†E,l; then naturally

we have λh = qλf +λa,h ∈ (λ∗E, λ
†
E,h]. As such,

Π∗ ≥ βh(ph− r0(
1

µh−λh

+
1

τ
))λh +βl(pl− r0(

1

µl−λ†E,l
+

1

τ
))λ†E,l ≥Π∗E.

Then suppose instead λa,h−λa,l ≥ λ†E,h−λ
†
E,l. The analysis for this scenario follows essentially the

same idea as in the upcoming Case III.D. We thus omit the discussion here.

Case III.D: λa,t ≤ λ∗E for any t ∈ {h, l}. First, suppose λa,h > λa,l and λa,h − λa,l ≤ λ†E,h − λ
†
E,l.

Then the company can set rh = rl = r0 and make sure full-timers’ committing probability q satisfy

λh = qλf +λa,h ∈ [λ∗E, λ
†
E,h], λl = qλf +λa,l ∈ [λ†E,l, λ

∗
E].
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Then by the concavity of company’s profit in λ, we have

Π∗ ≥ βh(ph− ca(
1

µh−λh

+
1

τ
))λh +βl(pl− ca(

1

µl−λl

+
1

τ
))λl ≥Π∗E.

Next, we consider the scenario with λa,h >λa,l but λa,h−λa,l ≥ λ†E,h−λ
†
E,l. Recall that we denote

the term µt −
√
µtτr0/(ptτ − r0) in Lemma OA.11 as λ̄E,t. We shall examine the following sub-

scenarios.

(a) λf ≤ λ̄E,l < λ̄E,h. According to Lemma OA.11, we have λ†E,h = λ†E,l = λ∗E = λf . If λa,h− λa,l ≤

λ̄E,h − λf , the company can still set rh = rl = r0 and choose a committing probability q among

full-timers such that

λh = qλf +λa,h ∈ (λf , λ̄E,h], λl = qλf +λa,l = λf .

As such, we have

Π∗ ≥ βh(ph− r0(
1

µh−λh

+
1

τ
))λh +βl(pl− r0(

1

µl−λf
+

1

τ
))λf ≥Π∗E.

If λa,h−λa,l > λ̄E,h−λf , the company can set rh = cf , rl = (r0−βhcf )/βl and choose a committing

probability q among full-timers and a participation probability qf,h among committed full-timers

during peak periods such that

q · qf,hλf +λa,h = λ̄E,h, qλf +λa,l = λf .

We then have

Π∗ ≥ βh(ph− cf (
1

µh− λ̄E,h
+

1

τ
))λ̄E,h +βl(pl−

r0−βhcf
βl

(
1

µl−λf
+

1

τ
))λf ,

Π∗−Π∗E ≥ βh(r0− cf )(
1

µh− λ̄E,h
+

1

τ
)λ̄E,h−βh(r0− cf )(

1

µl−λf
+

1

τ
)λf

≥ βh(r0− cf )(
λ̄E,h

µh− λ̄E,h
− λ̄E,l
µl− λ̄E,l

)≥ 0;

see Case II.D sub-scenario (a) for details.

(b) λ̄E,l <λf < λ̄E,h. By definition we have λ†E,h = λf >λ
∗
E >λ

†
E,l = λ̄E,l. If λa,h−λa,l ≤ λ̄E,h− λ̄E,l,

the company can set rh = rl = r0 and choose a committing probability q among full-timers such

that

λh = qλf +λa,h ∈ [λf , λ̄E,h], λl = qλf +λa,l = λ̄E,l.

As such, we have

Π∗ ≥ βh(ph− r0(
1

µh−λh

+
1

τ
))λh +βl(pl− r0(

1

µl− λ̄E,l
+

1

τ
))λ̄E,l ≥Π∗E.
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If λa,h−λa,l > λ̄E,h− λ̄E,l, the company can set rh = cf , rl = (r0−βhcf )/βl and choose a committing

probability q among full-timers and a participation probability qf,h among committed full-timers

during peak periods such that

q · qf,hλf +λa,h = λ̄E,h, qλf +λa,l = λ̄E,l.

We then have

Π∗ ≥ βh(ph− cf (
1

µh− λ̄E,h
+

1

τ
))λ̄E,h +βl(pl−

r0−βhcf
βl

(
1

µl− λ̄E,l
+

1

τ
))λ̄E,l,

Π∗−Π∗E ≥ βh(r0− cf )(
1

µh− λ̄E,h
+

1

τ
)λ̄E,h−βh(r0− cf )(

1

µl− λ̄E,l
+

1

τ
)λ̄E,l ≥ 0.

(c) λ̄E,l < λ̄E,h ≤ λf . By definition we have λ†E,h = λ̄E,h and λ†E,l = λ̄E,l. If λa,h− λa,l ≤ λ̄E,h− λ̄E,l,

the company can set rh = rl = r0 and choose a committing probability q among full-timers such

that

λh = qλf +λa,h ∈ [λ∗E, λ̄E,h], λl = qλf +λa,l ∈ [λ̄E,l, λ
∗
E].

As such, we have

Π∗ ≥ βh(ph− r0(
1

µh−λh

+
1

τ
))λh +βl(pl− r0(

1

µl−λl

+
1

τ
))λl ≥Π∗E.

If λa,h − λa,l > λ̄E,h − λ̄E,l, then the current sub-scenario is essentially equivalent to the sub-

scenario (b). Following the discussion there one can see that again Π∗ ≥Π∗E.

Finally, we discuss the scenario with λa,h ≤ λa,l. The company can set rh = (r0−βlcf )/βh, rl = cf

and find such q and qf,l that enforce λh = λl = λ∗E; to be specific,

λh = qλf +λa,h = λ∗E, λl = q · qf,lλf +λa,l = λ∗E.

. Then we have

Π∗ ≥ βh(ph−
r0−βlcf

βh

(
1

µh−λ∗E
+

1

τ
))λ∗E +βl(pl− cf (

1

µl−λ∗E
+

1

τ
))λ∗E,

Π∗−Π∗E ≥ −βh(
r0−βlcf

βh

− r0)
λ∗E

µh−λ∗E
+βl(r0− cf )

λ∗E
µl−λ∗E

≥ βl(r0− cf )(
λ∗E

µl−λ∗E
− λ∗E
µh−λ∗E

)≥ 0.

Proof of Theorem 4 Part III

We now verify the remaining part of Theorem 4; that is, there exist B′ and B
′

such that if B ≤B′

or B ≥B′, the company’s profit Π∗+ in the C+M equilibrium is higher than that Π∗E in the EM.



39

Define B′ = mint∈{h,l} τw
∗
t − r0 and B

′
= maxt∈{h,l} τw

II
t − r0, where {wIIt } denotes the feasible

wages we construct for the CM in Part II of the proof.

First, for B ≤B′, according to the proof of Theorem 2, the wage floor rB/τ in the C+M will not

enforce. We thus have Π∗+ = Π∗ ≥Π∗E.

Next, for B ≥B′, consider w+,t = rB/τ for both t∈ {h, l}. Clearly (w+,h,w+,l) are feasible in the

C+M. That B ≥B′ implies w+,t ≥wIIt ; according to Corollary OA.6, the transaction volume that

can be achieved under wages (w+,h,w+,l) shall be higher than that under (wIIh ,w
II
l ), i.e., λ+,t ≥ λIIt

for any t∈ {h, l}. Therefore, we have

Π∗+ ≥ βh(ph−w+,h)λ+,h +βl(pl−w+,l)λ+,l

≥ βh(ph−
rB
τ

)λIIh +βl(pl−
rB
τ

)λIIl

≥ βh(ph− rB(
1

µh−λIIh
+

1

τ
))λIIh +βl(pl− rB(

1

µh−λIIh
+

1

τ
))λIIl

≥ βh(ph− rB(
1

µh−λ∗E
+

1

τ
))λ∗E +βl(pl− rB(

1

µh−λ∗E
+

1

τ
))λ∗E = Π∗E.

The last inequality follows our definitions of λIIt in Part II. �

Proof of Theorem 5

We first verify the result for full-timers. As we have mentioned in Section 5.1, the key is to show

that the optimal fraction of full-timers to hire q∗H in the HM equals q∗E in the EM. To this end,

∂ΠH

∂q
=
∑
t∈{h,l}

βt(pt− rB(
µt− qa,tλa,t

(µt− qλf − qa,tλa,t)2
+

1

τ
)− ca

qa,tλa,t
(µt− qλf − qa,tλa,t)2

)λf

≤
∑
t∈{h,l}

βt(pt− rB(
µt− qa,tλa,t

(µt− qλf − qa,tλa,t)2
+

1

τ
))λf =

∂ΠE

∂q
.

Therefore we have ∂ΠH/∂q|q=q∗
E
≤ ∂ΠE/∂q|q=q∗

E
. Together with the concavity of ΠH and the con-

straint q≥ q∗E, this implies that q∗H = q∗E. Then the transaction volume is clearly higher in the HM

than in EM (i.e., λ∗H ≥ λ∗E) as the company in the HM may also enroll part-timers. Finally, the

result for company’s profit can be verified as follows,

Π∗H = max
wh,wl

max
q≥q∗

E

∑
t∈{h,l}

βt((pt− rB(Wt +
1

τ
))qλf + (pt−wt)λa,t)

≥ max
q≥q∗

E

∑
t∈{h,l}

βt(pt− rB(Wt +
1

τ
))qλf = Π∗E.�
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Proof of Proposition 3

Note that the expected daily transaction volume in the HM equilibrium λ∗H =
∑

t∈{h,l} βt(q
∗
Hλf +

qH,∗a,t λa,t). We can verify that

∂2ΠH

∂q∂B
=
∑
t∈{h,l}

−βt(
µt− qa,tλa,t

(µt− qλf − qa,tλa,t)2
+

1

τ
)λf ≤ 0,

∂2ΠH

∂qa,t∂B
= −βt

λa,t · qλf
(µt− qλf − qa,tλa,t)2

≤ 0, t∈ {h, l},

which imply that q∗H and (qH,∗a,h , q
H,∗
a,l ) and thus λ∗H will decrease in B.

For the company’s optimal profit Π∗H in the HM, we have

dΠ∗H
dB

=
∂Π∗H
∂B

+
∂Π∗H
∂q
|q=q∗

E
· ∂q

∗
E

∂B

=
∑
t∈{h,l}

−βt(
1

µt−λ∗H,t
+

1

τ
)q∗Hλf +

∂Π∗H
∂q
|q=q∗

E
· ∂q

∗
E

∂B
. (OA.14)

Given that q∗H = q∗E = 1 when B = 0 and that q∗E will decrease in B as we have just verified (i.e.,

dΠ∗H/dB ≤ 0), there must be some B ≥ 0H such that ∂q∗E/∂B = 0 for B ≤BH . Then according to

(OA.14), we have dΠ∗H/dB =
∑

t∈{h,l}−βt(1/(µt−λ∗H,t)≤ 0 for B ≤BH .

