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Abstract

A key challenge in the design of effective social protection programs is determining
who should be eligible for program benefits. In low and middle-income countries, one of
the most common criteria is a Proxy Means Test (PMT) — a rudimentary application of
machine learning that uses a short list of household characteristics to predict whether
each household is poor, and therefore eligible, or non-poor, and therefore ineligible.
Using nationwide survey data from six low and middle-income countries, this paper
documents an important weakness in this use of machine learning: that the accuracy of
the PMT prediction algorithm decreases steadily over time, by roughly 1.7 percentage
points per year. We illustrate the implications of this finding for real-world anti-poverty
programs, which typically update the PMT model only every 5-8 years, and then show
that the aggregate effect can be decomposed into two forces: “model decay” caused by
model drift, and “data decay” caused by changing household characteristics. Our final
set of results show how an understanding of these forces can be used to optimize data
collection policies to improve the effectiveness of social protection programs.
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1 Introduction

Each year, over a trillion dollars are spent on social protection programs globally, making
up on average 13% of each country’s gross domestic product (ILO, 2021). To ensure that
social protection benefits are prioritized to the poorest, many of these programs are targeted,
providing benefits to only eligible households. Eligibility for program benefits in high-income
countries is typically determined using administrative data on income from tax authorities
in a practice called means testing. In low- and middle-income countries (LMICs), however,
high-quality income data is typically unavailable, incomplete, or out-of-date (Jerven, 2013),
rendering means testing infeasible.

Instead, an increasing number of LMIC social protection programs are targeted using
proxy means testing. Proxy-means tests (PMTs) (Grosh and Baker, 1995) use a machine
learning (ML) model to predict per capita household consumption from information on
household assets and demographics. The ML model is trained on a sample household sur-
vey containing consumption expenditure labels; the model is then used to estimate the per
capita consumption of every household for which asset and demographic data is available.
Eligibility for social protection programs is determined based on these estimated consump-
tion values in relation to a threshold below which households receive benefits. PMTs thus
rely on (1) a program registry or social registry that contains information on roughly 10-50
characteristics of the household (such as demographic composition and household assets)
for all potentially eligible households, and (2) a sample survey of a representative subset
of households (usually roughly 5,000-20,000 households) for which detailed consumption ex-
penditure data are collected along with the social registry variables. In settings with limited
administrative capacity, social registry data are typically collected in a “PMT sweep” of
households in parts or all of a country.

PMTs are now used in over fifty LMICs collectively containing over a billion people
(Barrientos, 2018), making these decision rules one of the more widespread and consequential
use cases of machine learning in government policy. It is therefore unsurprising that the
performance of PMT-based eligibility has been widely studied in the economics literature
(Hanna and Olken, 2018; Alatas et al., 2012; Premand and Schnitzer, 2021; Grosh and
Baker, 1995; Noriega-Campero et al., 2020; McBride and Nichols, 2018; Hillebrecht et al.,
2023), in contexts ranging from Indonesia (Alatas et al., 2012) to Niger (Premand and
Schnitzer, 2021) to Peru (Hanna and Olken, 2018). Existing evaluations typically quantify
the exclusion errors (the share of poor or beneficiary households incorrectly identified as

non-poor by the PMT) and inclusion errors (the share of beneficiary households incorrectly



identified as eligible) resulting from PMT-based eligibility rules. In general, these evaluations
find that while PMTs are imperfect, sometimes producing substantial errors of inclusion and
exclusion, they often perform better than the other targeting approaches that would be
feasible to implement.

However, the vast majority of this literature looks at the performance of a PMT at a
single point in time — the moment when the PMT data are collected and the PMT decision
rule is implemented — which is also when the performance of the PMT is highest. In
practice, most PMT-based poverty registries are updated infrequently: while many social
protection administrations aspire to update the social registry and ML model regularly (e.g.
every two years in Costa Rica; every three years in Colombia, Indonesia, and Mexico (Barca
and Hebbar, 2020)), in reality updates typically occur roughly every 5-8 years (Barca and
Hebbar, 2020; Irarrdzaval et al., 2011). This delay occurs because the updates are costly,
involving some combination of (i) updating the household-level data in the registry with a
“PMT sweep”, which we estimate costs around $31 million in the median country (of the
15 for which we have data); and (ii) recalibrating the ML model with a new sample survey,
which has a median cost of $1.3 million.

In the time between when the PMT data are collected and when policy decisions are
made based on those data, the living conditions and poverty status of households may
change. The rich literature on poverty dynamics has documented that households move in
and out poverty (as determined by consumption expenditures) on a fairly regular basis: for
example, Baulch and Hoddinott (2000) find that across panel studies in eight countries, the
poverty status of 20-66% of households changes between survey waves. The PMT covariates
collected in a social registry are likely to also shift over time: Kidd et al. (2021) show that
at least one social registry covariate changes for 99.9% of households over a four year time
span in Rwanda. Household size alone (a standard social registry covariate) changes for 87%
of households.*

The machine learning literature has formalized these issues of temporal instability in
more general time series machine learning applications as dataset shift (Quinonero-Candela
et al., 2008). In this paper, we adapt the dataset shift framework from the machine learning
literature to conceptualize and quantify how PMT accuracy is impacted by gaps in time

between data collection and PMT deployment. Leveraging 25 rounds of survey data from

!Temporal stability of covariates has for some time been identified as a challenge for PMTs (Coady
et al., 2004; Kidd and Wylde, 2011; Barca and Hebbar, 2020); while some PMTs have been designed to be
in principle more robust to temporal instability by selecting only time-robust covariates (e.g. Tabor, 2002;
Emmerling, 2012), to date these approaches have been ad-hoc.



six countries over twelve years, this paper makes three main contributions.

First, we quantify the total effect of allowing a PMT to become out-of-date. We find
that each year that a PMT is not updated, it explains roughly 9 percentage points less of
the variation in household consumption, resulting in an increase of inclusion and exclusion
errors of 1.7 percentage points per year for a 30% coverage program (relative to an average
up-to-date accuracy of 37.1% inclusion and exclusion errors).

Second, we decompose this overall decay — which assumes that neither the PMT model
nor the underlying social registry data are updated — into data decay and model decay. Data
decay is defined as losses in PMT accuracy due to infrequent collection of social registry data.
As household conditions change, housing and demographic variables collected in the social
registry are likely to become out-of-date, resulting in a covariate shift that is not corrected
until a new PMT sweep is conducted. Model decay is defined as losses in PMT accuracy
due to infrequent recalibration of the ML model, resulting in model drift in the learned
relationship between the social registry data and consumption expenditure.? Our results
identify that data decay is approximately three times more powerful than model decay in
reducing PMT accuracy.

Third, and finally, we use international information on survey costs to assess the financial
implications of data and model recalibration policies available to social program administra-
tors. We find that, under reasonable assumptions about the trade-off between survey costs
and the cost of mis-targeted benefits, most social protection programs should aim to collect
social registry data and recalibrate the PMT model every 1-3 years.