Since both λ∗H and Π∗H will decrease in B for B ≤BH while both λ∗ and Π∗ are constant of B,

there exist B
′
H ≤BH such that λ∗H ≥ λ∗ and Π∗H ≥Π∗ for B ≤B′H . Redefine BH ≡min{B′H ,BH}

and we obtain the result. �

Proof of Corollary 1

Corollary 1 follows by combining Theorem 1(i) and Proposition 3. �

Proof of Proposition 4

The result S∗π ≥ S∗ naturally holds when S∗ = 0. When S∗ > 0, Lemma OA.10 implies that ca > r0,

which leads to the following result.

Lemma. With ca > r0, if in the CπM part-timers’ participation probability qπa,t > 0 in both t ∈

{h, l}, the participation probability of committed full-timers (if any) in that period qπf,t must be

strictly positive; in particular, we have qπf,t = 1.

Proof. Suppose instead qπf,t = 0. Since in period t only part-timers are on the platform (i.e.,

qπa,t > 0) and no full-timer is prioritized over them, the average wait time for a participating part-

timer to be dispatched is 1/(µt− qπa,tλa,t). In addition, the company must have set the earning rate

rπa,t = ca because rπa,t < ca is too low to incentivize any part-timer while rπa,t > ca is too much to be

optimal even if all part-timers are to be incentivized (i.e., qπa,t = 1). Then as Lemma OA.1 implies,

the piece-rate wage for period t must be wπ,t = ca(1/(µt− qπa,tλa,t) + 1/τ).
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Now, from the perspective of an infinitesimal full-timer, if he or she is to enter the platform, the

average wait time to be dispatched is simply 1/µt since no other full-timer is present and he or she

is prioritized over all part-timers. As such, the average earning rate for him or her will be

rπf,t =
wπ,t
1
µt

+ 1
τ

=
ca(

1
µt−qπa,tλa,t

+ 1
τ
)

1
µt

+ 1
τ

> cf ,

given that qπf,t > 0 and ca > r0 > cf . This implies that so long there are committed full-timers (i.e.,

qπ > 0), some of them must be willing to participate (i.e., qπf,t > 0) in period t. Indeed, we shall have

qπf,t = 1. Suppose instead qπf,t < 1. Then the average earning rate for full-timers rπf,t must equal cf as

otherwise either more or no committed full-timers will participate. The piece-rate wage for period

t is thus wπ,t = cf (1/(µt − qπf,t · qπλf ) + 1/τ). But then the average earning rate for part-timers

becomes

rπa,t =
wπ,t
1

(µt−qπf,t·qπλf )(µt−qπf,t·qπλf−q
π
a,tλa,t)/µt

+ 1
τ

< cf < ca,

which renders part-timers’ participation probability qπa,t = 0, which contradicts that qπa,t > 0. �

Corollary. With ca > r0, if in the CπM part-timers’ participation probability qπa,t > 0 in both

t∈ {h, l}, full-timers’ commitment probability qπ = 1 and their expected utility uπ =
∑

t∈{h,l} βt(r
π
f,t−

cf )+ > ca− cf .

Proof. The proof for the previous lemma indicates that if in the CπM part-timers’ participation

probability qπa,t > 0 in some period t and if at the same time also ca > r0, the average earning rate

for full-timers will be

rπf,t =
wπ,t
1

µt−qπλf
+ 1

τ

=
ca(

1
(µt−qπλf )(µt−qπλf−qπa,tλa,t)/µt

+ 1
τ
)

1
µt−qπλf

+ 1
τ

>
ca(

1
(µt−qπλf )2/µt

+ 1
τ
)

1
µt−qπλf

+ 1
τ

> cf .(OA.15)

The expected utility for full-timers in the CπM is thus

uπ =
∑
t∈{h,l}

βt(r
π
f,t− cf )+ > ca

∑
t∈{h,l}

βt(
1

(µt−qπλf )2/µt
+ 1

τ
)

1
µt−qπλf

+ 1
τ

− cf > ca− cf >u0.�

The result that S∗π >S
∗ then immediately ensues since u∗ ≤ ca−cf . To see that (S∗π−S∗)/S∗ will

increase in part-timers’ labor pool size Ma, the second equality in (OA.15) shows that committed

full-timers’ earning rates during both peak and off-peak periods (and thus their welfare S∗π) are

increasing in part-timers’ arrival rate λa,t (and thus the labor pool size Ma), while S∗ = ca− cf , or

βh(ca− cf ) or βl(ca− cf ) is constant in Ma. �
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Proof of Proposition 5

The proof will proceed in a similar spirit as that for Proposition 1(iii). We will first lay out all

possible cases for the company’s optimization problem in the CM and then for each case we analyze

the sufficient conditions that guarantee both the transaction volume and the company’s profit will

be higher in the CπM than in the CM. Finally, we summarize the discussion and show that all

sufficient conditions can be consolidate into that part-timers’ opportunity cost ca is less than some

threshold cπ. To streamline the discussion, we restrict the attention to where ca < cf . According to

Lemma OA.4, we consider following cases.

Case I: rh = rl = ca. In this case, both during peak and off-peak periods part-timers will par-

ticipate with mixed strategies while no committed full-timers will participate; in particular, no

full-timer will commit at all as the expected utility is strictly lower than their outside option (i.e.,

u=
∑

t∈{h,l} βt(rt− cf )+ <u0). The company’s optimization problem is thus to control part-timers’

participation probabilities qa,h and qa,l, i.e.,

max
(qa,h,qa,l)∈[0,1]2

∑
t∈{h,l}

βt(pt− ca(
1

µh− qa,tλa,t
+

1

τ
))qa,tλa,t. (OA.16)

In this case, the optimal profit Π∗ is decreasing in ca, according to the Envelop Theorem.

Case II: rh = ca, rl = (r0− βhcf )/βl. In this case, during peak part-timers will participate with a

mixed strategy while no committed full-timers will participate, and during off-peak periods all part-

timers available and committed full-timers will participate. In particular, full-timers will commit

with a mixed strategy as the expected utility equals their outside option (i.e., u=
∑

t∈{h,l} βt(rt−

cf )+ = u0). The company’s optimization problem is thus to control part-timers’ participation prob-

ability qa,h during peak periods and full-timers’ commitment probability q, i.e.,

max
(qa,h,q)∈[0,1]2

βh(ph− ca(
1

µh− qa,hλa,h
+

1

τ
))qa,hλa,h +βl(pl−

r0−βhcf
βl

(
1

µl− qλf −λa,l
+

1

τ
))(qλf +λa,l),

which, as one can verify using the Envelope theorem, will decrease in ca.

Case III: rh = cf , rl = (r0 − βhcf )/βl. In this case, during peak all part-timers available will

participate while committed full-timers will participate with a mixed strategy, and during off-peak

periods all part-timers available and committed full-timers will participate. Again, full-timers will

commit with a mixed strategy as the expected utility equals their outside option. The company’s

optimization problem is thus to control committed full-timers’ participation probability qf,h during

peak periods and full-timers’ commitment probability q, i.e.,

max
(qf,h,q)∈[0,1]2

βh(ph−cf (
1

µh−λa,h− qf,h · qλf
+

1

τ
))(λa,h+qf,h ·qλf )+βl(pl−

r0−βhcf
βl

(
1

µl−λa,l− qλf
+

1

τ
))(λa,l+qλf ).
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Case IV: rh ∈ (cf , (r0 − βlcf )/βh), rl = (r0 − βhrh)/βl. In this case, both during peak and off-

peak periods all part-timers available and committed full-timers will participate, and full-timers

will commit with a mixed strategy as the expected utility again equals their outside option. The

company’s optimization problem is thus to control full-timers’ commitment probability q, i.e.,

max
rh∈(cf ,

r0−βlcf
βh

),q∈[0,1]

βh(ph−rh(
1

µh−λa,h− qλf
+

1

τ
))(λa,h+qλf )+βl(pl−

r0−βhrh
βl

(
1

µl−λa,l− qλf
+

1

τ
))(λa,l+qλf ).

Case V: rh = (r0 − βlcf )/βh, rl = cf . In this case, during peak periods all part-timers available

and committed full-timers will participate, and during off-peak periods all part-timers available

will participate while committed full-timers will participate with a mixed strategy. Again, full-

timers will commit with a mixed strategy as the expected utility equals their outside option. The

company’s optimization problem is thus to control committed full-timers’ participation probability

qf,l during off-peak periods and full-timers’ commitment probability q, i.e.,

max
(qf,l,q)∈[0,1]2

βh(ph−
r0−βlcf

βh

(
1

µh−λa,h− qλf
+

1

τ
))(λa,h+qλf )+βl(pl−cf (

1

µl−λa,l− qf,l · qλf
+

1

τ
))(λa,l+qf,l ·qλf ).

Case VI: rh = (r0 − βlcf )/βh, rl = ca. In this case, during peak periods all part-timers available

and committed full-timers will participate, and during off-peak periods part-timers will partici-

pate with a mixed strategy while no committed full-timers will participate. Again, full-timers will

commit with a mixed strategy as the expected utility equals their outside option. The company’s

optimization problem is thus to control part-timers’ participation probability qa,l during off-peak

periods and full-timers’ commitment probability q, i.e.,

max
(qa,l,q)∈[0,1]2

βh(ph−
r0−βlcf

βh

(
1

µh−λa,h− qλf
+

1

τ
))(λa,h +qλf )+βl(pl− ca(

1

µl− qa,l ·λa,l
+

1

τ
))qa,l ·λa,l,

which, as one can again verify using the Envelope theorem, will decrease in ca.

Now, following a similar argument as in the Proof of Proposition 1(iii), one can verify that the

company’s profit Π∗ in the CM equilibrium will either decrease or constant in ca for all cases. In

particular, for Cases I, II and VI where Π∗ is decreasing in ca, one verify that Case I renders the

decline in Π∗ the steepest (i.e., dΠ∗/dca is the lowest). As such, there shall exist cπ such that for

ca ≤ cπ, we will have Case I prevail in the CM equilibrium. As we will show below, that Case I

prevails will facilitate the analysis for the results on the transaction volume.

Next, we discuss the sufficient conditions to ensure that both the equilibrium transaction volume

and the company’s optimal profit will be higher in the CπM than in the CM. The key to the analysis

is the company’s operational strategies in the CπM. Because now full-timers are prioritized over
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part-timers, the average wait times to be dispatched for these two groups of workers differ, so in

any period t, the same piece-rate wage wπ,t will yield different average earning rates. Similarly as in

the CM, with a little abuse of notation we denote the submarket equilibrium among full- and part-

timers in the CπM as (Qπ,f ,Rπ,f ) and (Qπ,a,Rπ,a), respectively. Then similarly as in Lemma OA.2,

we can verify that the company’s problem in the CπM is essentially to either control (Qπ,f ,Rπ,f ) or

(Qπ,a,Rπ,a). As such, one can analyze the company’s optimization problem in the CπM similarly

as in the CM by considering all possible cases (i.e., values of any submarket equilibrium) that may

prevail in the CπM equilibrium. In particular, one can verify that given same set of model primitives,

what will prevail in the CπM essentially coincide with those in the CM; that is, the possible cases

of market equilibrium in the CM will exhaust all possible values a submarket equilibrium in the

CπM can potentially take, and vice versa. Therefore, given that with ca ≤ cπ Case I will prevail in

the CM equilibrium, to study the sufficient conditions for the company’s optimal profit in the CπM

to be higher than in the CM (i.e., Π∗π ≥ Π∗), it suffices to investigate under what circumstances

Π∗π ≥Π∗ should Case I also prevail for the CπM.

Now, denote the optimal solution to (OA.16) by q∗a,h and q∗a,l. The corresponding piece-rate wages

are thus w∗t = ca(1/(µt− q∗a,tλa,t) + 1/τ) for t∈ {h, l}. Suppose w∗t ≤ cf (1/µt + 1/τ), or equivalently,

ca ≤ c′π ≡ cf (1/µt + 1/τ)/(1/(µt − q∗a,tλa,t) + 1/τ). Because full-timers are prioritized in the CπM,

the average wait time to be dispatched in period t is 1/(µt − qt · qλf ) should qt · qλf many full-

timers participate. Therefore, the piece-rate wage shall be strictly higher than cf (1/µt + 1/τ) to

incentivize a positive number of full-timers. Yet with the condition ca ≤ c′π, if the company sets

piece-rate wages in the CπM wπ,t =w∗t for t∈ {h, l}, then clearly no full-timer will ever commit or

participate; on the other hand though, part-timers will participate up to the same level as they

do in the CM (i.e., qπa,t = q∗a,t) since there is no full-timer to be prioritized over them at all. Hence,

with wπ,t = w∗t for t ∈ {h, l}, the company will make the same amount of profit in the CπM as in

the CM, and therefore we must have Π∗π ≥Π∗.

Finally, we study the conditions for the transaction volume to be higher in the CπM than in

the CM (i.e., λ∗π ≥ λ∗). If Case I also prevails in the CπM, then clearly we have λ∗π ≥ λ∗. Suppose

instead Case II is to prevail in the CπM. If ca ≤ cf (1/µh +1/τ)/(1/(µh− q∗a,hλa,h)+1/τ), then as we

have analyzed previously during peak periods we shall have the transaction volume higher in the

CπM than in the CM (i.e., λ∗π,t ≥ λ∗t ). Then we denote the optimal commitment probability among

full-timers in the CM by q∗. If

ca ≤ c′′π ≡
r0−βhcf

βl
( 1
µl

+ 1
τ
)

1
µl−λa,l

+ 1
τ

,
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then by setting the piece-rate wage during off-peak periods as wπ,l = (r0− βhcf )/βl(1/(µl− qλf ) +

1/τ) for any q ∈ [0,1] in the CπM, the transaction volume will be λπ,l = qλf +λa,l, which is higher

than that λ∗l in the CM. Combining the results during both peak and off-peak periods, we have

λ∗π ≥ λ∗. One can similarly verify that for the remaining case we also have λ∗π ≥ λ∗ for sufficiently

small ca.

In summary, we have shown above that when ca ≤min{cπ, c′π}, we have the company’s profit

higher in the CπM than in the CM; in addition, when ca ≤ c′′π, we also have λ∗π ≥ λ∗. Putting

together, redefine cπ as the minimum among the original cπ and c′π and c′′π, we obtain the results

in Proposition 5. �

Proof of Proposition 6

Proof of Proposition 6(i). Define ¯̃c = (r0 − βlcf )/βh, which is strictly higher (a) than (r0 −

βhcf )/βl given that βl > βh and (b) than cf since r0 > cf . When ca ≥ (r0 − βlcf )/βh, part-timers’

welfare S̃∗ in the CM equilibrium must equal 0. To see this, first note that par-timers’ welfare

is defined as S̃ = Ma

∑
t∈{h,l} βtγa,t(rt − ca)+. If S̃∗ > 0, the company must have set the optimal

average earning rate r∗t′ > ca for some t′ ∈ {h, l}. As such, part-timers available during period t′ will

all participate and in addition, all full-timers will commit and also participate during period t′. The

latter is because (a) full-timers’ expected utility u=
∑

t∈{h,l} βt(r
∗
t − cf )+ ≥ βt′(r∗t′ − cf )+ > u0 and

(b) that r∗t′ > cf . Then clearly the company can earn a strictly higher profit by selecting a strictly

lower average earning rate r∗t′ − ε such that still the same amount of workers, part- or full-time,

will participate. Contradiction.

Next, we show that when ca < (r0−βlcf )/βh, part-timers’ welfare S̃∗ > 0 in the CM equilibrium

if their labor pool size Ma is lower than some threshold ¯̃M . We elaborate the idea with the case

where ca ∈ (r0, (r0−βhcf )/βl). The remaining scenarios (i.e., ca < r0) can be verified similarly.

Recall our discussion in the Proof of Proposition 1(i). We have the following conclusion.

Lemma For ca ∈ (r0, (r0−βhcf )/βl), if S̃∗ = 0, the company’s optimal profit Π∗ must be

Π̃∗,0 ≡max{ Π∗1 ≡max(qa,h,qa,l)∈[0,1]2
∑

t∈{h,l} βt(pt− ca(
1

µt−λf−qa,tλa,t
+ 1

τ
))(λf + qa,tλa,t),

Π∗2 ≡ max
(q,qa,l)∈[0,1]2

βh(ph− r0−βlca
βh

( 1
µh−qλf

+ 1
τ
))qλf +βl(pl− ca( 1

µl−qλf−qa,lλa,l
+ 1

τ
))(qλf + qa,lλa,l),

Π∗3 ≡ max
(q,qa,h)∈[0,1]2

βh(ph− ca( 1
µh−qλf−qa,hλa,h

+ 1
τ
))(qλf + qa,hλa,h) +βl(pl− r0−βhca

βl
( 1
µl−qλf

+ 1
τ
))qλf}.

If instead S̃∗ > 0 in the CM, the company’s optimal profit Π∗ must be

Π̃∗,+ ≡max{Π∗4 ≡max
rh∈(ca,

r0−βlcf
βh

),q∈[0,1]
βh(ph− rh( 1

µh−qλf−λa,h
+ 1

τ
))(qλf +λa,h) +βl(pl− r0−βhrh

βl
( 1
µl−qλf

+ 1
τ
))qλf ,
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max(q,qf,l)∈[0,1]2 βh(ph−
r0−βlcf
βh

( 1
µh−qλf−λa,h

+ 1
τ
))(qλf +λa,h) +βl(pl− cf ( 1

µl−qf,l·qλf
+ 1

τ
))qf,l · qλf}.

Proof. See Lemma OA.3 and the Proof. One may observe that the optimal earning rate in off-

peak periods r∗l is always less than or equal to ca. As such, part-timers’ welfare (i.e., S̃∗ > 0) is

positive in the CM equilibrium if and only if the optimal earning rate in peak periods r∗h > ca. �

To derive the sufficient condition for Π̃∗,+ ≥ Π̃∗,0 (and thus S̃∗ > 0), it is sufficient to study

that for Π∗4 ≥ Π̃∗,0, which in turn is equivalent to Π∗4 ≥ Π∗k for k ∈ {1,2,3}. First, for Π∗4 to be

higher than Π∗3, denote by rl = (r0−βhca)/βl. We show in the Proof of Proposition 1(iii) that when

λa,h < λ̄a ≡ (µh −
√
µhτca/(phτ − ca))− (µl −

√
µlτrl/(phτ − rl)) where rl = (r0 − βhca)/βl, we have

q∗a,h = 1. Denote by q∗3 the optimal commitment probability among full-timers for Π∗3 given that

λa,h < λ̄a. Further denote by r∗4 the optimal average earning rate r∗h during peak periods for Π∗4.

Then when λa,h < λ̄a we have

Π∗4−Π∗3 ≥ βh(ca− r∗4)(
1

µh− q∗3λf −λa,h
+

1

τ
)(q∗3λf +λa,h) +βl(

r0−βhca
βl

− r0−βhr
∗
4

βl

)(
1

µl− q∗3λf
+

1

τ
)q∗3λf

≥ βh(r
∗
4 − ca)((

1

µl− q∗3λf
+

1

τ
)q∗3λf − (

1

µh− q∗3λf −λa,h
+

1

τ
)(q∗3λf +λa,h)). (OA.17)

Note that (OA.17) is positive at λa,h = 0 and is decreasing in λa,h. Hence there exists a λ̄′a such

that if λa,h ≤ λ̄′a we have Π∗4 ≥Π∗3.

Next, for Π∗4 to be higher than Π∗2. Following a similar argument as in the Proof of Proposition

1(iii), one can verify that the optimal participation probability among part-timers during off-peak

periods for Π∗2 is q∗a,l = 0. Then the optimal commitment probability among full-timers for Π∗2,

which we denote by q∗2 , is given by the first-order condition

βh(ph−
r0−βlca

βh

(
µh

(µh− q∗2λf )2
+

1

τ
)) +βl(pl− ca(

µl

(µl− q∗2λf )2
+

1

τ
)) = 0. (OA.18)

Because ph > pl and ca > r0, one can verify that the first summand in (OA.18) is strictly higher

than the second summand, which implies that

βh(ph−
r0−βlca

βh

(
µh

(µh− q∗2λf )2
+

1

τ
))> 0>βl(pl− ca(

µl

(µl− q∗2λf )2
+

1

τ
)).