This paper provides the first comprehensive empirical assessment of the impacts of model
and data decay on PMT accuracy. Most published PMT evaluations do not account for either
data decay or model decay over time, relying on social registry and sample survey data
collected in a single, simultaneous effort to assess targeting accuracy. A handful of previous
papers have taken limited steps towards measuring one or the other of model decay or data
decay (see Table 1). However, existing work is not standardized across multiple countries,
does not separately consider model and data decay (and the implications for policy of these
two different forces), and does not look at effects after three years (when in practice most
programs face delays of 5-8 years (Barca and Hebbar, 2020)). By providing cross-country

evidence on the returns to data updating for PMT accuracy, this paper provides both a

2Model drift has been widely studied in the machine learning literature (Sugiyama and Kawanabe, 2012;
Zhang et al., 2013; Koh et al., 2021), and in real-world ML applications where the underlying joint distribution
of input variables and the predictive target may change over time, ranging from medical diagnosis (Davis
et al., 2017) to forecasting market volatility (Gibbs and Candes, 2021) and classifying media articles (Yao
et al., 2022)



general assessment of accuracy decay over time and a framework that policymakers can

adapt to identify decay effects and assess updating policies in specific country contexts.

2 Methods

2.1 Data

Our analysis relies on publicly available panel surveys from the Living Standards Measure-
ment Study (LSMS) in Ethiopia, Nigeria, Tanzania, and Uganda®, the Ghana Panel Survey?,

® Each panel is between three and five rounds,

and Peru’s Encuesta National de Hogares.
covering between five and eleven years (Table 2). All surveys were conducted between 2008
and 2019. Since our analysis relies on observing changing households conditions, we consider
only households that appear in all rounds of the survey in each country. The resulting sample

sizes range from 424 households in Tanzania to 3,393 households in Ghana.

2.2 Proxy means test modelling

Following the standard implementation of a PMT (Grosh and Baker, 1995; Brown et al.,
2018; McBride and Nichols, 2018), we construct a machine learning experiment in which log-
transformed per capita household consumption expenditure is estimated based on housing-
related and demographic covariates collected in the survey.® We refer to the predictor vari-
ables collectively as the “registry covariates” as they are the types of variables that would
typically be collected in a social or program registry (Grosh and Baker, 1995; Brown et al.,
2018; Hanna and Olken, 2018). We use three types of registry covarites in our models: (1)
housing-related variables (such as the material of the roof, walls, and floor; amenities such
as a toilet or electricity; and information on building size and ownership), (2) asset owner-
ship variables (unique to each country’s context), and (3) demographic information (such as

household size, number of children, and characteristics of the household head).

3Information and microdata are available from https://www.worldbank.org/en/programs/lsms/
initiatives/lsms-ISA. For each LSMS survey, we use all survey waves for which consumption panel
data are available.

4Information and microdata are available from https://egc.yale.edu/data/
isser-northwestern-yale-long-term-ghana-socioeconomic-panel-survey-gsps. We use all three
survey waves.

SInformation and microdata are available from https://iinei.inei.gob.pe/microdatos/. We use the
latest consecutive panel survey rounds prior to the COVID-19 pandemic, 2015-2019.

6Some PMT implementations use per-capita consumption values as the predictive target while others
use adult equivalence weighting; for consistency we use per-capita values across countries.
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Not all covariates are available in each of the six countries we study, so the number of
covariates ranges from 28 in Peru to 68 in Tanzania. Continuous variables are winsorized
with a 99% limit and are then standardized to a [0, 1] range and categorical covariates are

one-hot encoded.”

2.2.1 Machine learning approach

Our base specification divides surveyed households for each country randomly into a training
set (75% of households) and an evaluation set (25% of households). For each survey round
separately, we train our machine learning models to predict log-transformed per capita house-
hold consumption from the social registry covariates on training set households, and evaluate
performance on test set households. Survey weights are included both in training the ML
models and in calculating the accuracy metrics. To account for idiosyncrasies in random
data splits, we repeat the simulation 100 times with different random train-test splits and
take the average of each evaluation metric across test sets.

The primary machine learning approach we test is a linear regression paired with stepwise
forward selection of input variables. Although there are a variety of machine learning models
used for PMTs in practice, and recent work has suggested that more complex models may
provide marginal accuracy gains (McBride and Nichols, 2018; Noriega-Campero et al., 2020;
Areias and Wai-Poi, 2022), the stepwise forward selection and linear regression approach is a
standard approach to calibrating PMTs.® We also compare the performance of the stepwise
approach with a number of other machine learning models, including ordinary least squares
regression (with the full set of registry covariates), LASSO regression, a random forest, and

a gradient boosting machine.’

"For categorical variables, any value representing less than 1% of the observations in any survey round
is replaced with a generalized “other” category.

80ur implementation of stepwise forward selection is as follows, performed separately for each random
train-evaluation data split: First, the training set is split further into a selection set and a calibration set.
The linear regression is trained only on the selection set; variables are progressively added to the model until
the mean squared error of the model on the calibration set stops increasing. The linear regression is then
retrained on the entire training set prior to the calculation of performance metrics on the evaluation set.

9For the LASSO regression, regularization strength chosen via three-fold cross validation on the training
set. For the random forest, ensemble size and maximum depth chosen via three-fold cross validation. For
the gradient boosting machine, the ensemble size, maximum depth, minimum samples per leaf, and learning
rate chosen via three-fold cross validation.



2.2.2 Evaluation metrics

To evaluate PMT performance, we calculate the R? score and Spearman’s rank correlation
between predicted and ground truth consumption values using the evaluation set. We also
calculate the targeting error rate of the PMT for a hypothetical social protection programs
that aim to target the poorest 10%, 20%, 30%, and 40% of households. We use a quota
approach to calculating targeting error rates: if a household is ranked in the poorest 10% by
ground-truth consumption but not by predicted consumption it is an error of exclusion; if a
household is ranked in the poorest 10% by predicted consumption but not by ground truth
consumption it is an error of inclusion. In this setting the exclusion error rate and inclusion
rate are equal by definition; following Brown et al. (2018), we therefore refer to this metric as
the targeting error rate (TER). We notate the targeting error rate with the relevant quota:
for example, the targeting error rate for a program aiming to reach the poorest 20% of
households is notated TER(20). All evaluation metrics are calculated separately for the 100

simulations with different random data splits, and the average across the splits is reported.

2.3 Quantifying decay
2.3.1 Combined decay

To simulate decay caused by temporal gaps between data collection, model calibration,
and deployment, we conduct the same machine learning experiment described in the base
specification above, but this time introduce lags between training and evaluation sets. We
start by estimating combined decay: the setting in which the model and social registry
covariates are equally out-of-date. To simulate combined decay, the MLL model is trained on
the training set from round w;, and performance metrics are calculated on the evaluation set
using covariates from round w; and consumption data from round wj, for all 7 <= j in the
panel survey. Across the six countries and all possible lag values, we have 67 observations of
combined decay, ranging from lags of 1 year to lags of 10 years. To parameterize combined
decay, we regress decay (that is, the difference between performance with temporal lags and

performance using data that matches the time of the evaluation) on the temporal lapse:

k,l k,l
Aaccm’acyt = Bcombinedt + & (1)

Beombined 18 the parameter of interest, representing the decay in PMT accuracy associated
with each year that social registry data are not updated. Aaccuracyf b= accuracyg’l —

accumcyf ! where ¢ indexes the years since data collection and model recalibration, and &



indexes each country, and [ indexes the year of test data collection. The specification does

not include an intercept, as decay is zero when both the model and data are up-to-date.