The first inequality indicates the existence of a λ̄′a that for λa,h ≤ λ̄′a we have

Π∗2 = βh(ph−
r0−βlca

βh

(
1

µh− q∗2λf
+

1

τ
))q∗2λf +βl(pl− ca(

1

µl− q∗2λf
+

1

τ
))q∗2λf

≤ βh(ph−
r0−βlca

βh

(
1

µh− (q∗2λf +λa,h)
+

1

τ
))(q∗2λf +λa,h) +βl(pl− ca(

1

µl− q∗2λf
+

1

τ
))q∗2λf .

As such, given λa,h ≤ λ̄′a,

Π∗4−Π∗2 ≥ βh(
r0−βlca

βh

− r∗4)(
1

µh− q∗2λf −λa,h
+

1

τ
)(q∗2λf +λa,h) +βl(ca−

r0−βhr
∗
4

βl

)(
1

µl− q∗2λf
+

1

τ
)q∗2λf
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≥ (βhr
∗
4 +βlca− r0)((

1

µl− q∗2λf
+

1

τ
)q∗2λf − (

1

µh− q∗2λf −λa,h
+

1

τ
)(q∗2λf +λa,h)). (OA.19)

Similarly we have shown when comparing Π∗4 and Π∗3, here (OA.19) is also decreasing in λa,h and

strictly positive at λa,h = 0. If (OA.19) is positive at λa,h = λ̄′a, then we must have Π∗4 ≥Π∗2 for all

λa,h ≤ λ̄′a; otherwise, we redefine λ̄′a as the root of (OA.19) and will then again have Π∗4 ≥Π∗2 for

λa,h ≤ λ̄′a.

Finally, we compare Π∗4 and Π∗1. One can verify that the optimal participation probability among

part-timers during period t for Π∗1 is

q∗a,t = min{
(µt−

√
µtτca
ptτ−ca

−λf )+

λa,t
,1}, t∈ {h, l}.

Hence, for λa,h ≤ (µt−
√
µtτca/(ptτ − ca)−λf )+, we have q∗a,h = 1 and the corresponding first-order

condition is

ph− ca(
µh

(µh−λf −λa,h)2
+

1

τ
)≥ 0.

As such, by applying the Envelope Theorem, we have

∂Π∗1
∂λa,h

= βh(ph− ca(
µh

(µh−λf −λa,h)2
+

1

τ
))≥ 0,

that is, Π∗1 is increasing in part-timers’ arrival rate during peak periods. One can similarly verify

that ∂Π∗1/∂λa,l ≥ 0.

Now, the second summand in Π∗4 is independent of part-timers’ arrival rates. For the first sum-

mand in Π∗4, the proof of Proposition 1(iii) implies that when λa,h < λ̄a, which we defined previously

when comparing Π∗4 and Π∗3, we shall have

∂Π∗4
∂λa,h

= βh(ph− r∗4(
µh

(µh− q∗4λf −λa,h)2
+

1

τ
))≥ 0,

where q∗4 denotes the optimal commitment probability among full-timers for Π∗4. Notice that r∗4 > ca

and that q∗4 ≤ 1 is decreasing in λa,h. As such, for sufficiently low λa,h we shall have ∂Π∗1/∂λa,h ≥

∂Π∗4/∂λa,h ≥ 0. Then putting all together, there exists a λ̄′′a such that when λa,h ≤ λ̄′′a and λa,l ≤ λ̄′′a,

we have Π∗4 ≥Π∗1.

In summary, we have shown that for λa,h ≤ λ̄′′′a ≡min{λ̄a, λ̄′a, λ̄′′a} and λa,l ≤ λ̄′′a, we have Π∗4 ≥ Π̃∗,0

and thus the part-timers’ welfare S̃∗ ≥ 0. Since λa,t = γa,tMaτ for t ∈ {h, l}, the existence of the

threshold ¯̃M follows immediately. �

Proof of Proposition 6(ii). That part-timers’ welfare equals 0 in the EM equilibrium (i.e.,

S̃∗E = 0) is straightforward as we have assumed that they will exit the market in the EM (due
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to the company’s strict workforce control). That their welfare also equals 0 in the HM equilib-

rium (i.e., S̃∗H = 0) is also rather intuitive. Note that, part-timers’ welfare is defined as S̃H =

Ma

∑
t∈{h,l} βtγa,t(rH,t− ca)+, where rH,t denotes the average earning rate in period t. That S̃∗H > 0

implies rH,t > ca for some t, which in turn indicates that all part-timers’ will choose to participate.

But then the company can obviously make a higher profit by strictly lowering rH,t such that still

all part-timers’ will participate; in particular, a lower rH,t will not impair full-timers’ incentives to

participation as they are treated as employees and guaranteed a flat earning rate (i.e., rB). �

Proof of Proposition 6(iii). See Proof of Theorem 2 Part I for the existences of B+ and B+.

Following a similar argument as in the Part I of the Proof of Theorem 2, one can verify that part-

timers’ welfare is higher in the C+M than in the CM (i.e., S̃∗+ ≥ S̃∗). To show that (S̃∗+ − S̃∗)/S̃∗

will decrease in part-timers’ labor pool size Ma given that S̃∗ > 0, below we again use the case with

ca ∈ (r0, (r0−βhcf )/βl) to illustrate the idea. The remaining scenarios can be verified similarly.

The proof of Proposition 1(i) hints that when ca ∈ (r0, (r0 − βhcf )/βl), if part-timers’ surplus

S̃∗ > 0 in the CM equilibrium, the company must have set the optimal earning rates as r∗h = rh

for some rh ∈ (ca, (r0−βlcf )/βh] and r∗l = (r0−βhr
∗
h )/βl (which is strictly less than ca). Recall that

w∗h and w∗l denote the corresponding optimal piece-rate wages in the CM. Suppose first that B

is sufficiently low such that rB/τ ≤mint∈{h,l}w
∗
t . Then clearly the optimal piece-rate wages in the

C+M are the same as in the CM, and so are the corresponding average earning rates, i.e., r∗+,h = r∗h

and r∗l = r∗+,l. Then suppose rB/τ >w
∗
h while rB/τ ≤w∗l , which imply that the off-peak wage w∗l in

the CM is still feasible (and thus still optimal) in the C+M while the peak wage w∗h is no longer

so. To pin down the optimal piece-rate wage during peak periods for the C+M, notice that in this

case part-timers who are available during peak periods will all participate, and the company is

controlling full-timers’ commitment probability q; in particular, the company’s profit function (see

the Lemma in the Proof of Proposition 1(i)) is concave in full-timers’ commitment probability q.

This implies that the constraint wh ≥ rB/τ will push up q until it reaches 1; that is, the optimal

peak wage w∗+,h will equal rB/τ , the corresponding average earning rate r∗+,h will still be r∗h , and

the optimal commitment probability q∗+ be such that w∗+,h = rB/τ . If q has already reach 1, then

all full-timers have been attracted to the platform. Hence the corresponding average earning rate

r∗+,h = (rB/τ)/(1/(µh−λf −λa,t) + 1/τ). In summary, we have

r∗+,h =

r
∗
h if rB ≤ τ · r∗h ( 1

µh−λf−λa,h
+ 1

τ
),

rB/τ
1

µh−λf−λa,t
+ 1
τ

otherwise,

which can be verified to decrease in part-timers’ gross arrival rate λa,t and thus their labor pool

size Ma.
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For the remaining cases (i.e., the one with rB/τ ≤w∗h but rB/τ >w
∗
l and the one with rB/τ >w

∗
t

for t ∈ {h, l}), one can similarly verify that the optimal average earning rates r∗+,h and r∗+,l in the

C+M will decrease in Ma. Therefore, part-timers’ expected utility ũ∗+ in the C+M equilibrium must

be decreasing in Ma as well. We thus have (S̃∗+− S̃∗)/S̃∗ = ũ∗+/ũ
∗− 1 decreasing in Ma, given that

ũ∗ is constant of Ma. �

Proof of Proposition 6(iv) The proof hinges on the following result.

Lemma. For part-timers’ welfare S̃∗π > 0 in the CπM equilibrium, there must be at least one

period t∈ {h, l} in which (a) full-timers’ participation probability qπ,∗f,t ·q∗π > 0 and (b) the equilibrium

piece-rate wage for that period w∗π,t satisfies

w∗π,t = rπ,∗f,t (
1

µt− qπ,∗f,t · q∗πλf
+

1

τ
)> ca(

1

(µt− qπ,∗f,t · q∗πλf )(µt− qπ,∗f,t · q∗πλf −λa,t)/µt
+

1

τ
),

where full-timers’ average earning rate rπ,∗f,t ≥ cf .

Proof. Suppose instead there is no such a period in which both conditions are met. Specifically,

suppose first in any period t ∈ {h, l} only condition (b) is satisfied. In other words, in the CπM

equilibrium only part-timers are enrolled. Then clearly it is not optimal for the company to leave

part-timers with S̃∗π > 0. The company can lower the wage w∗π,t in some t ∈ {h, l} so that it is just

incentive compatible for part-timers to participate, i.e., S̃∗π = 0. Contradiction. �

Then suppose that in any period t ∈ {h, l} only condition (a) is satisfied. Then part-timers’

average earning rate in any period will be

rπ,∗a,t =
w∗π,t
1

(µt−q
π,∗
f,t
·q∗πλf )(µt−q

π,∗
f,t
·q∗πλf−λa,t)/µt

+ 1
τ

≤ ca,

which implies that their welfare S̃∗π =Ma

∑
t∈{h,l} βtγa,t(r

π,∗
a,t − ca)+ = 0.

Finally, suppose for any period t∈ {h, l}, either only one of the conditions is satisfied or neither

condition will hold. Following the arguments above we can find that again this will lead to S̃∗π = 0.

Contradiction. �

Corollary. For part-timers’ welfare S̃∗π > 0 in the CπM equilibrium, there must be at least one

period t∈ {h, l} in which their average earning rate

rπ,∗a,t =
rπ,∗f,t ( 1

µt−q
π,∗
f,t
·q∗πλf

+ 1
τ
)

1
(µt−q

π,∗
f,t
·q∗πλf )(µt−q

π,∗
f,t
·q∗πλf−λa,t)/µt

+ 1
τ

> ca,

where full-timers’ average earning rate rπ,∗f,t ≥ cf .

Notice that the ratio

( 1
µt−x

+ 1
τ
)

1
(µt−x)(µt−x−λa,t)/µt

+ 1
τ
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is decreasing in x. Also, our Proof of Proposition 1 implies that rπ,∗f,t is at most (r0 − β−tcf )/βt,

since any higher earning rate is more than enough for it to be incentive compatible for full-timers

to commit and participate. As such, part-timers’ average earning rate in any period t must be

upper bounded as follows,

rπ,∗a,t ≤
r0−β−tcf

βt
· ( 1
µt

+ 1
τ
)

1
µt−λa,t

+ 1
τ

.

Now, define

c̃π ≡ max
t∈{h,l}

r0−β−tcf
βt

1/µt + 1/τ

1/(µt−λa,t) + 1/τ
.

If ca ≥ c̃π, then there is no such a period t∈ {h, l} in which the condition specified in the Corollary

above can be met. Then by contradiction, we must have S̃∗π = 0. By definition, c̃π is lower than c̃π

we have defined in the proof of Proposition 6(i). Since part-timers’ welfare in the CM equilibrium

S̃∗ can still be positive for ca ∈ [c̃, c̃π] (see details in the Proof of Proposition 6(i)), we have S̃∗ ≥ S̃∗π.

�

Proof of Proposition 7

Proof of Proposition 7(i) The result immediately follows Proposition 6(ii), Theorem 5 and

Proposition 2.

Proof of Proposition 7(ii) See Proof of Theorem 2 Part I for the existences of B+ and B+. For

S∗ > 0, by definition we have

S∗+− S∗

S∗
=
Mfu

∗
+ +Maũ

∗
+

Mfu∗+Maũ∗
− 1 =

γu∗+ + (1− γ)ũ∗+
γu∗+ (1− γ)ũ∗

− 1. (OA.20)

Following the proofs of Theorem 2(iii) and Proposition 6(iii), one can verify that both the individual

utilities for full-timers u∗+ and for part-timers ũ∗+ in the C+M equilibrium are decreasing in both

full-timers’ labor pool size Mf and part-timers’ pool size Ma. Since Mf = γM for some constant γ

and that workers’ utilities in the CM equilibrium u∗ and u∗+ are constant of M , the ratio (OA.20)

must decrease in the aggregate labor pool size M . �

Proof of Proposition 7(iii) We focus on the case with ca > (r0− βlcf )/βh. In Lemma OA.5 we

specify an equivalent format of the company’s optimization problem in the CM. Given that part-

timers’ average wait times now become W π
a,t = 1/((µt− qπ · qπf,tλf )(µt− qπ · qπf,tλf − qπa,tλa,t)/µt) (see

Section 5.2), we can similarly derive the company’s optimization problem in the CπM equilibrium

as follows using a similar argument as in the Proof of Lemma OA.5.

max{max(qa,h,qa,l)∈[0,1]2
∑

t∈{h,l} βt(pt− ca(
1

(µt−λf )(µt−λf−qa,tλa,t)/µt
+ 1

τ
))(λf + qa,tλa,t),
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max(qa,h,qa,l)∈[0,1]2 βh(ph− ca( 1
(µh−λf )(µh−λf−qa,hλa,h)/µh

+ 1
τ
))(λf + qa,hλa,h) +βl(pl− cf ( 1

µl−qf,lλf
+ 1

τ
))qf,lλf ,

max(qf,h,qa,l)∈[0,1]2 βh(ph− cf ( 1
µh−qf,hλf

+ 1
τ
))qf,hλf +βl(pl− ca( 1

(µl−λf )(µl−λf−qa,lλa,l)/µl
+ 1

τ
))(λf + qa,lλa,l),

max(q,qf,l)∈[0,1]2 βh(ph−
r0−βlcf
βh

( 1
µh−qλf

+ 1
τ
))qλf +βl(pl− cf ( 1

µl−qf,l·qλf
+ 1

τ
))qf,l · qλf}. (OA.21)

Following similar arguments as in the Proof of Proposition 1, one can verify that there exists c

such that if ca < c, the average earning rates in the CM equilibrium r∗h = r∗l = ca. Then full-timers’

welfare in the CM will be S∗ =Mf (ca− cf ) and part-timers’ welfare S̃∗ = 0.

Analogously, there exists cπ such that when ca < cπ, solving the program (OA.21) will yield

Π∗π = max
(qa,h,qa,l)∈[0,1]2

∑
t∈{h,l}

βt(pt− ca(
1

(µt−λf )(µt−λf − qa,tλa,t)/µt
+

1

τ
))(λf + qa,tλa,t).

Therefore, full-timers’ average earning rates in the CπM equilibrium will be

rπ,∗f,t =
ca(

1
(µh−λf )(µh−λf−q∗a,hλa,h)/µh

+ 1
τ
)

1
µh−λf

+ 1
τ

> ca, t∈ {h, l},

and part-timers’ average earning rates are

rπ,∗a,t =
ca(

1
(µh−λf )(µh−λf−q∗a,hλa,h)/µh

+ 1
τ
)

1
(µh−λf )(µh−λf−q∗a,hλa,h)/µh

+ 1
τ

= ca, t∈ {h, l}.

Hence, when ca > (r0−βlcf )/βh and ca <min{c,cπ}, we have S∗π =Mf (
∑

t∈{h,l} βt(r
π,∗
f,t −cf )+−u0)>

S∗ and S̃∗π = S̃∗ = 0, and we obtain S∗π > S∗. �

Proof of Proposition 8

Proof of Proposition 8(i) When B = 0, according to our definition full-timers’ welfare in the

EdM equilibrium S∗
Ed

= 0 ≤ S∗. Since S∗
Ed

is continuous in B, there exists BEd ≥ 0 such that if

B ≤BEd we have S∗
Ed
≤ S∗. On the other hand, when B ≥ (maxt∈{h,l} pt/(1/µt+1/τ)−r0)/α, Proof

of Lemma OA.11 implies that λ∗
Ed,h

= λ∗
Ed,l

= 0. Hence we again have S∗
Ed

= 0 ≤ S∗, and by the

continuity of S∗
Ed

there exists BEd ≤maxt∈{h,l} pt/(1/µt + 1/τ)− r0 such that if B ≥BEd we have

S∗
Ed
≤ S∗. �

Proof of Proposition 8(ii) First note that, the company’s optimal profit Π∗
Ed

in the EdM is

clearly less than the following,

max
(λ
Ed,h

,λ
Ed,l

)∈[0,λf ]2
βh (ph− rαB(

1

µh−λEd,h
+

1

τ
))(λEd,h−λEd,l) +

∑
t∈{h,l}

βt(pt− rαB(
1

µt−λEd,t
+

1

τ
))λEd,l

=
∑
t∈{h,l}

βt (pt− rαB(
1

µt−λEd,t
+

1

τ
))λEd,t, (OA.22)

since rB ≥ rαB.
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Next, recall that λ∗
Ed,h

and λ∗
Ed,l

denote the optimal number of employees during peak and off-

peak periods in the EdM respectively. Since we have assumed that only full-timers can be hired

as employees in the EdM, λ∗
Ed,h

and λ∗
Ed,l

are independent of part-timers’ availability parameters

γa,h and γa,l. We define the threshold γa as the value of γa,l that enforces the equality λa,h−λa,l =

(1 − 2γa,l)Maτ = λ∗
Ed,h
− λ∗

Ed,l
, or equivalently, γa ≡ 1/2 − (λ∗

Ed,h
− λ∗

Ed,l
)/(2Maτ). That γa,l ≤ γa

implies λa,h − λa,l ≥ λ∗Ed,h − λ
∗
Ed,l

. One can verify that Π∗ is higher than (OA.22) and is thus also

higher than Π∗
Ed

when r0 > ca and λa,h− λa,l ≥ λ∗Ed,h− λ
∗
Ed,l

by replacing B with αB in Part II of

the Proof of Theorem 4. �
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OA5. Auxiliary Results

Here we establish some results in the contractor mode (CM) and the employee mode (EM) that

will be useful for the proofs for our main findings. Proofs can be found in the online supplement.

OA5.1 Implications of Lemma 1

Lemma OA.1. If for some piece-rate wages (wh,wl) the corresponding market equilibrium is

(Q,R), then we have

wt = ŵt ≡ rt(
1

µt− qf,tqλf − qa,tλa,t
+

1

τ
), ∀t∈ {h, l}.

Proof of Lemma OA.1. Suppose instead there exists some t ∈ {h, l} such that wt 6= ŵt. Suppose

first wh > ŵh. Since Q≡ (q, qf,h, qf,l, qa,h, qa,l) is what has been induced by (wh,wl), by definition, the

period-h average earning rate rh shall be

rh =
wh

1
µh−qf,hqλf−qa,hλa,h

+ 1
τ

>
ŵh

1
µh−qf,hqλf−qa,hλa,h

+ 1
τ

= rh.

Contradiction. Similarly one can obtain such a contradiction for wh < ŵh and for wl 6= ŵl. Therefore,

we must have wt = ŵt for both t∈ {h, l}. �

Lemma OA.2. The company’s optimization problem (1) in the CM is equivalent to the following

problem

maxQ,R Π =
∑
t∈{h,l}

βt(pt− rt(
1

µt− (qf,tqλf + qa,tλa,t)
+

1

τ
))(qf,tqλf + qa,tλa,t) (OA.23)

s.t. q ∈ q(rh, rl), qi,t ∈ qi(rt),∀ i∈ {f, a}, t∈ {h, l}, (OA.24)

where

q(rh, rl) =


{1} if u> u0

{0} if u< u0

[0,1] otherwise

, qi(rt) =


{1} if rt > ci

{0} if rt < ci

[0,1] otherwise

,∀ i∈ {f, a}, t∈ {h, l},

and u≡
∑

t∈{h,l} βt(rt− cf )+ and u0 ≡ r0− cf .

Proof of Lemma OA.2. Denote by Π∗ the optimal value to problem (1), by Π? the optimal value

to problem (OA.23), and by (Q?,R?) the solution to problem (OA.23). First, recall that (w∗h ,w
∗
l )

denotes the solution to problem (1), and (Q∗,R∗) denotes the corresponding market equilibrium

in the CM. By the Proof of Lemma 1, (Q∗,R∗) must be a feasible solution to problem (OA.23) as

they meet the constraints (OA.24). Therefore, we have Π∗ ≤Π?.

On the other hand, Lemma OA.1 implies the existence of (w?h ,w
?
l ) that induce (Q?,R?) as the

market equilibrium for the CM. Since clearly (w?h ,w
?
l ) are feasible to problem (1), we must have

Π∗ ≥Π?. As such, we have Π∗ = Π?. �
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Corollary OA.1. Define

rf,t(qf,t) =
wt

1
µt−qf,t·qλf−I[cf>ca]λa,t

+ 1
τ

, ra,t(qa,t) =
wt

1
µt−I[cf<ca]·qλf−qa,tλa,t

+ 1
τ

, t∈ {h, l},

where I[·] is the indicator function. For any piece-rate wages (wh,wl) and full-timers’ commitment

probability q, in any period t and for any group i∈ {f, a} of workers, their participation probability

is (i) qi,t = 1 if ri,t(1)≥ ci, (ii) qi,t = 0 if ri,t(0)≤ ci, and (iii) qi,t ∈ (0,1) and is determined by the

equation ri,t(qi,t) = ci if ci ∈ (ri,t(1), ri,t(0)).