2.3.2 Decomposition into model and data decay

To estimate the contributions of model and data decay to combined decay in PMT accuracy,
we expand our dataset to include lag combinations where the model and data are unequally
out-of-date. In this setting, the ML model is trained on the training set from round wj,
and performance metrics are calculated on the evaluation set using covariates from round
w; and consumption data from round wy, for all ¢, 7 <= k in the panel survey, for a total
of 223 observations of decay across the six panel surveys. In our decomposed specification,
we regress decay on the time since model calibration, the time since data collection, and the

interaction of the two:

kl _ k.l
Aaccw“acyum - ﬁdatau + ﬁmodelv + Bmteractionuv + Euﬂ; (2)

The inclusion of the interaction term [;,seraction accounts for the way in which model and
data decay co-vary, and allows a more flexible fit as the lags increase. In the decomposed
specification Aaccumcy,ﬁ b= accumcylgjé — accuracyﬁ:f}, where u indexes the years since PMT
data collection, v indicates the years since model recalibration, £ indexes each country, and

[ indexes the year of test data collection.

2.4 Choice of data collection policy

We consider periodic data updating policies that prescribe one fixed annual interval for ML
model recalibration and another, possibly identical one, for PMT sweeps. In this setting, a
policymaker wishing to minimise the total cost arising from accuracy decay, including survey

expenses, faces the following choice of data collection policy:

T

1
arg min T Z ATER; ;7' 4+ 1(i = 0)cgpg + 1(] = 0)Chyee, V0, b € {1..10} (3)
ab t=1

where a and b are the respective annual intervals at which the population sample survey
and the PMT sweep are conducted, ATFER is the combined decay of the targeting error
rate, the evaluation period T = a % b ensures that the lifecycle of the periodic policy, i.e.
the number of years until both surveys are recollected simultaneously, is completed, ¢ =

mod(a,t) and j = mod(b,t) are modulo operations that yield the years since the sample



survey and household characteristics were collected, respectively, 1() is an indicator function
that equals one if the term in brackets is true and zero otherwise, 7! is the average benefit
paid to households in the social registry in year t, and cipg, Chyeep are the costs respective
costs of a sample population survey and a PMT sweep in year ¢t. For simplicity, we apply
no discount factor, and assume that ¢ = ¢® and n" = 7°Vr, s € Z so that neither benefit
amounts nor costs change over 7.

In our simulation, we test the 100 model and data refresh policy combinations that arise
from 1-10 year update cycles for each. The best such policy is one that minimizes the total
cost of social registry data collection, consumption survey data collection for calibrating
the PMT model, and benefit payments lost to mis-targeting, over the course of the policy’s
lifecycle. It will critically depend on the program’s coverage, the size of the social registry,
and the benefits the program provides; we combine these latter two into a single parameter:

the average benefits per household in the social registry.

2.4.1 Cost of PMT updating

Our cost estimates for social registry data updating come from several papers that have
reported the per-household cost of conducting a PMT survey; in total we identified re-
ported PMT survey costs in eight countries from four papers (Alatas et al., 2012; Karlan
and Thuysbaert, 2019; Rosas et al., 2016; Schnitzer and Stoeffler, 2022). To make costs con-
sistent across contexts, we measure all costs in 2015 purchasing power parity (PPP) dollars.
Reported PMT survey costs range from $6.32 to $29.39 PPP ($2.62 to $12.00 nominal) per
household in the social registry (Table S1); in our analysis we use the median value of $13.31
PPP.

For model recalibration, the dominant cost is conducting a consumption sample survey
to train the PMT. We obtain data on the per-survey cost and total sample size for LSMS
consumption sample surveys 18 countries from Kilic et al. (2017). Total costs for the con-
sumption survey range from $245,784 nominal for a 5,016-household consumption survey in
Kyrgyzstan to $4.29 million nominal for a 14,400 household survey in Yemen (Table S2).
Like for PMT costs, we distribute the consumption survey cost over all households in the
hypothetical social registry; to obtain this value we calculate an estimate of the total number
of households in each of the 18 countries.’® Using the median global social registry coverage

of 21% calculated by Grosh et al. (2022) this yields the expected number households in a

0Estimated households per country are calculated using population data from the World Bank (World
Bank, 2023) and average household size data from the Nations (2017).



hypothetical social registry of each country. When the cost of consumption surveys is dis-
tributed over the households in these hypothetical registries, the average cost ranges from
$0.40 to $10.87 PPP; in our analysis we use the median value of $3.33 PPP.

2.4.2 Cost of mistargeting

From the perspective of targeting for a specific social assistance program, the cost of mistar-
geting due to decay is the value of benefits provided to households that are additional errors
of inclusion due model or data decay. We therefore calculate the cost of mistargeting due to
PMT decay per social registry household as the product of the decay in the targeting error
rate and the average benefits per household in the social registry. The decay in targeting
error rate expected for each recalibration policy is calculated using our parametric estimate
of decay from Equation 2; the decay for each updating strategy is the average decay over
the policy’s entire lifecycle.

We calculate the updating and mistargeting costs of the 10*10=100 policy options for
four different program coverage rates: 10%, 20%, 30%, 40%. The average benefit amounts
per social registry household we consider ranges from $10 to $2,000 PPP. Note that this
latter value does not refer to the benefits provided to beneficiaries, but rather the average

benefits provided to any household in the social registry (measured in PPP dollars).!!

3 Results

3.1 Quantifying decay

We begin by quantifying what happens to the accuracy of a PMT if neither the the PMT
model nor the underlying data are updated. The effect of this combined decay (so called
because it is produced by the combination of the model and data growing out of date) is
shown across all six countries in Figure 1. Over the ten-year period shown, we see substantial
reduction in the R? and Spearman correlation coefficient — and substantial increases in the
targeting error rate — in each of the countries. The black line in Figure 1 is the regression
line (see Equation 1); the coefficients of this regression line are provided in Table 3.

The PMT’s accuracy degrades significantly over time: for each year that a PMT is not
updated, the PMT explains roughly six percentage points less of the variation in household

consumption. Inclusion and exclusion errors increase by between 1.5 and 1.9 percentage

11'We prefer this approach as it abstracts away the need to quantify the size of the social registry in our
simulations.



points each year, depending on the total coverage of the program. To put these numbers
in context, with a program the size of PROGRESA in Mexico (which provides benefits to
approximately 2.6 million households annually (Skoufias, 2005)), a delay of five years between
PMT updates would be expected to produce roughly an additional 200,000 exclusion and
inclusion errors. In the discussion section, we revisit these and other implications in greater
detail.