Proof of Corollary OA.1. See the discussions in the proof of Lemma 1. �

Corollary OA.2. For any piece-rate wages (wh,wl) and full-timers’ commitment probability q,

in any period t, if full-timers’ opportunity cost is lower than that for part-timers (i.e., cf < ca), full-

timers’ participation probability will be strictly higher than part-timers’ participation probability,

i.e., qf,t > qa,t, unless qa,t = qf,t = 0 or 1; and vice versa.

Proof of Corollary OA.2. See the discussions in the proof of Lemma 1. �

Corollary OA.3. For any piece-rate wages (wh,wl) and full-timers’ commitment probability

q, in any period t∈ {h, l}, full-timers’ effective arrival rate (or their labor supply) qf,t ·qλf increases

if their labor pool size Mf increases or their opportunity cost cf decreases. Similarly, part-timers’

effective arrival rate (or their labor supply) qa,tλa,t increases if their labor pool size Ma increases

or their opportunity cost ca decreases.

Proof of Corollary OA.3. We will verify the results for part-timers. The results for full-timers can

be verified similarly. First, Proof of Lemma 1 implies that part-timers’ participation probability

qa,t in any period t ∈ {h, l} is indeed increasing as their opportunity cost ca decreases. Second,

according to the derivation in the proof of Lemma 1, part-timers’ effective arrival rate (or their

labor supply) qa,tλa,t in any period t is

qa,tλa,t =

{
λa,t if q≤ q̂a,t,
max{µt− 1/(wt/cf − 1/τ),0} otherwise

.

According to our definition in the proof of Lemma 1, we have q̂a,t = (µt − 1/(wt/ca − 1/τ))/λf

and is constant in λa,t. As such, once can verify that part-timers’ effective arrival rate (or their

labor supply) qa,tλa,t in any period t is indeed increasing in part-timers’ gross arrival rate λa,t, or

equivalently, in part-timers’ “labor pool size” Ma. �

Corollary OA.4. Given full-timers’ commitment probability q, the average earning rate rt in

any period t∈ {h, l} is increasing in the piece-rate wages.
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Proof of Corollary OA.4. See the discussions in the proof of Lemma 1. �

Corollary OA.5. Every component in the participation equilibrium Q = (q, qf,h, qf,l, qa,h, qa,l)

is increasing in the piece-rate wage wt for any t∈ {h, l}.

Proof of Corollary OA.5. See the discussions in the proof of Lemma 1. �

Corollary OA.6. The transaction volume λ in the CM is increasing in the piece-rate wage wt

for any t∈ {h, l}.

Proof of Corollary OA.6. See the discussions in the proof of Lemma 1. �

OA5.2 On the Company’s Operations in the Contractor Mode

Lemma OA.3. For ca ∈ (r0, (r0−βhcf )/βl), the company’s optimal profit Π∗ in the CM must be

max{max(qa,h,qa,l)∈[0,1]2
∑

t∈{h,l} βt(pt− ca(
1

µt−λf−qa,tλa,t
+ 1

τ
))(λf + qa,tλa,t),

max(q,qa,l)∈[0,1]2 βh(ph− r0−βlca
βh

( 1
µh−qλf

+ 1
τ
))qλf +βl(pl− ca( 1

µl−qλf−qa,lλa,l
+ 1

τ
))(qλf + qa,lλa,l),

max(q,qa,h)∈[0,1]2 βh(ph− ca( 1
µh−qλf−qa,hλa,h

+ 1
τ
))(qλf + qa,hλa,h) +βl(pl− r0−βhca

βl
( 1
µl−qλf

+ 1
τ
))qλf ,

max
rh∈(ca,

r0−βlcf
βh

),q∈[0,1]
βh(ph− rh( 1

µh−qλf−λa,h
+ 1

τ
))(qλf +λa,h) +βl(pl− r0−βhrh

βl
( 1
µl−qλf

+ 1
τ
))qλf ,

max(q,qf,l)∈[0,1]2 βh(ph−
r0−βlcf
βh

( 1
µh−qλf−λa,h

+ 1
τ
))(qλf +λa,h) +βl(pl− cf ( 1

µl−qf,l·qλf
+ 1

τ
))qf,l · qλf}.

Proof of Lemma OA.3. Lemma OA.2 shows that the company’s problem in the CM is to optimize

over the earning rate schedule (rh, rl), full-timers’ commitment probability, their and part-timers’

participation probabilities (q, qf,h, qf,l, qa,h, qa,l). The key to the proof is to pin down the optimal

average earning rates (r∗h , r
∗
l ). The company’s optimal control with respect to workers’ participations

will then become straightforward according to Lemma OA.2. Note that, at optimality, we either

have r∗h = r∗l or r∗h 6= r∗l . We will explore optimal earning rates falling into either batch. We will

highlight earning schedules that can be verified as suboptimal directly with a Remark, and will

also summarize all potentially optimal earning schedules at the end of the whole discussion.

Start with rh = rl = r for some r. We claim that there are only two values of r can possibly

be optimal: r = r0 and r = ca. For any r < r0, no full-timer will commit and no part-timer will

participate. For r ∈ (r0, ca), all full-timers will commit (and participate) but no part-timer will

participate. Yet then such a r yields a lower profit than r0, which also attracts all full-timers but

no part-timer. Finally, all r > ca yield a lower profit than ca, which is enough to all full-timers and

part-timers.

Now we turn to rh 6= rl. First, it is never optimal to have rt < cf for any t ∈ {h, l} because no

worker will be incentivized in that period. The company can make a (weakly) higher profit by

setting rt = cf and enrolling at least some committed full-timers. As such, we start with rh = cf .
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• rh = cf . The only possibly value of rl for optimality is (r0−βhcf )/βl. Note that because βh <βl,

we have (r0− βhcf )/βl > (r0− βlcf )/βh. For rl > (r0− βhcf )/βl > ca, all part-timers will participate

and all full-timers will commit because they all have a positive surplus (i.e., u > u0). As such,

the company can clearly make a higher profit by strictly lowering rl by some ε > 0. For rl ∈

(ca, (r0−βhcf )/βl), no full-timer will commit because u< u0 and such an rl will be too high to enroll

all part-timers. For rl < ca, no full- or part-timer will ever participate. For rl = ca, no full-timer will

commit and only some part-timers will participate during off-peak periods; that is, the company

makes zero profit in peak periods. The company can then raise rh to (r0 − βlca)/βh so that it is

incentive compatible for full-timers to commit (i.e., u= u0) and make a higher profit by enrolling

some full-timers in both periods.

Given that (rh, rl) = (cf , (r0−βhcf )/βl), the company’s optimization problem is

max
q,qf,h∈[0,1]2

βh(ph− cf (
1

µh− qf,h · qλf
+

1

τ
))qf,h · qλf +βl(pl−

r0−βhcf
βl

(
1

µl− qλf −λa,l
+

1

τ
))(qλf +λa,l).

We claim that the optimal participation probability among committed full-timers in peak period

q∗f,h must equal 1. To verify this, denote the profit value in the optimization program above by Π̂ and

the optimal commitment probability among full-timers by q̂∗. Solving the optimization program

yields q∗f,h = min{1, (µh −
√
µhτcf/(phτ − cf ))/q̂∗λf}. Suppose instead q∗f,h < 1, which implies that

q∗f,h = (µh−
√
µhτcf/(phτ − cf ))/q̂∗λf and q̂∗λf >µh−

√
µhτcf/(phτ − cf ). But then we have

dΠ̂

dq q=q̂∗
= βh(ph− cf (

µh

(µh− q̂∗λf )2
+

1

τ
)) +βl(pl−

r0−βhcf
βl

(
µl

(µl− q̂∗λf −λa,l)2
+

1

τ
))< 0

because (a) the root to the second summand equals µl−
√
µlτ(r0−βhcf )/βl/(phτ − (r0−βhcf )/βl)−

λa,l <µh−
√
µhτcf/(phτ − cf )< q̂∗λf and (b) the profit function Π̂ is strictly concave. The inequality

implies that q= q̂∗ is strictly suboptimal. Contradiction.

• rh ∈ (cf , (r0 − βlca)/βh]. The only possibly value of rl for optimality is (r0 − βhrh)/βl. For

rl < (r0 − βhrh)/βl, it is not incentive compatible for any full-timer to commit, and following the

argument in the rh = cf case one can see that such (rh, rl) cannot be optimal. For rl > (r0−βhrh)/βl,

it will be more than incentive compatible for full-timers to commit (i.e., u> u0) and notice that rl

will be strictly higher than ca since rh ≤ (r0− βlca)/βh; as such, the company can strictly lower rl

to enroll part-timers and make full-timers commit.

Now, with rh ∈ (cf , (r0−βlca)/βh] and rl = (r0−βhrh)/βl, the company’s optimization problem is

max{ max
rh<

r0−βlca
βh

,q∈[0,1]

βh(ph− rh(
1

µh− qλf
+

1

τ
))qλf +βl(pl−

r0−βhrh
βl

(
1

µl− qλf −λa,l
+

1

τ
))(qλf +λa,l),
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max
q,qa,l∈[0,1]2

βh(ph−
r0−βlca

βh

(
1

µh− qλf
+

1

τ
))qλf +βl(pl− ca(

1

µl− qλf − qa,lλa,l
+

1

τ
))(qλf + qa,lλa,l)}.

To understand the optimal solutions to the problem above, fix rh < (r0 − βlca)/βh and let the

company only optimizes full-timers’ commitment probability q. Denote the optimal probability by

q̂∗ and the corresponding optimal profit by Π̂∗. According to the Envelop Theorem, we have

dΠ̂∗

drh
=−βh(

1

µh− q̂∗λf
+

1

τ
)q̂∗λf +βh(

1

µl− q̂∗λf −λa,l
+

1

τ
)(q̂∗λf +λa,l)> 0.

because µh > µl. This implies that the optimal earning rate in peak periods r∗h must equal (r0 −

βlca)/βh.

Combining the discussion in this case and that in the previous case (i.e., rh = cf ), one can also

see that rh = cf will not qualify for optimality.

• rh ∈ ((r0−βlca)/βh, ca]. Following the argument in the previous case one can similarly verify that

the only possible value of rl for optimality is again (r0−βhcf )/βl. Because now rh > (r0−βlca)/βh,

we have rl < ca. The company’s optimization problem is then

max{ max
rh<ca,q∈[0,1]

βh (ph− rh(
1

µh− qλf
+

1

τ
))qλf +βl(pl−

r0−βhrh
βl

(
1

µl− qλf
+

1

τ
))qλf ,

max
q,qa,h∈[0,1]2

βh (ph− ca(
1

µh− qλf − qa,hλa,h
+

1

τ
))(qλf + qa,hλa,h) +βl(pl−

r0−βhca
βl

(
1

µl− qλf
+

1

τ
))qλf}.

Similarly as in the previous case, one can verify that the optimal earning rate in peak periods r∗h

must equal ca. Note that, this result rules out the possibility for rh = rl = r0 to be optimal because

r0 ∈ ((r0−βlca)/βh, ca).

• rh ∈ (ca, (r0 − βlcf )/βh]. Following the argument in earlier cases one can similarly verify that

the only possible value of rl for optimality is again (r0 − βhcf )/βl. The company’s optimization

problem is then

max{ max
rh<

r0−βlcf
βh

,q∈[0,1]

βh (ph− rh(
1

µh− qλf −λa,h
+

1

τ
))(qλf +λa,h) +βl(pl−

r0−βhrh
βl

(
1

µl− qλf
+

1

τ
))qλf ,

max
q,qf,l∈[0,1]2

βh (ph−
r0−βlcf

βh

(
1

µh− qλf −λa,h
+

1

τ
))(qλf +λa,h) +βl(pl− cf (

1

µl− qf,l · qλf
+

1

τ
))qf,l · qλf}.

Note that unlike the previous case, any rh ∈ (ca, (r0−βlcf )/βh] can potentially be optimal. To see

this, fix rh < (r0−βlcf )/βh and let the company only optimizes full-timers’ commitment probability

q. Denote the optimal probability by q̂∗ and the corresponding optimal profit by Π̂∗. According to

the Envelop Theorem, we have

dΠ̂∗

drh
=−βh(

1

µh− q̂∗λf −λa,h
+

1

τ
)(q̂∗λf +λa,h) +βh(

1

µl− q̂∗λf
+

1

τ
)q̂∗λf ,
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which can either be positive or negative (depending on, e.g., the magnitude of λa,h).

To summarize, when ca ∈ (r0, (r0−βhcf )/βl), we find that only the following earning rate sched-

ules can possible be optimal: (a) rh = rl = ca, (b) rl = (r0− βhrh)/rl and rh takes value from one of

the following: (b.1) (r0−βlca)/βh and (b.2) [ca, (r0−βlcf )/βh]. The company’s optimal control with

respect to workers’ participations then follow the prescriptions in Lemma OA.2 for any particular

earning rate schedule (rh, rl). �

Lemma OA.4. For ca < cf , the company’s optimal profit Π∗ in the CM must be

max{max(qa,h,qa,l)∈[0,1]2
∑

t∈{h,l} βt(pt− ca(
1

µt−qa,tλa,t
+ 1

τ
))qa,tλa,t,

maxq,qa,h∈[0,1]2 βh(ph− ca( 1
µh−qa,hλa,h

+ 1
τ
))qa,hλa,h +βl(pl−

r0−βhcf
βl

( 1
µl−qλf−λa,l

+ 1
τ
))(qλf +λa,l),

maxq,qf,h∈[0,1]2 βh(ph− cf ( 1
µh−qf,hqλf−λa,h

+ 1
τ
))(qf,hqλf +λa,h) +βl(pl−

r0−βhcf
βl

( 1
µl−qλf−λa,l

+ 1
τ
))(qλf +λa,l),

max
rh∈(cf ,

r0−βlcf
βh

),q∈[0,1]
βh(ph− rh( 1

µh−qλf−λa,h
+ 1

τ
))(qλf +λa,h) +βl(pl− r0−βhrh

βl
( 1
µl−qλf−λa,l

+ 1
τ
))(qλf +λa,l)

maxq,qf,l∈[0,1]2 βh(ph−
r0−βlcf
βh

( 1
µh−qλf−λa,h

+ 1
τ
))(qλf +λa,h) +βl(pl− cf ( 1

µl−qf,lqλf−λa,l
+ 1

τ
))(qf,lqλf +λa,l),

maxq∈[0,1] βh(ph−
r0−βlcf
βh

( 1
µh−qλf−λa,h

+ 1
τ
))(qλf +λa,h) +βl(pl− ca( 1

µl−qa,lλa,l
+ 1

τ
))qa,lλa,l}.

Proof of Lemma OA.4. Same as in the Proof of Lemma OA.3, we start with rh = rl = r for some

r. Following a similar argument as in the Proof of Lemma OA.3, we can verify that again there

are only two values of r to be potentially optimal: r= r0 and r= ca.

Next we look for potentially optimal earning schedules (rh, rl) such that rh 6= rl. We start with

rh = ca since any rh < ca will enroll no worker in the peak periods and thus cannot be optimal.

• rh ∈ [ca, cf ). The only possible value of rl for optimality is (r0 − βhcf )/βl. For any rl < (r0 −

βhcf )/βl, since no full-timer will commit as the utility on the platform u is strictly less than their

outside option u0, the company can reduce rl to ca and only enroll part-timers, but this is already

covered in the homogeneous scenario (i.e., rh = rl). For any rl > (r0−βhcf )/βl, both full-timers and

part-timers are given more than enough incentives for them to participate in off-peak periods. The

company’s optimization problem is then

max{ max
q,qa,h∈[0,1]2

βh (ph− ca(
1

µh− qa,hλa,h
+

1

τ
))qa,hλa,h +βl(pl−

r0−βhcf
βl

(
1

µl− qλf −λa,l
+

1

τ
))(qλf +λa,l),

max
rh∈(ca,cf ),q∈[0,1]

βh (ph− rh(
1

µh−λa,h
+

1

τ
))λa,h +βl(pl−

r0−βhcf
βl

(
1

µl− qλf −λa,l
+

1

τ
))(qλf +λa,l)}.

To understand the optimal solutions to the problem above, fix rh > ca and let the company only

optimizes full-timers’ commitment probability q. Denote the optimal probability by q̂∗ and the

corresponding optimal profit by Π̂∗. According to the Envelop Theorem, we have

dΠ̂∗

drh
=−βh(

1

µh−λa,h
+

1

τ
)λa,h < 0.
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This implies that the optimal earning rate in peak periods r∗h must equal ca.

• rh ∈ [cf , (r0−βlcf )/βh). Following a similar argument as in the previous case, we can verify that

the only possible value of rl for optimality is (r0− βhrh)/βl. The company’s optimization problem

is then

max{ maxq,qf,h∈[0,1]2 βh(ph− cf ( 1
µh−qf,hqλf−λa,h

+ 1
τ
))(qf,hqλf +λa,h) +βl(pl−

r0−βhcf
βl

( 1
µl−qλf−λa,l

+ 1
τ
))(qλf +λa,l),

max
rh∈(cf ,

r0−βlcf
βh

),q∈[0,1]
βh(ph− rh( 1

µh−qλf−λa,h
+ 1

τ
))(qλf +λa,h) +βl(pl− r0−βhrh

βl
( 1
µl−qλf−λa,l

+ 1
τ
))(qλf +λa,l)}.

Notice that because r0 ∈ (cf , (r0−βlcf )/βh), this includes the rh = rl = r0 case in the homogeneous

scenario (i.e., rh = rl).

• rh = (r0−βlcf )/βh. There are two possible values of rl for optimality: cf and ca. The company’s

optimization problem is then

max{ maxq,qf,l∈[0,1]2 βh(ph−
r0−βlcf
βh

( 1
µh−qλf−λa,h

+ 1
τ
))(qλf +λa,h) +βl(pl− cf ( 1

µl−qf,lqλf−λa,l
+ 1

τ
))(qf,lqλf +λa,l),

maxq∈[0,1] βh(ph−
r0−βlcf
βh

( 1
µh−qλf−λa,h

+ 1
τ
))(qλf +λa,h) +βl(pl− ca( 1

µl−qa,lλa,l
+ 1

τ
))qa,lλa,l}.

�

Lemma OA.5. For ca > (r0−βlcf )/βh, the company’s optimal profit Π∗ in the CM must be

max{ max
(qa,h,qa,l)∈[0,1]2

∑
t∈{h,l}

βt(pt− ca(
1

µt−λf − qa,tλa,t
+

1

τ
))(λf + qa,tλa,t),

max
(qa,h,qa,l)∈[0,1]2

βh(ph− ca(
1

µh−λf − qa,hλa,h
+

1

τ
))(λf + qa,hλa,h) + βl(pl− cf (

1

µl− qf,lλf
+

1

τ
))qf,lλf ,

max
(qf,h,qa,l)∈[0,1]2

βh(ph− cf (
1

µh− qf,hλf
+

1

τ
))qf,hλf + βl(pl− ca(

1

µl−λf − qa,lλa,l
+

1

τ
))(λf + qa,lλa,l),

max
(q,qf,l)∈[0,1]2

βh(ph−
r0−βlcf

βh

(
1

µh− qλf
+

1

τ
))qλf + βl(pl− cf (

1

µl− qf,l · qλf
+

1

τ
))qf,l · qλf}.

Proof of Lemma OA.5. Again the key to the proof is to find out all possibly optimal earning

schedules (r∗h , r
∗
l ).

Suppose first the company wishes to attract only full-timers. The CM then essentially becomes

a full-timer-only CM and, according to Lemma OA.6, the only possibly optimal earning schedule

is (r∗h , r
∗
l ) = ((r0 − βlcf )/βh, cf ). Notice that because (r0 − βlcf )/βh < ca, indeed no part-timer will

ever participate throughout the day.

Then suppose the company will enroll both full- and part-timers. Three possible cases: enrolling

part-timers (a) only in peak periods, (b) only in off-peak periods, or (c) in both periods. For case

(a), the optimal earning schedule must be (r∗h , r
∗
l ) = (ca, cf ); any rh > ca is more than enough to
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incentivize part-timers and make full-timers commit (notice that full-timers’ utility u> u0 already

at rh = ca), and any rl > cf is too high to incentivize committed full-timers to participate. Then

similarly for (b), the optimal earning schedule must be (r∗h , r
∗
l ) = (cf , ca). Finally for (c) the optimal

schedule is clearly (r∗h , r
∗
l ) = (ca, ca). �

Lemma OA.6. The company’s optimization problem in a full-timer-only CM is equivalent to

max
(q,qf,l)∈[0,1]2

βh(ph−
r0−βlcf

βh

(
1

µh− qλf
+

1

τ
))qλf +βl(pl− cf (

1

µl− qf,lqλf
+

1

τ
))qf,lqλf .(OA.25)

Proof of Lemma OA.6. Lemma OA.2 implies that in the full-timer-only CM, the company’s

problem is to optimize over the earning rate schedule (rh, rl) and full-timers’ commitment and

participation probabilities (q, qf,h, qf,l). The key to the proof is to show that the optimal average

earning rates (r∗h , r
∗
l ) must be ((r0−βlcf )/βh, cf ). The company’s control with respect to full-timers’

commitment and participation probabilities will then become straightforward.