Figure 1 demonstrates that decay rates are different across countries; to assess cross-
country variation Table S5 calculates combined decay separately in each country. For exam-
ple, the yearly decline in R? varies from 3 percentage points in Peru to 14 percentage points
in Uganda, and the yearly increase in inclusion and exclusion error rates (for a 30% coverage

program) varies from 0.8 percentage points in Tanzania to 3.9 percentage points in Uganda.

3.1.1 Decomposition into model and data decay

Our next step is to identify how much of the combined decay can be attributed to model
decay (model drift in the relationship between social registry covariates and ground truth
consumption, which occurs because the model is not recalibrated with sample survey data)
and data decay (covariate shift in the social registry, which occurs because the household
covariates in the registry are not updated through PMT sweeps). To better understand the
relative contributions of model and data decay separately, we assess how PMT accuracy
varies with the years since model recalibration, the years since data collection, and the
interaction of the two lags (see Equation 2). Table 4 presents the results of these regressions.

We find that both model decay and data decay significantly impact PMT accuracy, but
that data decay has the largest impact on errors of inclusion and exclusion, contributing
roughly three times as much to overall decay: the decay parameters are 1.85 percentage
points per year and 0.65 percentage points per year for data decay and model decay respec-
tively (for a program with 30% coverage, with similar effects for other program coverage
levels). Decay contributions are similar for Spearman correlation (with a parameter of -
0.0347 for data decay and -0.0115 for model decay), although model decay and data decay
contribute approximately equally to decreases in the R? score (parameters of -0.0544 and
-0.0479, respectively). The interaction term is positive and statistically significant for R? and
Spearman, and negative and statistically significant for all targeting error rates. The inter-

13

action term therefore “works against” model decay and data decay, resulting in a flattening

of overall decay at long joint data lags.
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3.1.2 Other ML approaches

Past work has shown that more sophisticated machine learning models may produce more
accurate PMT predictions than the standard OLS or OLS with stepwise forward selection
modeling approach (McBride and Nichols, 2018; Noriega-Campero et al., 2020; Areias and
Wai-Poi, 2022). In our setting, it is also possible that more sophisticated machine learning
approaches could be more robust to model and data decay over time. To test this possibility,
Table S3 measures the baseline (no-decay) performance of a number of ML models (OLS,
OLS with stepwise forward selection, LASSO, a random forest, and a gradient boosting
machine), and Table S4 measures overall decay for each of these models.

Consistent with past work we find that more complex and nonlinear ML models are
slightly more accurate at baseline than an OLS or OLS plus stepwise forward selection
approach. A gradient boosting model has the highest baseline accuracy — in terms of
targeting error rate — of any of the ML approaches tested. In general, we find similar
patterns of decay across ML models. Of all the models tested, the linear regression with
stepwise forward selection and LASSO regression perform slightly better than any others in

terms of slowing decay — but the differences are relatively small.

3.2 Assessing model and data refresh policies

Data collection for model re-calibration and PMT sweeps is costly, but in its absence accu-
racy decay leads to a mis-allocation of social assistance spending towards households that
are ineligible. The resulting dilemma for policymakers is how to balance cost and decay
economically.

We test a set of 100 model and data refresh policies, representing every combination
of social registry data updating from every 1-10 years, and likewise for PMT model recali-
bration. As described in detail in Section 2.4, we consider the best updating policy as the
one that minimizes the total cost of social registry data collection, consumption survey data
collection for calibrating the PMT model, and benefit payments lost to mis-targeting, over
the course of the policy’s lifecycle. The best updating policy will critically depend on the
program’s coverage, the size of the social registry, and the benefits the program provides; we
combine these latter two into a single parameter: the average benefits per household in the
social registry.

Figure 2 shows the minimum-cost, periodic updating strategy (in terms of frequency

of PMT sweeps to collect social registry data and frequency of model recalibration) for
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programs targeting the poorest 10%, 20%, 30%, and 40% of households, and for average
benefits per household in the social registry ranging from $0 to $2,000 PPP. We find that
programs with moderately large benefit values per household in the social registry, starting
from around $250 PPP per year, should adopt frequent data collection policies (recalibrating
the model and conducting a PMT sweep every 1-2 years). Programs with very small benefit
values (under $80 PPP per household in the social registry) should only update rarely,
approximately every 6-10 years for both the model and the social registry data. Programs
with intermediate payments, i.e. those providing $80-250 PPP per household in the social
registry, should invest in updating the model and the social registry data every 2-4 years.
To put these results in the context of real-world programs, Table 5 provides details of
thirteen real-world social protection systems for which data on design parameters (includ-
ing social registry coverage and total program budget) are available from the Manchester
Social Assistance Explorer (Barrientos, 2018). We include our own estimates of the optimal
updating strategy based on each program’s design and the results in Figure 2.2 While infor-
mation on the status quo updating policies for specific programs is not generally available,
Barca and Hebbar (2020) estimate an average of 5-8 year gaps between PMT sweeps. In
general, we find that the recommended updating policy is more frequent: most real-world
programs should update the social registry data and the ML model every 1-3 years. The
exact recommended updating strategy depends on the design parameters of the program.
In Appendix B we test an alternative approach to identifying the best updating strategy,
by assuming a fixed and single budget for data collection and program benefits and optimizing
for social welfare using a utility function. We find that this approach to selecting the best
updating strategy tends even further towards prescribing frequent updating (for example,
prescribing a yearly ML model update and survey sweep for all programs with benefits of

over $60 PPP per social registry household, Figure S2).

4 Discussion

This article investigates the practical impact of a statistical phenomenon — dataset shift —
through its influence on the widely applied predictive modelling task of proxy means testing.
It suggests that around 1.7% of intended social assistance beneficiaries are excluded due
to dataset shift if the ML model and registry covariates used in PMTs are allowed to go

out-of-date by a single year. By year five, which may be a fair estimate of the lag between

12We assume a 30% program coverage level, although updating recommendations are fairly robust across
alternative coverage levels.
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data collection rounds (Barca and Hebbar, 2020; Irarrazaval et al., 2011), that number has
risen to around 8.5% of beneficiaries. These figures and the scale of targeted social assistance
programs (Barrientos, 2018; Gentilini et al., 2022) suggest that millions suffer the effects of
accuracy decay each year.

Data decay has approximately three times the impact on overall performance of model
decay. This result is in line with insights from studies of poverty dynamics showing that
a substantial number of households suffer idiosyncratic shocks in a given year (Baulch and
Hoddinott, 2000). The failure to capture this variation seems to weigh more heavily than
use of an ageing predictive model. Our results also show a moderately negative interaction
effect, signalling the importance of aligning the model with the period of covariate data
collection, even when the covariates are out-of-date. The rates of model and data decay are
surprisingly consistent across program coverage levels (in spite of large differences in baseline
accuracy levels).