First, it is not optimal to have r∗t < cf in any period t∈ {h, l}, since then no committed full-timer

(if any) will participate; the company can increase the profit by raising r∗t at least to cf . Next, the

optimal earning schedule (r∗h , r
∗
l ) must satisfy u∗ = u0, or equivalently, that

∑
t∈{h,l} βt(r

∗
t − cf )+ =

r0 − cf . In other words, the company will not leave full-timers any positive surplus. Suppose the

opposite is true, i.e., u∗ >u0. Lemma OA.8 implies that full-timers’ joining probability q∗ = 1 and

there is at least one period t∈ {h, l} such that the earning rate r∗t is strictly higher than full-timers’

opportunity cost cf and their participation probability q∗f,t = 1. Then the company can clearly

make a higher profit by lowering r∗t by some small amount ε > 0 such that the same number of

full-timers will commit and participate. Contradiction.

We thus focus on earning schedules (rh, rl) that satisfy
∑

t∈{h,l} βt(rt− cf )+ = r0− cf and rt ≥ cf
for t ∈ {h, l}. Start with rh = cf . We then have rl = (r0− βhcf )/βl and according to Lemma OA.2,

the company’s optimization problem is

max
q,qf,h∈[0,1]2

βh(ph− cf (
1

µh− qf,hqλf
+

1

τ
))qf,hqλf +βl(pl−

r0−βhcf
βl

(
1

µl− qλf
+

1

τ
))qλf .(OA.26)

Below we verify that the optimal q∗f,h to (OA.26) equals 1.

Denote the profit value in (OA.26) by Π̂ and the optimal commitment probability to (OA.26)

by q̂∗. Solving the optimization program yields q∗f,h = min{1, (µh−
√
µhτcf/(phτ − cf ))/q̂∗λf}. Sup-

pose instead q∗f,h < 1, which implies that q∗f,h = (µh −
√
µhτcf/(phτ − cf ))/q̂∗λf and q̂∗λf > µh −√

µhτcf/(phτ − cf ). But then we have

dΠ̂

dq q=q̂∗
= βh(ph− cf (

µh

(µh− q̂∗λf )2
+

1

τ
)) +βl(pl−

r0−βhcf
βl

(
µl

(µl− q̂∗λf )2
+

1

τ
))< 0
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because (a) the root to the second summand equals µl−
√
µlτ(r0−βhcf )/βl/(phτ − (r0−βhcf )/βl)<

µh −
√
µhτcf/(phτ − cf ) < q̂∗λf and (b) the profit function Π̂ is strictly concave. The inequality

implies that q= q̂∗ is strictly suboptimal. Contradiction.

Next, we check if any rh > cf will yield a higher profit than rh = cf . For rh ∈ (cf , (r0− βlcf )/βh),

we have rl = (r0 − βhrh)/βl ∈ (cf , (r0 − βhcf )/βl) and according to Lemma OA.2, the company’s

optimization problem is

max
q∈[0,1]

βh(ph− rh(
1

µh− qλf
+

1

τ
))qλf +βl(pl−

r0−βhrh
βl

(
1

µl− qλf
+

1

τ
))qλf .

Denote the optimal value by Π̂∗ and the optimal solution by q̂∗. Using the Envelop Theorem, we

obtain

dΠ̂∗

drh
= −βh(

1

µh− q̂∗λf
+

1

τ
)q̂∗λf +βh(

1

µl− q̂∗λf
+

1

τ
)q̂∗λf

= βh(
q̂∗λf

µl− q̂∗λf
− q̂∗λf
µh− q̂∗λf

)> 0.

This implies that the optimal earning rate in peak periods r∗h must be at least (r0−βlcf )/βh (i.e.,

r∗h ≥ (r0− βlcf )/βh). In fact, we must have r∗h = (r0− βlcf )/βh as otherwise again u∗ >u0 and r∗h is

too high to be optimal. �

OA5.3 Miscellaneous

Lemma OA.7. If for some piece-rate wages (wh,wl), full-timers’ commitment probability q =

1, there exists at least one t ∈ {h, l} such that the induced average earning rate rt ≥ r0 and the

participation probability in that period qf,t = 1.

Proof of Lemma OA.7. Suppose the induced earning rates in both periods are lower than r0,

i.e., rt < r0 for any t. Then the expected utility on the platform u =
∑

t∈{h,l} βt(rt − cf )+ < u0,

which implies that no full-timer will ever commit (i.e., q = 0). Contradiction. So there must be

some t∈ {h, l} such that rt ≥ r0. The result that full-timers’ participation probability qf,t = 1 then

immediately follows that rt > cf given our assumption r0 > cf . �

Lemma OA.8. If in the CM equilibrium full-timers’ welfare S∗ > 0, their joining probability q∗

must equal 1 and there must be at least some t∈ {h, l} such that the average earning rate r∗t > r0.

Proof of Lemma OA.8. First, suppose instead full-timers’ joining probability q∗ < 1. Their surplus

S∗ = q∗M(u∗− u0)> 0 implies that the expected utility on the platform u∗ is strictly higher than

their labor market outside option u0, which in turn implies more full-timers will choose to commit

and thus the current probability q∗ cannot constitute an equilibrium. Contradiction.
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Next, suppose instead the equilibrium average earning rate rt ≤ r0 for t ∈ {h, l}. Then for each

committed full-timer the expected utility on the platform is u∗ =
∑

t∈{h,l} βt(r
∗
t −cf )∗ ≤ u0 = r0−cf ,

which implies that S∗ = 0. Contradiction. �

Lemma OA.9. If in the CM equilibrium full-timers’ welfare S∗ > 0, their gross arrival rate λf

must be strictly less than µh.

Proof of Lemma OA.9. First, suppose instead full-timers’ joining probability q∗ < 1. Their surplus

S∗ = q∗M(u∗− u0)> 0 implies that the expected utility on the platform u∗ is strictly higher than

their labor market outside option u0, which in turn implies more full-timers will choose to commit

and thus the current probability q∗ cannot constitute an equilibrium. Contradiction.

Next, suppose instead the equilibrium average earning rate rt ≤ r0 for t ∈ {h, l}. Then for each

committed full-timers the expected utility on the platform is u∗ =
∑

t∈{h,l} βt(r
∗
t −cf )∗ ≤ u0 = r0−cf ,

which implies that not all full-timers will commit, i.e., q∗ ≤ 1. Contradiction. �

Lemma OA.10. If ca ≤ r0, full-timers’ welfare S∗ in the CM equilibrium equals 0.

Proof of Lemma OA.10. Consider first the case with ca > cf . Suppose instead full-timers’ welfare

in the CM equilibrium can be positive, i.e., S∗ > 0. In this case, Lemma OA.8 implies the existence

of some period t such that the equilibrium average earning rate r∗t > r0 and, given the condition

r0 ≥ ca, also rt > ca > cf . But then full- and part-timers’ participation probabilities q∗f,t and q∗a,t

must both equal 1, and one can infer that the optimal piece-rate wage the company has chosen

for period t must be w∗t = rt(1/(µt− (q∗f,tq
∗λf + q∗a,tλa,t)) + 1/τ). But then the company can make

a strictly higher profit by instead paying workers wεt = (r∗t − ε)(1/(µt− (q∗f,tq
∗λf + q∗a,tλa,t)) + 1/τ)

for some small ε > 0 such that r∗t − ε > ca and thus q∗f,t = q∗a,t = 1; that is, the company can lower

the wage without reducing the number of workers who choose to participate. Contradiction. �

Lemma OA.11. Define λ†E,t = min{λf , µt −
√
µtτrB/(ptτ − rB)}, the solution to

maxλ≤min{λf ,µt}ΠE,t ≡ (pt− rB(1/(µt−λ) + 1/τ))λ for t∈ {h, l}. The company’s optimal profit Π∗E

in the EM is less than Π†E ≡
∑

t∈{h,l} βt(pt − rB(1/(µt − λ†E,t) + 1/τ))λ†E,t Furthermore, we have

λ†E,h ≥ λ
†
E,l, and the optimal workforce λ∗E in the EM satisfies λ∗E ∈ [λ†E,l, λ

†
E,h].

Proof of Lemma OA.11 We have Π∗E ≤Π†E since

Π∗E = max
λ≤λf ,λ<µh,λ<µl

∑
t∈{h,l}

βt(pt− rB(
1

µt−λ
+

1

τ
))λ

≤
∑
t∈{h,l}

max
λ≤λf ,λ<µt

βt(pt− rB(
1

µt−λ
+

1

τ
))λ= Π†E. (OA.27)
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Note that, the first-order condition for λ†E,t, t∈ {h, l} is

pt− rB(
µt

(µt−λ)2
+

1

τ
) = 0, (OA.28)

and for any µ> λ
∂µ/(µ−λ)2

∂µ
=
−(µ+λ)

(µ−λ)3
< 0.

Since µh >µl and ph > pl, plug λ= λ∗E into the RHS of (OA.28) for t∈ {t, l} and we have

ph− rB(
µh

(µh−λ∗E)2
+

1

τ
)> pl− rB(

µl

(µl−λ∗E)2
+

1

τ
). (OA.29)

Yet λ∗E is given by the first-order condition

βh(ph− rB(
µh

(µh−λ∗E)2
+

1

τ
)) +βl(pl− rB(

µl

(µl−λ∗E)2
+

1

τ
)) = 0.

Combined with (OA.29), this implies that

ph− rB(
µh

(µh−λ∗E)2
+

1

τ
)> 0, pl− rB(

µl

(µl−λ∗E)2
+

1

τ
)< 0. (OA.30)

Since for any t∈ {h, l}, we have

∂2ΠE,t

∂λ2
=−rB

2µt
(µt−λ)3

< 0,

i.e., the company’s profit is concave in λ, the results in (OA.30) imply that

λ†E,h ≥ λ∗E, λ
†
E,l ≤ λ∗E.�
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