In comparison with previous studies on the topic, Brown et al. (2018) found a larger com-
bined decay effect (7-9 percentage points per year), but the lack of out-of-sample validation
in the non-decay scenario does not allow for direct comparison to this result. In contrast,
Klasen and Lange (2015) and Sebastian et al. (2018) find little evidence of model or data
decay; perhaps due to investigating a small effect with limited data over a short time horizon
(1-3 years) for a single country (Bolivia and Sri Lanka, respectively). Our estimate is most
consistent with that of Hillebrecht et al. (2023), which identifies a combined decay effect of
2 percentage points per year in Burkina Faso.

Based on our results, the recommended model recalibration policy for an average setting is
every 1-2 years for programs with benefits over $250 PPP per social registry household. The
fast amortization of consumption sample survey costs suggests that countries with meaningful
household-targeted social assistance programs should collect consumption data to recalibrate
the ML model annually or bi-annually. Non-targeting uses only the bolster the case for
frequent socio-economic surveys, and this study also illustrates the benefit of panel data for
social protection design.

Households sweeps are roughly four times as costly as sample surveys per social registry
member, but their large accuracy impact implies that they should nevertheless be conducted
at approxoimately the same frequency as model recalibration: every 1-2 years for programs
providing benefits of over $250 PPP per social regsitry household. While this suggested
updating frequency is for the most part consistent with program commitments and policy

guidance on updating frequency (Barca and Hebbar, 2020; Irarrazaval et al., 2011; Sebastian
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et al., 2018), it is substantially more frequent than the 5-8 year updating gaps that programs
typically face in practice (Barca and Hebbar, 2020). Our empirical results suggest that
policymakers should face the cost implications of accuracy decay by making contributions
to a ring-fenced, accumulating survey fund through the annual budget of targeted social
protection programs. Moreover, as a country’s social protection system matures and average
benefit amounts increase, more frequent data collection is advisable. Technological progress
that lowers data collection costs, such as integration of digital administrative databases or
the use of novel data sources, also calls for a higher frequency of model and household data
updates.

In settings where the PMT data and/or model are very out-of-date and updating is not
feasible, alternative targeting approaches might be preferable from an accuracy perspective
until the PMT can be updated. Community-based targeting is generally found to be only
slightly less accurate than the PMT, (Alatas et al., 2012; Karlan and Thuysbaert, 2019)
and could be a suitable choice in settings where PMTs are out-of-date. Alternative digital
data sources may also become relevant for targeting when PMTs become out-of-date: for
example, Aiken et al. (2022) find a ten percentage point difference in targeting accuracy for
the poorest 30% (TER(30)) between a freshly-calibrated PMT and targeting on a poverty
index inferred from mobile phone metadata; our results suggest that if a PMT is six or
more years out-of-date the phone-based approach may in fact be preferred to the PMT.
Other simple targeting approaches — like geographic targeting (Baker and Grosh, 1994),
categorical targeting (Devereux et al., 2017), or self-targeting (Alatas et al., 2016) may also
be relevant policy alternatives when PMTs are very out-of-date.

The remarkable consistency of the decay results across program coverage levels is mirrored
by surprisingly similar recommended updating policies for different coverage rates. Although
this result suggests a certain robustness across settings, the average costs used in the policy
simulations are not necessarily reflective of specific country conditions. Our framework can
be adapted to calculate the best updating policy for a particular country given country-
specific consumption survey and PMT survey costs to form more targeted estimates.

A few limitations to our analysis are worth noting. First, the decay estimates are derived
from a limited set of six countries, with a geographic bias towards Sub-Saharan Africa.
While the baseline targeting accuracies of the PMTs we simulate are broadly similar to
other published work (Brown et al., 2018; Hanna and Olken, 2018; Alatas et al., 2012;
Schnitzer and Stoeffler, 2022; Karlan and Thuysbaert, 2019), confirming that decay evolves

in a similar fashion in other contexts would be helpful and policy-relevant. Second, we
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use simple variable selection policies and limited feature engineering in the construction of
predictive models, which are all trained on LSMS panel surveys of moderate size. Future
work could confirm whether modelling and training data details matter, and whether more
decay-robust ML models can be designed that also achieve high current accuracy. Third,
while the periodic policies we consider are consistent with the framework of current updating
strategies for most social protection programs (Barca and Hebbar, 2020), it is possible that
more complex recalibration strategies may yield lower costs. Fourth, and finally, a further
detail to consider in the simulations of updating policies is the time value of money and cost
inflation, which we disregard for simplicity.

Our analysis also by design abstracts away certain aspects of real-world social protection
systems, which may complicate the results presented here. First, we focus on settings where
PMT sweeps are conducted to collect social registry data; the setting of on-demand reg-
istration common in social protection systems with elevated administrative capacity raises
questions around comparability of rankings over time and suggests the potential for targeted
reassessment. Second, there is additional loss in social registry accuracy and completeness
resulting from the creation of new households over time (see Bah et al. (2019) on the im-
portance of complete household lists); this further form of decay could be investigated with
suitable panel data. Third, and finally, our results rely on sample survey data from the LSMS;
further work could compare these simulation results with empirical data on real-world social
protection program recipients over time.

In conclusion, this work establishes multi-country temporal accuracy decay estimates for
PMTs and proposes initial practical cost-conscious mitigation policies. Our results suggest
that accuracy decay over time is a first order concern for the targeting of social protection
programs in LMICs, and that social registry data and PMT models should be updated sub-
stantially more frequently than the status quo. While accuracy decay is a serious concern for
PMT models, it is unclear how alternative targeting methods fare in this regard. Alternative
approaches that may be conducted frequently at low cost, such as some satellite-based geo-
graphical or phone-based targeting, are typically less accurate to start with; more research

would be needed to establish whether they could perform better over time.
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Tables and Figures

Table 1: Existing evidence of how PMT performance decreases over time

Paper Setting

Time Horizon

Decay Estimate

Limitations

Panel A: Model Decay
Brown et al. (2018)

Uganda

Klasen and Lange Bolivia
(2015)

Panel B: Combined Decay'?
Brown et al. (2018)

Uganda

Hillebrecht et al.
(2023)

Burkina Faso

Sebastian et al. (2018)  Sri Lanka

Ethiopia, Malawi,
Nigeria, Tanzania, and

Ethiopia, Malawi,
Nigeria, Tanzania, and

One or two years

Three years

One or two years

One year and three
years

Three months, six
months, and nine
months

4 percentage points increase in inclusion and
exclusion error rates for the poorest 20%

of households. 5 percentage points for the
poorest 40% of households.

No impact on inclusion or exclusion error
rates.

9 percentage points increase in inclusion and
exclusion error rates for the poorest 20%

of households. 7 percentage points for the
poorest 40% of households.

2 percentage points increase in inclusion and
exclusion error rates for the poorest 30% of
households per year.

No evidence of quarter-to-quarter increases in
errors of inclusion or exclusion.

Evaluation metrics are not calcu-
lated out-of-sample for the no-decay
case, so decay values may be overesti-
mated.

Assessment only in a single country
using two survey waves.

Evaluation metrics are not calcu-
lated out-of-sample for the no-decay
case, so decay values may be overesti-
mated.

Assessment only at short time hori-
zons and in a single country using
two survey waves; no decomposition
into model and data decay.

Quarter-to-quarter decay is of lim-
ited relevance to decay at the time
horizon of several years; no decompo-
sition into model and data decay.

Notes: Summary of results from four previously published papers that study data decay, model decay, or combined decay in the context of

PMTs. Methadological limitations and conflicting results highlight the need for a systematic and cross-country study of the impacts of model

and data recency on PMT efficacy.

13To our knowledge no existing papers study data decay alone; only in conjunction with model decay.



Table 2: Panel surveys used in our analysis

Country Survey Waves Households Social Registry
Covariates
Ethiopia  Three waves over five years: 2011, 2013, 2015 3,169 52
Ghana Three waves over eight years: 2009, 2013, 2017 3,393 54
Nigeria Four waves over nine years: 2010, 2012, 2015, 2018 1,237 48
Peru Five waves over five years: 2015, 2016, 2017, 2018, 2019 1,575 28
Tanzania  Five waves over eleven years: 2008, 2010, 2012, 2014, 2019 424 68
Uganda Five waves over seven years: 2009, 2010, 2011, 2013, 2015 1,041 32

Notes: Summary statistics on the six panel surveys used throughout our analysis.

Table 3: Estimates of combined decay

Baseline Performance Combined Decay

R? 0.5053 -0.0610***
(0.0064)
Spearman 0.6923 -0.0287***
(0.0040)
TER(10)  0.6134 0.0173%%
(0.0021)
TER(20)  0.4667 0.0186%**
(0.0021)
TER(30)  0.3698 0.0170%**
(0.0017)
TER(40) 0.2947 0.0148%**
(0.0016)

Notes: Average total yearly decay when a PMT is allowed to
go out of date (neither the data nor the model are updated).
Baseline performance represents average PMT performance when
there is no lag between data collection, model updating, and
PMT evaluation. Decay is calculated using a linear regression
of accuracy loss on years elapsed since model and data updating
(see Equation 1). * indicates p < 0.01, ** indicates p < 0.05, and
*** indicates p < 0.01.
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Table 4: Decomposition of combined decay into model decay and data decay

Baseline Data Decay Model Decay Interaction
Performance Component Component Term
R? 0.5053 -0.0544*** -0.0479%** 0.0058%**
(0.0103) (0.0103) (0.0021)
Spearman 0.6923 -0.0347%** -0.0115%** 0.0033***
(0.0033) (0.0033) (0.0007)
TER(10) 0.6134 0.0200%** 0.0080*** -0.0021***
(0.0018) (0.0018) (0.0004)
TER(20) 0.4667 0.0207*** 0.0078%+* -0.0020%***
(0.0018) (0.0018) (0.0004)
TER(30) 0.3698 0.0185%** 0.0065%** -0.0015%**
(0.0014) (0.0014) (0.0003)
TER(40) 0.2947 0.0167%** 0.0057#+* -0.0014***
(0.0013) (0.0013) (0.0003)

Notes: Decomposing decay into model decay (decline in acccuracy due to lack
of ML model recalibration) and data decay (decline in accuracy due to out-of-
date social registry covariates). Baseline performance represents average PMT
performance when there is no lag between data collection, model updating,
and PMT evaluation. Decay is calculated using a linear regression of accuracy
loss on years elapsed since model updating, years elapsed since data updating,
and the interaction of the two lags (see Equation 2). We leave data points
from Ethiopia out of the R? specifications as outliers in Ethiopia’s household
data cause catestrophically low R? values in some cases that bias the overall
regression line. Stars are determined by statistical significance of the coefficient
in the relevant regression specification: * indicates p < 0.10, ** indicates p <
0.05, and *** indicates p < 0.01.
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Table 5: Recommended updating policies for selected real-world social protection systems

Country Programs Budget Registry  Estimated HH Budget per Recommended
(2015 PPP) Coverage in Registry Registry HH Years Between
(2015 PPP) Updates
Argentina Asignacion Universal por Hijo para Proteccién Social $3,743,541,321 99.2% 12,743,127 $261 2
Benin Projet de Services Décentralisés Conduits par les Communauté $5,963,783 12.3% 260,760 $20 10
Colombia Mas Familias en Accion $2,065,901,347 72.5% 9,989,794 $184 3
Red Unidos
Congo Lisungi $47,864,073 3.3% 36,614 $1,163 1
Costa Rica  Avancemos, Régimen No Contributivo de Pensiones $493,965,001 12.1% 165,806 $2,651 1
Régimen No Contributivo de Pensiones
Ecuador Bono de Desarrollo Humano $2,419,336,463 47.3% 2,030,637 $1,060 1
Desnutricion Cero
Pension para Adultos Mayores
El Salvador  Comunidades Solidarias Rurales $127,036,688 10.0% 156,722 $721 1
Ghana Livelihood Empowerment Against Poverty programme $48,242 902 5.1% 405,211 $106 4
Jamaica Programme of Advancement through Health and Education $83,760,340 10.3% 89,274 $835 1
Mexico Prospera, Programa de Inclusion Social $8,924,437,508 15.8% 5,423,243 $1,465 1
Peru Juntos, Pension 65 $1,226,796,360 85.3% 6,999,474 $156 3
Philippines Pantawid Pamilyang Pilipino Program $3,617,522,838 75.6% 16,569,851 $194 3
Togo Projet de Développement des Communautés et de Filets de Sécurité $28,238,491 23.4% 365,635 $69 6
Median $493,965,001 15.8% 4,289,474 $261 2

Notes: Social protection program data are taken from the Manchester Social Assistance Database (Barrientos, 2018). Data on social registry
coverage levels are taken from Grosh et al. (2022), Berner and Van Hemelryck (2021), Beegle et al. (2018), and Leite et al. (2017). Data are
presented for all PMT-targeted programs in the year 2015 in the Manchester Social Assistance Database (the most recent year available in the
database) for which social registry coverage data are available in one of our sources. Where countries run multiple PMT-targeted programs in the
database, the budgets for all such programs are summed together. Where social registry coverage data are available from multiple sources, the most
recent source is used. We assume 11% of each program’s budget goes towards administrative costs (Ortiz et al., 2017). The estimated number of
households in each registry are calculated based on population data from the World Bank (World Bank, 2023), average household size information
from the United Nations (Nations, 2017), and the information on registry coverage. Costs are converted to local currency (with exchange rates
from the World Bank (World Bank, 2023)), to PPP, and then deflated to 2015 PPP based on the US GDP deflator (PPP exchange rates and GDP
deflator are taken from the IMF Economic Outlook Database (IMF, 2023)). The recommended updating frequencies are based on our policy choice
simulations (Figure 2), for a coverage level of 30% (although recommended strategies are generally fairly robust across coverage levels). For all real
world programs the recommended updating policy is symmetrical (that is, the ML model is recommended to be recalibrated at the same frequency
as PMT sweeps), though non-symmetrical updating policies may be recommended for alternative benefit levels (see Figure 2).
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A Supplementary tables

Table S1: Estimates of PMT survey costs

Country Year Cost per Survey Cost per Survey Source

(USD Nominal) (2015 PPP)

Burkina Faso 2016 $5.69 $15.52 Schnitzer and Stoeffler (2022)
Chad 2016 $9.50 $22.58 Schnitzer and Stoeffler (2022)
Honduras 2008 $2.62 $6.46 Karlan and Thuysbaert (2019)
Indonesia 2009 $2.70 $9.93 Alatas et al. (2012)
Mali 2016 $4.00 $11.11 Schnitzer and Stoeffler (2022)
Niger 2016 $6.80 $15.52 Schnitzer and Stoeffler (2022)
Peru 2010 $3.05 $6.32 Karlan and Thuysbaert (2019)
Tanzania 2017 $12.00 $29.38 Rosas et al. (2016)
Median $4.85 $13.31

Notes: Cost per household in the social registry for PMT surveys, from four sources. Survey costs
are converted to local currency (with exchange rates from the World Bank Development Indicators
(World Bank, 2023)), to PPP, and then deflated to 2015 PPP based on the US GDP deflator (PPP
exchange rates and GDP deflator are taken from the IMF Economic Outlook Database (IMF,
2023)).
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Table S2:

Estimates of consumption survey costs

Total cost Year Number of HH Cost per HH Cost per per HH

(USD Nominal) in Country in Registry in Registry

(USD Nominal) (2015 PPP)
Afghanistan $2,289,000 2014 4,125,000 $2.64 $8.97
Bangladesh $793,600 2010 32,975,809 $0.11 $0.40
Colombia $1,936,000 2014 13,336,556 $0.69 $1.20
Costa Rica $1,436,391 2006-2012 1,353,312 $5.05 $8.67
Ethiopia $1,313,739 2011 20,532,887 $0.30 $1.13
Guatemala $1,559,790 2014 3,188,816 $2.33 $4.83
Iraq $3,874,000 2012 4,397,980 $4.19 $9.76
Kyrgyzstan $245,784 2003 1,200,786 $0.97 $7.59
Malawi $2,441,929 2010 3,365,799 $3.45 $8.09
Myanmar $295,200 2015 12,258,083 $0.11 $0.42
Nepal $1,233,528 2010 6,173,083 $0.95 $3.29
Nicaragua $773,906 2014 1,193,976 $3.09 $7.97
Niger $1,188,000 2011 3,757,198 $1.51 $3.36
Nigeria $1,995,896 2010 35,970,814 $0.26 $0.59
Tanzania $1,008,885 2014 10,370,317 $0.46 $1.02
Uganda $1,178,100 2008 6,683,515 $0.84 $2.62
Peru $2,275,216 2009 7,691,993 $1.41 $3.30
Yemen $4,291,200 2014 4,142,284 $4.93 $10.87
Median $1,375,065 5,285,532 $1.19 $3.33

Notes: Details of consumption survey cost calculations. Data on survey costs are based on data from the

LSMS (Kilic et al., 2017). Data on the number of households in each country are based on population size are
from the World Bank (World Bank, 2023), and average household size information from the United Nations
(Nations, 2017). The cost per household in a hypothetical social registry is based on a median global social

registry coverage of 21% from Grosh et al. (2022) Costs are converted to local currency (with exchange rates
from the World Bank (World Bank, 2023)), to PPP, and then deflated to 2015 PPP based on the US GDP
deflator (PPP exchange rates and GDP deflator are taken from the IMF Economic Outlook Database (IMF,

2023)).
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Table S3: Pre-decay performance of ML models

Stepwise + LR LR LASSO Random Gradient

Forest Boosting
R? 0.4810 0.4535 0.5275 0.5237 0.5523
Spearman 0.6923 0.6952 0.7193 0.7136 0.7314
TER(10) 0.6134 0.6026  0.5946 0.5831 0.5775
TER(20)  0.4667 0.4592  0.4467 0.4516 0.4395
TER(30)  0.3698 0.3661 0.3526 0.3577 0.3479
TER(40)  0.2947 0.2933 0.2792 0.2833 0.2753

Notes: Average performance for each machine learning model without model or
data decay. Average performance across all survey waves is shown.

Table S4: Estimates of combined decay for different ML models

Stepwise + LR LR LASSO Random  Gradient
Forest Boosting
R? -0.0610%** -0.0682***  -0.0580***  -0.0597***  -0.0645***
(0.0064) (0.0068) (0.0066) (0.0059) (0.0064)
Spearman  -0.0287*** -0.0307***  -0.0293***  -0.0308***  -0.0324***
(0.0040) (0.0039) (0.0041) (0.0042) (0.0043)
TER(10)  0.0173%** 0.0180***  0.0166***  0.0162***  (0.0198***
(0.0021) (0.0023) (0.0022) (0.0027) (0.0027)
TER(20)  0.0186*** 0.0200%*%*  0.0184***  (0.0204***  (.0229***
(0.0021) (0.0023) (0.0023) (0.0022) (0.0023)
TER(30)  0.0170%** 0.0185***  (0.0181***  (.0187***  (.0193***
(0.0017) (0.0019) (0.0019) (0.0020) (0.0020)
TER(40)  0.0148%** 0.0165***  0.0155%**  0.0151*%**  0.0163***
(0.0016) (0.0016) (0.0017) (0.0018) (0.0018)

Notes: Replication of results on combined decay in Table 3 for five different ML ap-
proaches. Stars are determined by statistical significance of the coefficient in the relevant
regression specification: * indicates p < 0.10, ** indicates p < 0.05, and *** indicates
p < 0.01.
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Table S5: Estimates of combined decay for each country separately

Pre-decay performance

Combined decay

Ethiopia Ghana Nigeria Peru Tanzania Uganda Ethiopia Ghana Nigeria Peru Tanzania Uganda
R? 0.3026 0.5600 0.4983  0.7119 0.3469 0.4299 -0.0649***  -0.0852***  -0.0468***  -0.0259***  -0.0395***  -0.1389***
(0.0066) (0.0073) (0.0033) (0.0017) (0.0039) (0.0247)
Spearman 0.5537 0.7646  0.7176  0.8473 0.6270 0.6220 -0.0368**F*  -0.0403*%**  -0.0278***  -0.0149%**  -0.0092***  -0.0844***
(0.0052) (0.0027) (0.0012) (0.0008) (0.0007) (0.0133)
TER(10)  0.6655 0.5159 0.6372  0.4586 0.7615 0.6282 0.0299***  0.0275%**  0.0232*%**  0.0184***  0.0039** 0.0396***
(0.0023) (0.0027) (0.0012) (0.0019) (0.0015) (0.0069)
TER(20)  0.5255 0.3863 0.4554  0.3017 0.5949 0.5257 0.0334***  (0.0246***  0.0241%%F  0.0178%%*  0.0063***  0.0419***
(0.0033) (0.0032) (0.0009) (0.0022) (0.0008) (0.0075)
TER(30) 0.4444 0.3118 0.3475  0.2286 0.4517 0.4368 0.0216***  0.0218%**  0.0192***  0.0128%**  0.0078***  0.0390***
(0.0027) (0.0026) (0.0007) (0.0007) (0.0006) (0.0059)
TER(40)  0.3663 0.2481 0.2695 0.1938 0.3378 0.3580 0.0136***  0.0194***  0.0160***  0.0096***  0.0064***  0.0376%**
(0.0025) (0.0018) (0.0005) (0.0011) (0.0006) (0.0049)
N 3 6 3 6 4 10 5 15 5 15 5 15

Notes: Pre-decay performance and estimate of combined decay calculated for each country separately.



B Assessing model and data refresh policies based on

soclial welfare

An alternative approach to calculate the optimal PMT refresh policy (that is, alternative to
the approach we take in the main paper) is to reason about social welfare: assume that a
social protection program has a certain budget, and that any of that budget that goes towards
survey costs is budget that will not go towards benefits delivered to beneficiaries. In this
framework, the welfare impacts of a program are determined by the size of the benefits and
who the benefits are targeted to — thus more up-to-date PMTs yield higher social welfare
through better targeting, but lower social welfare through lower benefit amounts. The best
PMT refresh policy in this framework is the the one that yields that greatest improvements

in total social welfare.

B.1 Calculating total social welfare

We start by calculating the total social welfare for each targeting scenario we simulate.
Specifically, we assume a fixed benefit size $b, that goes to each eligible household (measured
in 2015 USD PPP). We also fix a program coverage rate k% (from {10%, 20%, 30%, 40%}).
For each lagged train-test pair in our dataset, we simulate providing the PMT-identified
poorest k% of households in the test set with benefits $b, and calculate the aggregate utility
post-benefits (Uprogram) using the CRRA utility function (Hanna and Olken, 2018).'* To
make the units of utility interpretable and comparable across validation sets of different
sizes, we transform aggregate utility to a measure of improvement over the status quo, by
calculating the percent change in the status-quo (pre-benefits) utility (Upefore) as a result of

the targeted aid program:

Uprogram - Ubefore (4)

Utility improvement =
Ubefore

Naturally, the utility impact depends critically not just on the delay since model recali-
bration and social registry data collection, but also on the size of the benefits delivered to
each household and the coverage of the program. For a sense of the magnitude of utility
impacts at different benefit sizes and coverage levels, Table S6 records average utility im-
pacts for sixteen hypothetical social protection programs spanning the four coverage levels

and four different benefit sizes, in the no-decay setting.

“4Following Hanna and Olken (2018), we use p = 3 in the CRRA utility function.
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B.2 Parameterizing utility decay

Next, we parameterize social welfare decay as a function of time since model recalibration and
time since covariate data collection, just as we do for other metrics in the main paper (but
with the addition of an intercept, since here our outcome variable is total utility impact, not
the change in utility impact from the no-decay setting). For each the four program coverage
settings tested and a wide grid of possible benefit sizes, we regress the utility improvement
measure above on the time since model calibration, the time since covariate data collection,
and the interaction of the two terms. Figure S1 plots combined utility decay, and Table S7

decomposes combed utility decay into model decay and data decay.

B.3 Finding the best updating policy

Finally, we simulate the same 100 updating policy combinations as previously of recalibrating
the model every 1-10 years and conducting a PMT sweep every 1-10 years. For each option we
calculate the total yearly survey cost, which consists of the sum of average yearly consumption
survey costs and average yearly PMT sweep costs. Of the total budget, 11% is assumed to
go to administrative costs (Ortiz et al., 2017), and after accounting for survey costs, the
remaining yearly budget is assumed to go to benefits: so, for example, a program that
has a budget of $50 PPP per household in the registry and updates both the model and
social registry data each year will have provide approximately $25 PPP per household in
the registry in benefits. After fixing a program coverage level and determining the amount
of benefits each policy will provide yearly, we calculate the benefits that will go to targeted
households, and then use the parameterization of utility decay above to calculate expected
average yearly social welfare over the life cycle of the program. Finally, we identify the
updating policy with the highest expected social welfare.

The best updating policies identified through this process are shown in Figure S2. In
summary, we find results slightly more in favor of frequent surveys than those in the main
paper. Using the social welfare framework, programs with a budget below $40 PPP per
households in the social registry should recalibrate the PMT model every year and conduct
a PMT sweep every 2-3 years. Programs with a budget above $40 PPP per registry household
should recalibrate the PMT model and conduct a PMT sweep every year.
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Table S6: Examples of no-decay welfare impacts

$10 benefits $100 benefits $500 benefits $1000 benefits

10% coverage 0.2% 5.4% 14.3% 18.9%
20% coverage 1.5% 10.0% 24.1% 31.5%
30% coverage 2.3% 13.0% 31.0% 40.5%
40% coverage 2.8% 14.9% 35.9% 47.1%

Notes: Average social welfare impact (improvement over the status quo) for four different
coverage levels and four different benefit sizes. Benefit sizes are measured in USD 2015 PPP
and represent the yearly benefits to targeted households (not the benefits per household
in the registry).

Table S7: Parameterization of utility decay

Data decay Model decay Interaction Intercept

$100 benefits  -0.0124%%%  _0.0118%** 0.0013* 0.1754%%%
(0.0041) (0.0041) (0.0008) (0.0139)
$500 benefits  -0.0236***  -0.0200%** 0.0025%* 0.3839%**
(0.0063) (0.0063) (0.0012) (0.0212)
$1,000 benefits -0.0256***  -0.0201%** 0.0028** 0.4724%%
(0.0061) (0.0061) (0.0012) (0.0207)

Notes: Parameterization of utility decay for a 30% coverage program at three hy-
pothetical benefit amounts: $100, $500, and $1,000. Benefit amounts are measured
in USD 2015 PPP and represent the yearly benefits to targeted households (not
the benefits per household in the registry).
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Figure S1: Linear estimates of combined utility decay are given for the coefficient of determination (left),
the Spearman rank correlation coefficient (middle), and the targeting error rate with 30% coverage (right).
Individual data points — that is, performance metric differences resulting from specific time gaps between
particular training and evaluation rounds — are plotted as points, colored by country. The combined decay
curve is plotted in black, with the 95% confidence interval shown in light grey.
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Figure S2: Summary of optimal PMT updating strategies optimized by total utility. Results are shown for
different program coverage levels (each shown in a different subplot) and different average values of benefits
per household in the social registry (shown in colored markers, where markers are colored and sized by the
average benefit value). The X-Y location of the marker on each plot denotes the optimal policy, with the
model recalibration frequency (in years) on the x-axis and the frequency of PMT sweeps to collect social

registry data (also in years) on the y-axis.
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